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Optimal Server Assignment in Multi-Server
Queueing Systems with Random Connectivities

Hassan Halabian, Ioannis Lambadaris, and Yannis Viniotis

Abstract: In this paper, we provide complementary results
on delay-optimal server allocation in multi-queue multi-server
(MQMS) systems with random connectivities. More specifically,
we consider an MQMS system where each queue is limited to get
service by at most one server during each time slot. It is known that
maximum weighted matching (MWM) is a throughput-optimal
server assignment policy for such a system. In this paper, us-
ing dynamic coupling argument we prove that for a system with
i.i.d. Bernoulli arrivals and connectivities, MWM minimizes, in
stochastic ordering sense, a range of cost functions of the queue
lengths such as total queue occupancy (which implies minimization
of average queueing delay). Finally, we propose a low complexity
heuristic server assignment policy for MQMS systems namely least
connected server first/longest connected queue (LCSF/LCQ) and
through simulations we show that it performs very closely com-
pared with the optimal policy in terms of average queueing delay.

Index Terms: Delay-optimal server allocation, dynamic coupling,
maximum weighted matching, multi-server queueing systems.

I. INTRODUCTION

MULTI-SERVER queueing models with random connectiv-
ities have been used to study optimal resource allocation

in wireless networks [1]–[6]. While various performance crite-
ria including the stable throughput region and utility functions
of the admitted traffic rates have been studied in several pa-
pers [1]–[3], [5], [7]–[9], average queueing delay has received
less attention. The inherent randomness in wireless channels
makes delay-optimal resource allocation a challenging problem
in wireless networks. In this paper, we focus on delay-optimal
server assignment in a time-slotted, multi-queue, multi-server
system with random connectivities. Random connectivities can
model unreliable and randomly varying wireless channels. Al-
though this model is a simplified representation of a real wire-
less system, nevertheless it does provide valuable intuition for
the performance optimization of real systems. Similar modeling
approaches have already appeared in [2], [3], [5], [6], [10]–[12].

Throughput-optimal server allocation in queueing networks
has been studied and understood well in queueing theory. It
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is known that back-pressure algorithm is a throughput-optimal
algorithm for resource allocation and routing in queueing net-
works. While in throughput-optimality the objective is to deter-
mine a policy that maximizes the stable throughput region [1],
[7], in delay-optimality the goal is to determine a policy that
minimizes the average queueing delay. A server allocation pol-
icy may be throughput-optimal but not delay-optimal; how-
ever, a delay-optimal policy (for all the arrival rates) is always
throughput-optimal. In [2], the authors proved that for a multi-
queue, single-server system with i.i.d. Bernoulli arrival and con-
nectivity processes, longest connected queue (LCQ) policy is
both throughput-optimal and delay-optimal. The extension of
this result for non-i.i.d. case is still an open problem.

In generalizing the results to multi-queue, multi-server
(MQMS) systems, various systems have been studied [3]–[6].
The authors in [3] studied the throughput-optimal policy in two
MQMS models. In the first model, there is no limitation on the
number of servers allocated to a queue during each time slot.
This model is denoted as MQMS-Type1 in our paper. In the
second model which is a specific case of MQMS-Type1 model,
the queues are limited to get service from at most one server per
time slot. This model is denoted as MQMS-Type2 in our paper.
The authors in [3] studied the stability region of the MQMS sys-
tems in the case of infrequent channel state information. In [5],
the authors provided an explicit characterization of the network
stability region of MQMS-Type1 system for general stationary
channel processes. While the work in [3], [5] focus on stabil-
ity region analysis of multi-server queueing models, research
in [4], [6], [13] considers delay-optimal server allocation in such
systems. The authors in [6] considered a queueing model with
a set of parallel queues and i.i.d. Bernoulli packet arrivals that
are competing to attract service from K identical servers form-
ing a server-bank. The connectivities of the queues to the en-
tire server-bank are assumed to be i.i.d. Bernoulli processes.
Each queue is restricted to receive service from at most one
server during each time slot. The authors proposed LCQ pol-
icy in which the servers of the server-bank are allocated to the
K longest connected queues at each time slot. Using dynamic
coupling and stochastic ordering, they proved the delay optimal-
ity of LCQ policy for such a system. The work in [4] focuses on
delay-optimal server allocation problem in MQMS-Type1 sys-
tem. In [4], the authors argue that in general, achieving instanta-
neous throughput and load balancing is impossible in a general
MQMS system. However, they showed that this goal is attain-
able in the special case with ON-OFF channel processes. They
also introduced maximum-throughput load-balancint (MTLB)
policy and using dynamic programming showed that this pol-
icy minimizes a class of cost functions including total average
delay for the case of two queues with i.i.d., Bernoulli-distributed
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arrivals and connectivities. More precisely, the work in [4]
proves the optimality of MTLB policy via a series of lemmas
which establish a set of properties for the optimal value func-
tion inductively. The authors show the optimality of MTLB pol-
icy when there are N = 2 users, using dynamic programming
(DP) arguments and the properties of the DP value function. In
contrast to [4], in our paper we use stochastic ordering and dy-
namic coupling arguments to prove the optimality of maximum
weighted matching (MWM), in stochastic ordering sense, for a
class of cost functions of the queue length process. In our ap-
proach, we use Proposition 1 of [4] which proves that MWM
results in the most balanced queue state in MQMS-Type2 sys-
tems and use it in our dynamic coupling arguments in Lemma 2,
Lemma 3, Theorem 1 and Theorem 2 to show the delay optimal-
ity of MWM. Moreover, we show the optimality of the MWM
policy for a broad class of cost functions including Lr-norm of
the queue occupancy vector. A special case of the cost func-
tion would be the total queue occupancy of the system which
results in minimum queueing delay. The work in [13] consid-
ers delay and throughput-optimal server allocation in MQMS-
Type1 system in the case of many-server many-queue asymp-
totic regime where the number of servers (and queues) goes to
infinity. The authors developed new easy-to-verify sufficient
conditions for rate-function delay optimality in the asymptotic
regime. Using this result, they proved rate-function delay op-
timality for a class of oldest packets first (OPF) policies and
throughput optimality for a large class of maximum weight in
the fluid limit (MWF) policies. As opposed to [13], our analysis
in this paper for MQMS-Type2 is provided for non-asymptotic
case (similar to [2], [4], [6]). In this paper, we focus on MWM
policy in MQMS-Type2 system and prove that this throughput-
optimal policy is also delay-optimal for an MQMS-Type2 sys-
tem with i.i.d. arrival and connectivity processes. Our work pro-
vides incremental results for MQMS-Type2 system using the re-
sults derived previously in [4] for MQMS-Type1 system. On
the other hand, our work extends the system model and the an-
alytical methodology used in [2], [6] for single-server system
to MQMS-Type2 system. In particular, the researchers in [2],
[6] have considered queueing models where a single server or
a server-bank is randomly connected to a set of parallel queues.
In this paper, we consider a more general model where each in-
dividual server is randomly connected to each queue.

Our contributions in this paper are summarized as follows:
First, for an MQMS-Type2 system we conclude that during each
time slot, maximum weighted matching (MWM) policy will re-
sult in the most balanced queue vector in the system. Second,
using this result in conjunction with the notions of stochastic or-
dering and dynamic coupling, we prove the delay optimality of
MWM policy for an MQMS-Type2 system with i.i.d. Bernoulli
arrivals and connectivities. More specifically, we prove that
MWM minimizes, in stochastic ordering sense, a range of cost
functions of queue lengths including total queue occupancy1.
The optimality of MWM can be easily extended for MQMS sys-
tems with imperfect services where the service of a scheduled
packet fails randomly with a certain probability and systems
with more general connectivity and arrival processes which fol-

1The optimality of MWM is proven among all causal server assignment poli-
cies.

low conditional permutation invariant distributions. Finally, we
propose a low complexity heuristic algorithm called least con-
nected server first/longest connected queue (LCSF/LCQ) as an
alternative for the optimal policy in MQMS systems (MQMS-
Type1 and MQMS-Type2). In LCSF/LCQ the servers are se-
lected sequentially for assignment based on the number of con-
nectivities incident to them. Using simulations, we compare the
delay performance of LCSF/LCQ policy with the optimal one in
both MQMS-Type1 and MQMS-Type2 and show how closely
they perform.

While preliminary presentation of the initial results of the pa-
per were presented in two conference papers [14], [15], none
of them provide detailed theoretical analysis of the results par-
ticularly the proofs of the lemmas and the theorems. Further-
more, in this paper we complement the results of [14], [15]
by adding Lemma 3 and Theorem 2 to show the optimality of
any MWM policy for MQMS-Type2 system. In other words, we
show that the optimal policy is not a unique policy and any pol-
icy following the Maximum Weight principle is delay optimal
for MQMS-Type2 system. Moreover, as mentioned earlier we
introduce LCSF/LCQ algorithm as a low complexity heuristic
server allocation algorithm for MQMS systems (MQMS-Type1
and MQMS-Type2) whose performance is compared with the
optimal policies through simulations.

The rest of this paper is organized as follows. In Section II,
we introduce the queueing model and the required notation. In
Section III, we describe the MWM server assignment policy.
In Section IV, we prove the delay optimality of MWM server
assignment policy. In Section V, we present the simulation re-
sults where we evaluate the performance of the optimal policies
for MQMS-Type1 and MQMS-Type2, i.e., MWM and MTLB
policies, respectively. Furthermore, we propose a heuristic pol-
icy (LCSF/LCQ) for each system and compare its performance
with the optimal one in terms of average queue occupancy (or
equivalently average queueing delay). Finally, we summarize
our conclusions in Section VI.

II. MODEL DESCRIPTION

Throughout the paper, random variables are represented by
CAPITAL letters and lower case letters are used to represent
sample values of the random variables. Moreover, we use bold-
face font to represent matrices and vectors.

We consider a time-slotted, MQMS-Type2 system consisting
of a set of parallel queuesN = {1, 2, · · ·, N}with infinite buffer
space for each queue (see Figure 1). Packets in this system are
assumed to have constant length and require one time slot to
complete service. The service to this set of queues is provided
by a set of identical servers K = {1, 2, · · ·,K}. The connectiv-
ity of each queue n ∈ N to each server k ∈ K at each time slot t
is random and varying across time slots. We denote the connec-
tivity of queue n to server k at time slot t by Cn,k(t) ∈ {0, 1}.
When Cn,k(t) = 1 (Cn,k(t) = 0), queue n is connected to
(disconnected from) server k at time slot t. The connectivity
variablesCn,k(t) are assumed to be i.i.d. Bernoulli random vari-
ables with a fixed parameter p.

At any time slot, each server can serve at most one packet
from a connected, non-empty queue. We do not allow server
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Fig. 1. Discrete-time MQMS-Type2 system with N parallel queues and K
servers.

sharing in the system, i.e., a server can serve at most one queue
per time slot. We also assume that at most one server can be
assigned to any connected queue during a time slot.

Let An(t) denote the number of packet arrivals to queue n at
time slot t. We assume that new arrivals at each time slot are
added to the queues at the end of the time slot. The arrival vari-
ables An(t) are assumed to be i.i.d. Bernoulli random variables
with the same parameter λ for all n and t2.

We denote the length of queue n at the end of time slot t (i.e.,
after adding the new arrivals) by Xn(t). Hence, Xn(t) repre-
sents the number of packets in the nth queue at the end of time
slot t (or beginning of time slot t+ 1).

Any server assignment policy π in MQMS-Type2 system is
a bipartite matching between sets N and K and is fully deter-
mined by its indicator variables M (π)

n,k (t) ∀n ∈ N ,∀k ∈ K, t =
1, 2, · · · defined to be 1 if server k is assigned to queue n by
policy π at time slot t and zero otherwise. The N × K ma-
trix M (π)(t) = (M

(π)
n,k (t)),∀n ∈ N ,∀k ∈ K is defined as the

employed matching by policy π at time slot t.

III. MAXIMUM WEIGHTED MATCHING (MWM) POLICY

In [1], [7], it was shown that back-pressure algorithm max-
imizes the stable throughput region of a general data network,
i.e., it is throughput-optimal. The reader may refer to [1], [7] for
more information regarding the back-pressure algorithm. For
the model introduced in Section II, the back-pressure algorithm
reduces to the following optimization problem at each time slot
t [3]. In the optimization problem (1), Mn,k(t)’s are the opti-
mization variables and Xn(t − 1) and Cn,k(t) are known pa-

2The values of λ and p do not involve in our analysis. We only rely on the
fact that the arrivals and connectivities are i.i.d. Bernoulli processes.

rameters.

Maximize:
Mn,k(t), ∀n, k

N∑
n=1

Xn(t− 1)

K∑
k=1

Mn,k(t)Cn,k(t) (1)

Subject to:
K∑
k=1

Mn,k(t) ≤ 1 ∀n ∈ N

N∑
n=1

Mn,k(t) ≤ 1 ∀k ∈ K

Mn,k(t) ∈ {0, 1} ∀n ∈ N ,∀k ∈ K.

Finding the solution of problem (1) is equivalent to finding a
maximum weighted matching in the N × K bipartite graph
Gt = (N ,K, E). In Gt, N and K are the two sets of vertices
in each part of the graph and E = {en,k,∀n ∈ N ,∀k ∈ K}
is the set of edges between these two parts. In Gt, the associ-
ated weight to each edge en,k is Xn(t− 1)Cn,k(t). A matching
in graph Gt is a sub-graph of Gt in which no two edges share a
common vertex. Any matching M (π)(t) at any time slot t is cor-
responding to a sub-graph of Gt namely G(π)

t = (N ,K, E(π))
in which en,k ∈ E(π) if and only if M (π)

n,k (t) = 1. Maxi-
mum weighted matching in bipartite graphs can be determined
in polynomial time using the Hungarian algorithm whose com-
plexity is O((min{N,K})(max{N,K})2) [16].

Assume that M (MWM)(t) = (M
(MWM)
n,k (t)) ∀n ∈ N ,∀k ∈

K is the matching whose indicator variables are the solution of
the optimization problem (1). M (MWM)(t) has the following
properties:
(a) M (MWM)(t) always exists at all time slots.
(b) M (MWM)(t) may not be unique.

Definition 1: A MWM server assignment policy is de-
fined as a policy that employs maximum weighted matching
M (MWM)(t) at all time slots, i.e., π(MWM) = {M (MWM)(t)}∞t=1.
By construction, the MWM policy is causal.

Definition 2: We denote the set of all policies that employ
maximum weighted matching at all time slots by ΠMWM.

According to property (a) above, the set ΠMWM is not empty.
Moreover, according to property (b), we conclude that ΠMWM

may contain an infinite number of policies.

IV. DELAY OPTIMALITY OF MWM POLICY

In this section, we prove the delay optimality of MWM pol-
icy. This result is formally presented in Theorem 2. More specif-
ically, we show that in an MQMS-Type2 system with i.i.d.
Bernoulli arrival and connectivity processes, any MWM pol-
icy is optimal in minimizing, in stochastic ordering sense, a
class of cost functions of queue length processes including to-
tal queue occupancy. According to Little’s law, minimization
of total queue occupancy is equivalent to minimization of av-
erage queueing delay. For brevity we will use the term “delay
optimality” to refer to the optimality of MWM in this sense.

A. Equivalence of Queue Length Balancing and Maximum
Weighted Matching

We start this section by introducing the intermediate queue
state in the following definition.
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Definition 3: Let X ′(t) = (X ′1(t), X ′2(t), · · ·, X ′N (t)) de-
note the queue length vector at time slot t exactly after serving
the queues according to a server assignment policy π and before
adding the new arrivals of time slot t, i.e.,

X ′n(t) =

(
Xn(t− 1)−

K∑
k=1

Cn,k(t)M
(π)
n,k (t)

)+

. (2)

We call this vector as a the intermediate queue state. Recall that
the final state of queue n at time slot t is determined after adding
the new arrivals.

Given x′(t) as a sample value of random vector X ′(t), we
define a balancing server reallocation at time slot t as follows.

Definition 4: Assume that the employed matching at time
slot t (assignment of servers to the queues at time slot t) will re-
sult in the intermediate queue vector x′(t). A balancing server
reallocation at this time slot is a new matching resulting in inter-
mediate vector x̃′(t) such that one of the following conditions
is satisfied.
(C1) x̃′n(t) ≤ x′n(t) for all n = 1, 2, · · ·, N and there exists an
m ∈ {1, 2, · · ·, N} such that x̃′m(t) < x′m(t).
(C2) x̃′(t) and x′(t) are different in only two elements n and
m such that x′n(t) < x̃′n(t) ≤ x̃′m(t) < x′m(t) and the
following constraints are satisfied: x̃′n(t) = x′n(t) + 1 and
x̃′m(t) = x′m(t)− 1.

The balancing reallocation defined above balances the interme-
diate queue vector step-by-step. This step-by-step queue balanc-
ing is required in our stochastic ordering arguments later. It is
worth mentioning that each balancing reallocation will result in
a queue length which is more balanced according to the balanc-
ing definition provided in [4] which is based on lexicographic
ordering.

Example: Consider a system with three queues and three
servers. Assume that x(t − 1) = (3, 2, 5) is the queue length
vector right at the end of time slot t − 1 (or at the beginning of
time slot t). We consider two distinct examples to show the def-
inition of balancing server reallocations corresponding to each
of the cases C1 and C2 in Definition 4. Figs. 2(a) and 2(b) show
these examples of balancing server reallocations. In each case,
we also show the weight of each edge (n, k) which is equal to
cn,k(t)xn(t − 1). In these figures, since none of the queues
is empty, the edges with weight 0 are the ones which are dis-
connected. We have specified the original allocations by solid
lines and the balancing ones by dashed lines. For the system in
Fig. 2(a), the original allocation will result in the intermediate
vector x′(t) = (3, 1, 4) while the balancing server reallocation
will result in the intermediate vector x̃′(t) = (2, 1, 4). The vec-
tors x′(t) and x̃′(t) satisfy Condition C1. For the system in
Fig. 2(b), the original allocation will result in the intermediate
vector x′(t) = (2, 1, 5) while the balancing server reallocation
will result in x̃′(t) = (3, 1, 4). The vectors x′(t) and x̃′(t) sat-
isfy Condition C2.

Intuitively, a more balanced system minimizes the server
waste in future time slots. This is due to the fact that the proba-
bility of having an empty queue which is disconnected from the
servers is more in an unbalanced system, i.e., a more balanced
system will have higher average server utilization in time.
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Fig. 2. Examples of balancing server reallocations (the weight cn,k(t)xn(t−1)
of each edge (n, k) is also shown): (a) Satisfying condition C1 and (b)
satisfying condition C2.

Definition 5: For a server assignment policy π with the allo-
cation variables {M (π)

n,k (t)}∞t=1, ∀k ∈ K and ∀n ∈ N , we define
matching weight (MW) index at time slot t by

MWπ(t) =

N∑
n=1

Xn(t− 1)

K∑
k=1

Cn,k(t)M
(π)
n,k (t). (3)

MW index is exactly the objective of the optimization problem
(1). MWπ(t) is an index associated with policy π at time slot
t whose value is dependent on the state of the system (queue
lengths and connectivities) as well as the matching employed
by policy π at time slot t. In [4], the authors has shown that a
maximum weight load balancing matching is nothing but a max-
imum weight matching on an equivalent bipartite graph of an
MQMS-Type1 system. In other words, the MWM on the equiv-
alent bipartite graph of MQMS-Type1 system is equivalent to
balancing the queues. In our model, since the number of servers
allocated per queue is limited to one, the equivalent bipartite
graph is exactly the original graph. Thus the same result follows
for MQMS-Type2 as well. Moreover, using similar proof as in
Proposition 1 of [4], we can show that any balancing realloca-
tion will result in an improved matching weight index and when
the matching weight index is not maximized there exists a bal-
ancing server reallocation. This result is formally stated in this
paper in the following corollary.

Corollary 1: For a given policy π employing matching
M (π)(t) at time slot t, by applying a balancing server real-
location at time slot t (if there exists any), we can create a
new policy π̃ (differing from π only at time slot t) such that
MWπ(t) < MWπ̃(t). Moreover, for a given policy π at time slot
t, if MWπ(t) is not maximized, i.e., if MWπ(t) < MWMWM(t),
then there exists a balancing server reallocation at that time slot.

B. Background on Stochastic Ordering and Dynamic Coupling

In this section, we briefly review the concepts of stochas-
tic ordering (stochastic dominance) and dynamic coupling tech-
niques. These concepts are needed in the proof of delay optimal-
ity of MWM policy in the rest of our discussion. The reader is
encouraged to consult [17]–[19] for more details about stochas-
tic ordering and dynamic coupling.

Definition 6: Consider two real-valued, discrete-time stochas-
tic processes A = {A(t)}∞t=1 and B = {B(t)}∞t=1 in R. We say
A is stochastically smaller than B and we write A ≤st B if
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Pr(A(t) > r) ≤ Pr(B(t) > r) for all t = 1, 2, · · · and all
r ∈ R [17], [18].

The following two properties of stochastic ordering are use-
ful: If A ≤st B, then
(a) E[A(t)] ≤ E[B(t)]
(b) f(A) ≤st f(B) for all non-decreasing functions f .
Process A is stochastically smaller than B, if there exists a pro-
cess Ã = {Ã(t)}∞t=1 defined on the same probability space
as B, has the same probability distribution as A and satisfies
Ã(t) ≤ B(t) almost surely (a.s.) for every t = 1, 2, · · · [6]. The
last statement is known as coupling of A and Ã. When applying
coupling technique, given the processA, we construct a coupled
process Ã with the same distribution as A and Ã(t) ≤ B(t) a.s.
for all t. This gives us a tool for comparing the processes A and
B stochastically when it is infeasible to derive the distributions
ofA andB (e.g., in our queueing model when comparing the to-
tal occupancy process for different server assignment policies).

C. Delay Optimality of MWM

In this subsection, we will elaborate on proving the delay op-
timality of any MWM policy. We first introduce some defini-
tions. We denote by Z+ the set of non-negative integers and by
ZN
+ theN dimensional Cartesian space of non-negative integers.

We define the relation “�” on ZN
+ as follows.

Definition 7: For two vectors x , x̃ ∈ ZN
+, we write x̃ � x

if one of the following relations holds:
D1: x̃n ≤ xn for all n = 1, 2, · · ·, N .
D2: x̃ is obtained by permutation of two distinct elements of
x, i.e., x̃ and x are different in only two elements n and m
such that x̃n = xm and x̃m = xn. In this case, we say x̃ and
x are equal in permutation and we write x̃

p
= x.

D3: x̃ and x are different in only two elements n and m such
that xn < x̃n ≤ x̃m < xm and the following constraints are
satisfied: x̃n = xn + 1 and x̃m = xm − 1.

The three relations D1, D2 and D3 are mutually exclusive. In
D3, we say that x̃ is more balanced than x and can be obtained
by decreasing a larger element of x (i.e., m) by one and increas-
ing a smaller element (i.e., n) by one. We call such an inter-
change as a balancing interchange on vector x. Thus, the result
of a balancing interchange on a vector x would be a vector x̃
such that x̃ � x. According to Definition 4, a balancing server
reallocation satisfying Condition C2, will result in a balancing
interchange between x′(t) and x̃′(t).

We define the partial order “�p” on ZN
+ as the transitive clo-

sure of relation“ �” [20]. In other words, x̃ �p x if and only
if x̃ is obtained from x by performing a sequence of reductions
(i.e., reducing an element of the vector x such that x and x̃
satisfy D1), permutations of two elements (permutation of two
elements of the vector x such that x and x̃ satisfy D2) and/or
balancing interchanges (such that x and x̃ satisfy D3). When
x and x̃ are two queue length vectors, we write x̃ �p x if and
only if queue length vector x̃ is obtained from x by applying a
sequence of packet removals, two-queue permutations and bal-
ancing interchanges.

Definition 8: We define F as the class of real-valued func-
tions on ZN

+ that are monotone and non-decreasing with respect

to the partial order �p, i.e.,

f ∈ F ⇐⇒ x̃ �p x⇒ f(x̃) ≤ f(x). (4)
Lemma 1: Function f(x) =

∑N
n=1 x

r
n for any non-negative

integer r belongs to F . Consequently Lr-norm of queue length
vector x belongs to F .

Proof: Consider two queue length vectors x̃ and x such
that x̃ �p x. We can easily observe that if x̃ and x satisfy
D1 or D2,

∑N
n=1 x̃

r
n ≤

∑N
n=1 x

r
n and the result follows. If x̃

and x satisfy D3, x̃ and x are different in only two elements
n and m such that xn < x̃n ≤ x̃m < xm and the following
constraints are satisfied: x̃n = xn + 1 and x̃m = xm− 1. Thus,
f(x) = xrm + xrn +

∑N
i=1,i6=n,m x

r
i = (x̃m + 1)r + (x̃n −

1)r +
∑N
i=1,i6=n,m x̃

r
i . Using Binomial expansion of (x̃m + 1)r

and (x̃n − 1)r, we have f(x) =
∑N
i=1 x̃

r
i +

∑r
k=1

(
r
k

)
(x̃r−km +

x̃r−kn (−1)k). Note that
∑N
i=1 x̃

r
i = f(x̃). Since x̃n ≤ x̃m, the

term
∑r
k=1

(
r
k

)
(x̃r−km + x̃r−kn (−1)k) ≥ 0, and therefore f(x) ≥

f(x̃) and the result follows. 2

In Lemma 1, r = 1 results in function f(x) =
∑N
n=1 xn. This

function represents the total queue occupancy of the system. Ac-
cording to Little’s law (E[D] = E[

∑
Xn]

N×λ ), minimization of av-
erage total queue occupancy (E[

∑
Xn]) is equivalent to mini-

mization of average queueing delay (E[D]).
Definition 9: We define Πt, t = 1, 2, · · ·, as the set of all

policies that employ maximum weighted matching in every time
slot τ = 1, · · ·, t.

We observe that Πt−1 ⊇ Πt and ΠMWM =
⋂∞
t=1 Πt.

Consider a policy π ∈ Πt−1 which is using an arbitrary
matching M (π)(t) at time slot t. If M (π)(t) is not a maximum
weighted matching, then from Corollary 1 we conclude that by
applying a sequence of balancing server reallocations we can
create a policy π? ∈ Πt. Let hπt denote the number of balancing
server reallocations required to convert the employed matching
in policy π at time slot t to a maximum weighted matching.

Definition 10: We define the distance of policy π ∈ Πt−1
from the set Πt to be hπt balancing server reallocations.

According to Corollary 1, since by applying each server real-
location, the matching weight index strictly increases, the num-
ber of balancing server reallocations needed to convert π to a
maximum weighted matching is bounded, i.e., hπt ≤ H < ∞
for all t, π. Hence, after applying the first balancing server real-
location at time slot t we reach a policy π̃1 whose distance from
Πt is hπt − 1 balancing server reallocations. By repeating this
procedure we finally identify a policy whose distance to Πt is
zero, i.e., it belongs to Πt.

Definition 11: By Πh
t (0 ≤ h ≤ H) we denote the set of all

server assignment policies in Πt−1 whose distance from Πt is h
balancing server reallocations. Recall that Π0

t = Πt.
Definition 12: For any two policies π and π̃ with queue

length processes X = {X(t)}∞t=1 and X̃ = {X̃(t)}∞t=1, re-
spectively, we say π̃ dominates π, if f(X̃) ≤st f(X), f ∈ F ,
i.e., the queue length cost (delay) of policy π̃ is stochastically
less than that of policy π.

If π̃ dominates π we have E[f(X̃)] ≤ E[f(X)]. In the fol-
lowing lemma, we will interconnect the notions of “maximizing
the matching weight index” and “delay optimality” and show
that maximization of the matching weight index (at any given
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time t) will improve the delay performance (will decrease the
queue length cost function f(X) stochastically). The key el-
ement in the interconnection is the notion of balancing server
reallocation. In particular, we show that, for any given policy
π ∈ Πh

t , h = hπt that does not employ a maximum weighted
matching at time slot t (i.e., h > 0), there exists a balancing
server reallocation at time slot t. In the following lemma, we
show that by using such a balancing server reallocation at time
slot t we can construct a new policy π̃ that dominates the origi-
nal policy π. For the detailed proof, please refer to Appendix A.
We used stochastic ordering and dynamic coupling to prove this
lemma.

Lemma 2: For any policy π ∈ Πh
t where h = hπt > 0, we

can construct a policy π̃ ∈ Πh−1
t such that π̃ dominates π. Thus,

π̃ outperforms π in terms of average queueing delay.
Using Lemma 2, we can prove the following theorem which

states that any MWM policy outperforms any non-MWM policy
in terms of average queueing delay.

Theorem 1: For any server assignment policy π /∈ ΠMWM,
there exists an MWM policy π∗ ∈ ΠMWM such that π∗ domi-
nates π.

Proof: Let π be any arbitrary non-MWM policy. Then
π ∈ ΠH1

1 where H1 = hπ1 . By applying Lemma 2 repeatedly,
we can construct a sequence of policies such that each policy
dominates the previous one. Thus, we obtain policies that be-
long to ΠH1

1 ,ΠH1−1
1 ,ΠH1−2

1 , · · ·,Π0
1 = Π1. The last policy is

called π1 for which we have π1 ∈ ΠH2
2 where H2 = hπ1

2 . By
continuing such an argument, we obtain a sequence of policies
πt ∈ Πt, t = 1, 2, · · · such that πj dominates πi for j > i. This
sequence of policies defines a limiting policy π∗ that agrees with
MWM at all time slots. Thus, π∗ is an MWM policy that dom-
inates all the previous policies, including the starting policy π.
This proves that the delay-optimal policy is an MWM policy in
ΠMWM. 2

As we mentioned before, the set ΠMWM may contain an in-
finite number of policies. In the following, we show that any
MWM policy is delay-optimal. More specifically, we show that
the queue length costs of all the maximum weighted matching
policies in ΠMWM are equal in distribution. To show this result
we first show that the intermediate queue lengths resulted from
any MWM matching are permutations of each other.

Lemma 3: Multiple distinct maximum weighted matchings
result in intermediate queue length vectors which are equal in
permutation, i.e., one is a permutation of the others.
The proof of the lemma is given in Appendix B.

Using this lemma in conjunction with the notion of dynamic
coupling and stochastic ordering we can show that any two
MWM policy dominate each other, i.e., for any π1, π2 ∈ ΠMWM,
we have f(X(π1)) ≤st f(X(π2)) and f(X(π2)) ≤st f(X(π1)).
Therefore, according to the definition of “≤st”, we can con-
clude that f(X(π1)) and f(X(π2)) are equal in distribution, i.e.,
f(X(π1))

D
= f(X(π2)). Details of the analysis are skipped

here since it follows a similar argument we used for the proof
of Lemma 2.

Using the result stated above and Theorem 1, we can conclude
the main result of this section in the following theorem.

Theorem 2: Any MWM policy dominates any server assign-
ment policy, i.e., any MWM policy is delay-optimal.

D. Discussion

The optimality of MWM in MQMS-Type2 system can be also
concluded from the results in [4] presented for MQMS-Type1
system. More precisely, in MQMS-Type1 system where the
number of servers per queue are unconstrained, [4] established
the optimality of MTLB policies via a series of lemmas which
establish a set of properties for the optimal value function induc-
tively. These lemmas, except for Lemmas 4 and 5 in [4], hold
in full generality for N > 1. Although the final result on delay
optimality of MTLB policy was shown only for the case of two
queues in MQMS-Type1 system, the optimality of MTLB holds
as long as Observation 1 in [4] holds. Such a dependency of the
results in [4] on the number of queues is due to the fact that for
MQMS-Type1 system, Observation 1 only holds for the case of
two symmetric queues (as stated in Remark 1). However, for
the case of MQMS-Type2 system, Observation 1 in [4] holds
for the general N and thus, Lemmas 4 and 5 in [4] would hold
true for general N . Recall that MTLB and MWM policies are
the same for the case of MQMS-Type2 system. In contrast with
[4], in this paper we used dynamic coupling arguments to prove
the optimality of MWM while the results in [4] rely on using
dynamic programming formulation. Using this approach we are
able to prove the optimality of the MWM policy for a vast range
of cost functions of the queue lengths such as Lr-norm of the
queue occupancy vector. The class of cost functions for which
the MWM optimality is shown (defined in Def. 8) is determined
based on the definition of partial orderings “ � ” and “ �p ” in
Def. 7.

Although the results in the previous section have been shown
for a limited case with i.i.d. Bernoulli arrival and connectivity
processes, we may conclude some standard extensions as pre-
viously appeared in the literature (that used similar analytical
approach). In particular, we can easily conclude the optimal-
ity of MWM for MQMS-Type2 systems with imperfect services
where the service of a scheduled packet fails randomly with a
certain probability. Moreover, the results can be extended for ar-
rival and connectivity processes with permutation invariant dis-
tribution. Similar extensions has been provided in [6] for the
case of a multi-queue system with a single server bank. For the
completeness of the results we also provide such extensions in
the following sections.

D.1 Imperfect Services

We can extend Theorems 1 and 2 for the case where the ser-
vice of a scheduled packet by a connected server fails randomly
with a certain probability. This can model the operation of real-
istic wireless networks where service failures usually occur due
to unexpected and unpredictable effects of noise, interference,
etc. In the case of a packet service failure, the packet will be
kept in the queue and will be rescheduled and retransmitted in
future time slots.

By the random variable Qn,k(t) ∈ {0, 1}, we denote the suc-
cessful/unsuccessful service of queue n provided by server k
at time slot t; a value of 1 (resp. 0) denotes that the service
is successful (resp. unsuccessful). We assume that Qn,k(t),
∀n ∈ N ,∀k ∈ K are i.i.d. Bernoulli random variables with
the same success probability q. The parameter q (similar to pa-
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rameters λ and p) is not explicitly involved in our analysis other
than the fact that E[Qn,k(t)] = q,∀n, k, t. The queue lengths
are then updated at the end of each time slot by the following
rule.

Xn(t) =

(
Xn(t− 1)−

K∑
k=1

Cn,k(t)M
(π)
n,k (t)Qn,k(t)

)+

+An(t) ∀n ∈ N (5)

The network scheduler (that performs server assignment pro-
cess) cannot observe the variablesQn,k(t) and from its perspec-
tive they are assumed to be random. The random vector X ′(t)
is defined similar to (2). Hence, X ′(t) represents the queue
lengths before adding the new arrivals of time slot t as if all the
services at that time slot are successful.

For such a system, we can extend Lemma 2 for the sys-
tem with service failures by considering the random variables
Qn,k(t) in our dynamic coupling arguments. The proof is fol-
lowed by using the same approach as in Lemma 2 and is omitted
here due to space limitations. By applying the same approach
as in the proof of Theorem 1, Lemma 3 and Theorem 2, we
can similarly prove the delay optimality of MWM policy for the
system with imperfect services.

D.2 Extensions for Connectivity and Arrival Processes

The arguments in Lemmas 2 and Theorem 1 remain valid
if the i.i.d. assumption for connectivity and arrival pro-
cesses is relaxed as follows; we will consider connectiv-
ity and arrival processes which follow conditional permuta-
tion invariant distributions. Given event H (which is used
to denote the history of the system), we define a condi-
tional multivariate probability distribution f(y1, y2, · · ·, yn |
H) to be permutation invariant if for any permutation of
the variables y1, y2, · · ·, yn namely y′1, y

′
2, · · ·, y′n we have

f(y1, y2, · · ·, yn | H) = f(y′1, y
′
2, · · ·, y′n | H). We

can readily see that for all the connectivity and arrival pro-
cesses whose joint distributions at each time slot given the
history of the system3 (i.e., fA(t)(a1, a2, · · ·, aN | H) and
fC(t)(c1,1, c1,2, · · ·, cN,K−1, cN,K | H)) are permutation invari-
ant, Lemma 2 and Theorem 1 are still valid and therefore MWM
is delay-optimal.

We also consider the generalization of Theorems 1 and 2 for
non-Bernoulli arrival processes. Suppose that the number of ar-
rivals to each queue can be represented by the summation of
some i.i.d. Bernoulli random variables, i.e., has Binomial dis-
tribution. Also suppose that An(t) ≤ Amax for all n ∈ N and
all t. In this case, we can create a new (virtual) system in which
after each time slot we append Amax − 1 virtual time slots and
put the connectivities all equal to zero, i.e., for each virtual time
slot t, Cn,k(t) = 0,∀n ∈ N ,∀k ∈ K. We then distribute the
arrivals of the actual time slot among these Amax time slots (one
actual time slot and Amax − 1 virtual time slots) randomly such
that at each time slot at most one packet arrival occurs. Since the
connectivities and the arrivals in both systems are permutation
invariant, we can still prove Theorems 1 and 2 for the virtual

3By history of the system we mean all the channel states, arrivals and match-
ings of the previous time slots up to time slot t.

system. We observe that the operation of the two systems (the
original system and the virtual system) are the same. Therefore,
we can conclude that Theorem 1 is also valid for a multi-server
system with Binomial arrival processes. As the Poisson process
is approximated by a sequence of Binomial distributions, same
arguments can be used to show the validity of the results for
Poisson arrival process.

V. SIMULATION RESULTS

In this section, we compare the delay performance of the op-
timal policies for MQMS-Type1 and MQMS-Type2 with two
alternative server assignment policies; a random policy and a
heuristic policy called LCSF/LCQ. For each system, we will ob-
serve that LCSF/LCQ policy performs very closely to the opti-
mal policy and therefore it can be used as a good approximation
for the optimal policy for practical implementation in wireless
systems. In the following, we will introduce the random and
LCSF/LCQ policies for both MQMS-Type1 and MQMS-Type2
systems:
• Random policy: Each server is randomly allocated to one of
the queues which is connected to the server. In MQMS-Type2
system, both the server and the queue to which the server is
allocated are removed from the list of the servers and queues.
This process is repeated for all the servers.
• LCSF/LCQ policy: The servers are sorted based on the num-
ber of connectivities incident to them. We start from the server
with the minimum number of connectivities (least connected
server first). We allocate the server to its longest connected
queue. The queue length is updated (i.e., decremented). In
MQMS-Type2, the server and the queue to which the server was
allocated will be removed from the list of queues and servers.
We proceed accordingly to the next least connected server until
all servers are assigned.

Recall that LCQ algorithm was proposed for server allocation
in single server systems in [2], [6]. In single-server systems, we
only deal with one resource/server and the problem is how to
allocate that single server to the competing queues. It is proven
in [2] that if we assign the server to the longest connected queue,
the average queue length is minimized. In MQMS systems we
are dealing with a set of servers such that each server has an
independent random connectivity to each queue. In these sys-
tems, LCQ cannot be applied alone since the delay performance
of the system would be different for different orders of servers to
choose and then applying LCQ on them. LCSF/LCQ server al-
location algorithm is composed of two phases; LCSF and LCQ.
In LCSF phase we try to determine a proper order of servers to
choose for applying the second phase, i.e., LCQ. Therefore, in
LCSF phase, it chooses the least connected server first and then
applies an LCQ on that server. It then updates the queue lengths
and continues with the second least connected server and ap-
plies LCQ on that. This process continues until all the servers
are assigned. In LCSF/LCQ policies the idea is that by serving
the servers with the least number of connectivities we are trying
to maximize the chance to use those servers. In fact, least con-
nected servers are considered scarce resources and utilization of
them in the system will increase the total service utilization in
the system. If we differ using those servers, the probability of
missing the service of those servers increases since the queues
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Fig. 3. Performance comparison of the optimal policy with the heuristic policy (LCSF/LCQ) and the random policy: (a) Delay performance of MWM, LCSF/LCQ
and Random policies and (b) delay performance of MTLB, LCSF/LCQ and random policies

to which the server is connected may become unavailable (be-
come empty or be removed due to the service of another server).
In summary, LCSF phase of the algorithm tries to maximize the
server utilization while LCQ phase tries to balance the queue
lengths and minimize the probability of service waste in future
time slots.

Note that LCSF/LCQ does not provide the most balance state
for the intermediate queue state and thus it cannot result in the
optimal policy. To show this fact, we provide a counter example.
Consider an MQMS-Type1 system with N = 4 and K = 7
with the following configuration at time slot t: The queue state
at time slot t is x(t) = (5, 5, 5, 4). Servers 1 to 6 are connected
to queues 1, 2 and 3 and server 7 is connected to queues 1 and 4
only. Under this configuration, we can show that the LCSF/LCQ
algorithm will result in the intermediate queue length x′(t) =
(2, 3, 3, 4) while MTLB will result in x′(t) = (3, 3, 3, 3) which
is a more balanced vector. Although LCSF/LCQ is not optimal,
as we will see in the simulations it performs very closely to the
MTLB policy in terms of average queueing delay.

We have evaluated the performance of the above mentioned
policies and compared with the optimal policy in terms of aver-
age total queue occupancy. For MQMS-Type2 system we con-
sidered a system with N = 8, K = 4 and p = 0.5. For the
MQMS-Type1 we considered a system with N = 8, K = 16
and p = 0.5 where p is the probability of connectivity. The
arrival processes into the queues are Poisson processes. The re-
sults for Bernoulli arrival process were very comparable with
the Poisson process. Therefore, we only present the result for
Poisson arrival which is a more general and well accepted pro-
cess for packet arrivals. Figs. 3a and 3b show the results. We
observe that the optimal policy outperforms the LCSF/LCQ and
the random policy for both MQMS-Type1 and MQMS-Type2.
We can also see that the LCSF/LCQ performs very closely to the
optimal policy in both systems. For the case of MQMS-Type1
system, the difference is indiscernible (maximum difference was
measured 0.2).

The random policy is the worst performer as expected since
both the optimal and LCSF/LCQ policies try to balance the load
and maximize the service utilization while the random policy is

randomly allocating the servers to the connected queues.
The LCSF/LCQ policy is of particular interest for the follow-

ing reasons: (a) It follows a particular server allocation ordering
(LCSF) to their LCQ and thus it can be implemented using a
sequential server allocation with low computation complexity
of O(K(N + logK))4, (b) the selected server ordering (LCSF)
and allocation (LCQ) intuitively attempt to reduce the size of
the longest connected queue thus reducing the imbalance among
queues, Therefore, LCSF/LCQ can be proposed as an approxi-
mate heuristic for the implementation of the optimal policy.

VI. CONCLUSIONS

In this paper, we provided some complementary results on
delay-optimality of MWM policy for MQMS-Type2 system in
which the queues are restricted to get service from at most one
server per time slot. We used dynamic coupling arguments to
show the optimality of MWM for a class of cost functions of the
queue length vector. More specifically, we showed that MWM
policy is delay optimal for a symmetric MQMS-Type2 system
with permutation invariant connectivity and arrival processes.
Furthermore, we introduced a low complexity heuristic server
assignment policy for both MQMS-Type1 and MQMS-Type2
systems and through simulations we showed how it performs
closely compared with the optimal policy.

APPENDIX A
PROOF OF LEMMA 2

Proof: Fix any arbitrary policy π ∈ Πh
t where

h = hπt > 0, and any arbitrary sample path ω =
(x(0), c(1),a(1), x(1), c(2),a(2),x(2), · · ·) of the under-
lying random variables (X(0),C(1), A(1),X(1),C(2),
A(2),X(2), · · ·). We apply the coupling method to con-
struct from ω a new sample path ω̃ = (x̃(0), c̃(1), ã(1), x̃(1),
c̃(2), ã(2), x̃(2), · · ·) resulting in a new sequence of random
variables (X̃(0), C̃(1), Ã(1), X̃(1), C̃(2), Ã(2), X̃(2), · · ·)

4Compare with the MTLB complexity which is O(K2(N + logK)) [4].
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with X(0) = X̃(0). Recall that X(0) is the queue length vec-
tor in which the system starts. We denote the policy defined
on the new sample path ω̃ by π̃. In fact, we construct ω̃ and
π̃ ∈ Πh−1

t in such a fashion that for all the sample paths we have
x̃(t′) �p x(t′) for all t′ = 1, 2, · · ·. Therefore, for any f ∈ F
we have f(x̃(t′)) ≤ f(x(t′)) for all t′. As it will be shown,
the processes {(C(t′),A(t′))}∞t′=1 and {(C̃(t′), Ã(t′))}∞t′=1

are the same in distribution (these processes are permutation in-
variant). Thus, the process f(X̃) = {f(X̃(t′))}∞t′=1 obtained
by applying policy π̃ to the system is stochastically smaller than
f(X) = {f(X(t′))}∞t′=1, i.e., f(X̃) ≤st f(X)) and π̃ domi-
nates π.

Therefore, in the following, our goal will be to construct π̃
and ω̃ such that x̃(t′) �p x(t′) for all time slots. In the proof,
we always use the tilde notation for all random variables that
belong to the new system. The construction of π̃ is done in two
steps:

Step 1: Construction of π̃ for τ ≤ t: To construct the new
sample path ω̃ we let the arrival, connectivity and the policy be
the same as the first system until time slot t − 1 , i.e., c̃(τ) =

c(τ), ã(τ) = a(τ) and M (π)(τ) = M (π̃)(τ) for τ ≤ t − 1.
Thus, the resulting queue lengths at the beginning of time slot
t (or at the end of time slot t − 1) are equal, i.e., x̃(t − 1) =
x(t− 1).

We now consider the construction of ω̃ and π̃ for time slot
t. Since π ∈ Πh

t and h > 0, according to Corollary 1 there
exists a balancing server reallocation such that either C1 or C2
is satisfied. Thus, we consider two cases:

Case 1: After applying the balancing server reallocation, con-
dition C1 is satisfied. In other words, there exists a matching
such that if applied on the queue length x̃(t − 1) = x(t − 1)
at time slot t, we get x̃′(t) such that x̃′(t) ≤ x′(t). We denote
such a matching by M (π̃)(t). In this case, we let c̃(t) = c(t)

and ã(t) = a(t) and we apply M (π̃)(t) at time slot t, i.e., ar-
rivals and connectivities are the same in both systems and policy
π̃ acts at time slot t. So, we can easily check that x̃(t) ≤ x(t)
and therefore x̃(t) � x(t).

Case 2: After applying the balancing server reallocation, con-
dition C2 is satisfied. In other words, there exists a matching
such that if applied on the system at time slot t, we get x̃′(t)
which is different from x′(t) in two elements m and n such that
x′n(t) < x̃′n(t) ≤ x̃′m(t) < x′m(t) and the following constraints
are satisfied: x̃′n(t) = x′n(t)+1 and x̃′m(t) = x′m(t)−1. We call
such a matching by M (π̃)(t). In this case, we let c̃(t) = c(t)

and ã(t) = a(t) and we apply M (π̃)(t) at time slot t, i.e., ar-
rivals and connectivities are the same in both systems and policy
π̃ acts at time slot t. We consider all the following conditions
for arrivals to queues m and n as follows:
• If there is no arrival or there is an arrival to both queuesm and
n (i.e., am(t) = an(t) = 0 or am(t) = an(t) = 1), we conclude
that x̃(t) and x(t) satisfy condition D3. Thus, x̃(t) � x(t).
• If there is an arrival to queue m but not n (i.e., am(t) = 1,
an(t) = 0), we conclude that x̃(t) and x(t) satisfy condition
D3. Thus, x̃(t) � x(t).
• If there is an arrival to queue n but not m (i.e., am(t) = 0,
an(t) = 1) and x̃m(t) = x̃n(t), we conclude that x̃(t) and x(t)
satisfy condition D2. Thus, x̃(t) � x(t).

• If there is an arrival to queue n but not m (i.e., am(t) = 0,
an(t) = 1) and x̃n(t) < x̃m(t), we conclude that x̃(t) and x(t)
satisfy condition D3. Thus, x̃(t) � x(t).
In all the cases we can see that x̃(t) � x(t). The obtained
policy π̃ belongs to Πh−1

t since we applied a balancing server
reallocation to the matching employed in π at time slot t.

Step 2: Construction of π̃ for τ > t: In this step, we focus
on construction of ω̃ and π̃ for τ > t. We will employ mathe-
matical induction to achieve this goal. In particular, we assume
that ω̃ and π̃ are constructed up to time slot τ (τ ≥ t) such that
x̃(τ) � x(τ) i.e., one of the conditions D1, D2 and D3 is satis-
fied for x(τ) and x̃(τ). We will prove that policy π̃ and sample
path ω̃ can be constructed such that x̃(τ + 1) � x(τ + 1) (i.e.,
one of the conditions D1, D2 and D3 is satisfied for x(τ+1) and
x̃(τ + 1)). Accordingly, we consider three cases corresponding
to each condition D1, D2 or D3 at time slot τ :

Case 1: x̃(τ) ≤ x(τ). In this case, the construction of ω̃ and
π̃ at time slot τ+1 is straightforward. We let c̃(τ+1) = c(τ+1)

and ã(τ + 1) = a(τ + 1) and M (π̃)(τ + 1) = M (π)(τ + 1).
Thus, x̃(τ + 1) ≤ x(τ + 1) and therefore x̃(τ + 1) � x(τ + 1).

Case 2: x̃(τ) is obtained from x(τ) by permutation of two
distinct elements m and n. In this case, we let c̃n,k(τ + 1) =
cm,k(τ +1) and c̃m,k(τ +1) = cn,k(τ +1) for k = 1, 2, · · ·,K;
c̃i,k(τ + 1) = ci,k(τ + 1) for all i ∈ N , i 6= n,m and k =
1, 2, · · ·,K; ãn(τ + 1) = am(τ + 1), ãm(τ + 1) = an(τ + 1)
and ãi(τ + 1) = ai(τ + 1) for i ∈ N , i 6= n,m. Suppose
that M (π)(τ + 1) = (M

(π)
n,k (τ + 1)) ∀n ∈ N , k ∈ K be the

employed matching by policy π at time slot τ + 1. We construct
M (π̃)(τ + 1) as follows: Let M (π̃)

i,k (τ + 1) = M
(π)
i,k (τ + 1) for

i ∈ N , i 6= n,m and also let M (π̃)
n,k (τ + 1) = M

(π)
m,k(τ + 1) and

M
(π̃)
m,k(τ + 1) = M

(π)
n,k (τ + 1) for k = 1, 2, · · ·,K. As a result,

x̃(τ + 1) and x(τ + 1) satisfy condition D2 at time slot τ + 1
and therefore x̃(τ + 1) � x(τ + 1).

Case 3: x̃(τ) is obtained from x(τ) by performing a balanc-
ing interchange of two distinct elements m and n as defined
in condition D3. In particular, x̃(τ) and x(τ) are different
in only two elements n and m such that xn(τ) < x̃n(τ) ≤
x̃m(τ) < xm(τ) and the following constraints are satisfied:
x̃n(τ) = xn(τ) + 1 and x̃m(τ) = xm(τ) − 1. In this case,
we consider the following sub-cases:

Sub-case 3.1: x̃n(τ) < x̃m(τ) − 1: In this case, we let
c̃(τ + 1) = c(τ + 1) and ã(τ + 1) = a(τ + 1) and we let
M (π̃)(τ+1) = M (π)(τ+1). Thus, if xn(τ) = 0 and queue n is
serviced, condition D1 is satisfied at τ + 1. Otherwise, x̃(τ + 1)
is obtained from x(τ+1) by performing a balancing interchange
of elements m and n. Therefore x̃(τ + 1) � x(τ + 1).

Sub-case 3.2: x̃n(τ) = x̃m(τ) − 1: In this case again we let
c̃(τ + 1) = c(τ + 1) and ã(τ + 1) = a(τ + 1) and we let
M (π̃)(τ + 1) = M (π)(τ + 1). Thus, if xn(τ) = 0 and queue
n is serviced, condition D1 is satisfied at τ + 1. If queue m gets
service, queue n does not get service, there is an arrival to queue
n and no arrival to queue m, then x̃n(τ + 1) = xm(τ + 1) and
x̃m(τ+1) = xn(τ+1). Therefore, x̃(τ+1) and x(τ+1) satisfy
condition D2 and x̃(τ + 1) � x(τ + 1). Otherwise, x̃(τ + 1)
and x(τ + 1) satisfy condition D3 and x̃(τ + 1) � x(τ + 1).

Sub-case 3.3: x̃n(τ) = x̃m(τ): In this case, we let c̃(τ+1) =

c(τ + 1) and M (π̃)(τ + 1) = M (π)(τ + 1). Now, we consider



414 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 4, AUGUST 2019

the following cases to determine the arrivals at time slot τ + 1.
• If xn(τ) > 0 and both queues m and n or none of them get
service at time slot τ+1, we let ã(τ+1) = a(τ+1). Therefore,
if am(τ + 1) = 0 and an(τ + 1) = 1, x̃(τ + 1) and x(τ + 1)
satisfy condition D2 and thus x̃(τ + 1) � x(τ + 1). Otherwise,
x̃(τ+1) and x(τ+1) satisfy condition D3 and thus x̃(τ+1) �
x(τ + 1).
• If xn(τ) > 0 and queue n gets service at time slot τ + 1
and queue m does not get service at time slot τ + 1, we let
ã(τ + 1) = a(τ + 1). Therefore, x̃(τ + 1) and x(τ + 1) satisfy
condition D3 and thus x̃(τ + 1) � x(τ + 1).
• If xn(τ) > 0 and queue m gets service at time slot τ + 1 and
queue n does not get service at time slot τ + 1, we let ãm(τ +
1) = an(τ + 1) and ãn(τ + 1) = am(τ + 1) and ãi(τ + 1) =
ai(τ + 1) for i ∈ N and i 6= m,n. Therefore, x̃(τ + 1) and
x(τ + 1) satisfy condition D2 and thus x̃(τ + 1) � x(τ + 1).
• If xn(τ) = 0 and queue n gets service at time slot τ + 1
(although it does not have any packet to be served), we let
ã(τ + 1) = a(τ + 1). Therefore, x̃(τ + 1) and x(τ + 1) satisfy
condition D1 and thus x̃(τ + 1) � x(τ + 1).
• If xn(τ) = 0 and queue m gets service at time slot τ + 1 and
queue n does not get service at time slot τ + 1, we let ãm(τ +
1) = an(τ + 1) and ãn(τ + 1) = am(τ + 1) and ãi(τ + 1) =
ai(τ + 1) for i ∈ N and i 6= m,n. Therefore, x̃(τ + 1) and
x(τ + 1) satisfy condition D2 and thus x̃(τ + 1) � x(τ + 1).
• If xn(τ) = 0 and neither queue m nor n gets service at time
slot τ + 1, we let ã(τ + 1) = a(τ + 1). If am(τ + 1) = 0 and
an(τ + 1) = 1, x̃(τ + 1) and x(τ + 1) satisfy condition D2 and
thus x̃(τ + 1) � x(τ + 1). Otherwise, x̃(τ + 1) and x(τ + 1)
satisfy condition D3 and thus x̃(τ + 1) � x(τ + 1).
The above cases cover all the possible cases for all of which we
constructed ω̃ and π̃ such that x̃(τ + 1) � x(τ + 1).

According to steps 1 and 2, from any sample path ω and any
arbitrary policy π ∈ Πh

t , h = hπt > 0, we can construct a
sample path ω̃ and a policy π̃ ∈ Πh−1

t such that at all time
slots we have x̃(t′) �p x(t′). Therefore, f(x̃(t′)) ≤ f(x(t′)).
Consequently, the process f(X̃) = {f(X̃(t′))}∞t′=1 obtained
by applying policy π̃ to the system is stochastically smaller than
f(X) = {f(X(t′))}∞t′=1, i.e., f(X̃) ≤st f(X) and therefore
π̃ ∈ Πh−1

t dominates π ∈ Πh
t . 2

APPENDIX B
PROOF OF LEMMA 3

Proof: We need to show that for any two maximum
weighted matchings M (MWM1)(t) and M (MWM2)(t), if queue n
is being served under M (MWM1)(t) but not under M (MWM2)(t),
then there exists a queue m with xn(t) = xm(t) which is be-
ing served under M (MWM2)(t) but not under M (MWM1)(t). We
define a perfect graph G′t of size max{N,K} over which we
define sub-graphs G′(MWM1)

t and G
′(MWM2)
t corresponding to

M (MWM1)(t) and M (MWM2)(t). We build two directed sub-
graphs DMWM1

t and DMWM2
t using sub-graphs G′(MWM1)

t and
G
′(MWM2)
t as follows: DMWM1

t is the same as G′(MWM1)
t with

positive edges directed from queues to the servers. DMWM2
t is

the same asG′(MWM2)
t with negative edges directed from servers

to the queues. Similarly we define graph U as the union of these

two sub-graphs, i.e., U = D
(MWM1)
t

⋃
D

(MWM2)
t .

Graph U is the union of a number of even cycles. Assume
that queue n belongs to cycle ` (with W nodes) in graph U .
Each node ni in cycle ` is incident to one edge from DMWM1

t

and one edge from DMWM2
t and therefore we can associate a

pair rni
= (ek1,ni

, eni,k2) to it, where ek1,ni
is a directed edge

from server k1 to node ni (with negative weight) and eni,k2 is a
directed edge from node ni to server k2 (with positive weight).
The weights associated to the edges of each pair rni

, 1 ≤ i ≤W
are either (0, 0), (0, xni(t− 1)),(−xni(t− 1), 0) or (−xni(t−
1), xni

(t−1)). Accordingly, we will specify three types of edge
pairs as follows:
• Type 0 (T0): pairs with edge weights (0, 0) or (−xni

(t −
1), xni(t− 1)), 1 ≤ i ≤W .
• Type 1 (T1): pairs with edge weights (−xni

(t − 1), 0), 1 ≤
i ≤W and xni(t− 1) > 0.
• Type 2 (T2): pairs with edge weights (0, xni

(t−1)), 1 ≤ i ≤
W and xni(t− 1) > 0.
If queue n is being served under M (MWM1)(t) but not under
M (MWM2)(t), then the edges incident to queue n make a T2
pair rn = (0, xn(t − 1)). We now trace forward over cycle `.
The edge pairs after queue n cannot be all T0 pairs, since by
using the allocations of MWM1 in MWM2 for the queues in `,
we can increase the matching weight index of MWM2 which is
a contradiction. Thus, we consider the following two cases:

Case 1: Assume that the first non-T0 pair after rn is a T2
pair denoted by rm. By using the allocations used in MWM1
for queues n to the one right before queue m in cycle ` in
MWM2 and not serving queue m, we will obtain a matching
whose matching weight index is larger than that of MWM2
which makes a contradiction.

Case 2: Assume that the first non-T0 pair after rn is a T1 pair
denoted by rm. If xm(t − 1) > xn(t − 1), by using the allo-
cations used in MWM2 for the queues right after n in the cycle
` to queue m in MWM1 and not serving queue n, we obtain
a matching whose matching weight index is larger than that of
MWM1 which makes a contradiction. If xm(t−1) < xn(t−1),
by using the allocations used in MWM1 for the queue n to the
queue right before queue m in cycle ` in MWM2 and not serv-
ing queue m, we will obtain a matching whose matching weight
index is larger than that of MWM2. This is a contradiction too.
Thus, the only valid case is xm(t− 1) = xn(t− 1). 2
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