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Collaborative Framework of Algorithms for Sparse
Channel Estimation in OFDM Systems

Anthony Ngozichukwuka Uwaechia and Nor Muzlifah Mahyuddin

Abstract: For proper matrix ensembles, it has been known that the
greedy pursuit (GP) algorithms are computationally efficient and
fast to reconstruct sparse signals from far fewer linear measure-
ments. In considering several parameters such as sparsity level,
sparse signal ambient dimension and the number of linear mea-
surements, the GP algorithms have been shown to perform differ-
ently in estimating sparse signals. According to data fusion princi-
ple, fusing completely the estimated support set of different recon-
struction algorithms can improve signal recovery performance. It
can, however, lead to the increased probability of estimating in-
correct support indices, and thus degrades the signal reconstruc-
tion accuracy. In this paper, a new fusion framework, namely col-
laborative framework of algorithms (CoFA), is proposed to pur-
sue accurate reconstruction of the sparse signals from far fewer
linear measurements. The two main ingredients of the proposed
scheme that control the estimation of incorrect support indices are
pre-selection support of orthogonal matching pursuit (OMP) al-
gorithm and Thresholding -to eliminate unpromising indices from
the identied support set of any participating algorithm. Using the
restricted isometry property, the theoretical analysis of the CoFA
scheme and the sufficient conditions (guarantees) for realizing an
improved reconstruction performance are presented. Simulation
results demonstrate that the proposed scheme is effective and of-
fer a better channel estimation performance in terms of mean-
squared-error (MSE) and bit-error-rate (BER) when compared to
other reconstruction algorithms, without the significant increase in
computational complexity.

Index Terms: Compressed sensing (CS), orthogonal frequency di-
vision multiplexing (OFDM), restricted isometry property (RIP),
sparse channel estimation, sparse signal reconstruction.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFDM)

system is a multicarrier modulation technique that has

widely been adopted in modern communication systems

[1]. This is mainly due to its immunity to frequency-selective

fading channels, which support very high spectral efficiency

[2]–[4]. OFDM manages to transform the frequency-selective

fading channel into several flat fading subchannels with inde-

pendent additive noise vectors [3], which significantly reduces

the complexity of the receiver design [5]. Nonetheless, chan-
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nel estimation (CE) is critical in OFDM systems [6], as accu-

rate channel state information (CSI) can notably improve per-

formance.

Recently, by leveraging the notion of transform coding, a

new signal acquisition paradigm known as compressed sens-

ing (CS) has emerged for sensing signals that have a sparse

or compressible representation [7]–[9]. Therefore, CS relies on

linear dimensionality reduction which typically recovers an in-

herently sparse signal from a limited number of linear mea-

surements [9]. This has proven to be more accurate than the

conventional least squares (LS) [10]. Fortunately, many high-

dimensional real-world signals have coefficient vectors contain-

ing few nonzero entries compared to their ambient dimension-

ality [8]–[12]. However, knowledge of the locations of the non-

zero signal coefficients remain unknown [10]. Therefore, the de-

sign of suitable reconstruction algorithms for identifying sparse

signals still remains a much more fundamental problem in the

rapidly growing field of CS [13]–[15].

Typically, solving the sparse representation problem is non-

deterministic polynomial-time hard (NP-hard) [9], [15], [16],

and various techniques have been proposed in the literature for

solving this problem [8], [15], [17]. These techniques approx-

imate the coefficients of the representing functions [14], em-

ploying, for instance, linear programming [18], gradient de-

scent optimization [19] and greedy pursuit (GP) algorithms

[9], [15], [17].The GP algorithms iteratively identify the sup-

port set of the unknown signal until a halting condition is met

[15], [20]. Considering that the GP algorithms are typically

significantly faster with much lower computational complexity

than the methods of convex optimization [15], [18], [20], they

have been widely used for finding sparse solutions to under-

determined, or ill-conditioned, linear systems. Some of the GP

algorithms include orthogonal matching pursuit (OMP) [21],

regularized OMP (ROMP) [22], stagewise OMP (StOMP), gen-

eralized OMP (gOMP) [24], multipath matching pursuit (MMP)

[25], compressive sampling matching pursuit (CoSaMP) [22],

[26] and subspace pursuit (SP) [27] algorithms. The summary

of notations and symbols used in this paper are listed in Table 1.

The OMP algorithm proposed in [21], remains one of the

most intriguing GP algorithms, wherein at each iteration, the

column index of the measurement matrix that is best correlated

with the modified measurements (or residual) is selected. Tropp

and Gilbert [21] demonstrated that, for a given k-sparse signal

x ∈ R
N of size N , (where k denotes the number of nonzero

elements of the signal x) and a random Gaussian measurement

matrix A ∈ R
NP×N, the OMP succeeds in reconstructing x from

y ∈ R
NP = Ax linear measurements. This is achieved in just k

iterations with immense probability if the number of measure-

ments follows NP ∼ klogN [10], [21], [22], [24]. An algo-
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rithm, namely, StOMP has been proposed [10], that selects more

than one highly correlated atoms that surpass a carefully de-

signed threshold. Similarly, in [22], another technique that select

multiple columns with the largest correlation in magnitude has

been proposed, namely ROMP. However, the ROMP selects vec-

tors with similar magnitude (i.e., comparable coordinates) of the

correlation value before selecting the vector with the maximal

energy. Another pursuit algorithm, known as gOMP has been

proposed [24]. However, the gOMP targets the selection of a

fixed number of atoms per iteration by modifying OMP, mainly

on the identification step, for complexity reduction. Similarly,

in [25], another algorithm, known as MMP, that selects mul-

tiple promising candidates at each stage of iteration, has been

proposed. However, each iteration step of MMP, is associated

with an increase in the number of child paths for each candidate,

and hence necessarily exhibit increasing complexity. Hence, the

StOMP, ROMP, gOMP and MMP algorithms consider various

ways to correctly identify the component of correlation values,

by modifying OMP, mainly on the identification step. However,

the CoSaMP [22], [26] and SP [27] algorithms admit 2k and

k atoms, respectively per iteration. These then require the in-

corporation of an extra operational step, which has the impact

of pruning (i.e., backtracking), to correct erroneously estimated

atoms chosen from the sensing basis.

For sparse signal recovery problem, many GP algorithms per-

form differently to recover or reconstruct sparse or compress-

ible signals [28]. In the seminal work of Blanchard et al. [29],

it is shown that if the bounds on the restricted isometry prop-

erty (RIP) constant are placed on the GP algorithm RIP-based

reconstruction condition, while expressing these conditions into

required number of measurements, sparse signal dimension and

sparsity level of the true signal, the GP algorithms will perform

differently to reconstruct the unknown sparse signal. Addition-

ally, in noisy CS measurements, Hurley and Rickard [30] ob-

served that, the cardinality of the identified support-set, say T̂ ,

is often far larger than the sparsity level k of the target signal

(i.e., |T̂ | � k, where | · | denotes the cardinality operator) and

may require other sparse reconstruction algorithms for support

identification. This consequently results in the notion of fusing

different reconstruction algorithms together to enables success-

ful signal recovery probability from a seemingly incomplete set

of linear measurements [28], [31].

Ambat et al. [28] exploited the idea of fusing several CS re-

construction algorithms together and developed a fusion frame-

work, namely fusion of algorithms for compressed sensing

(FACS). FACS fuses completely the estimated support-sets of

several viable reconstruction algorithms together, to determine

the final signal estimate. Although, fusing completely the es-

timated support indices of algorithms may be elegant in the

noiseless regime or in a considerable low level of channel noise

but may lead to an increased probability of fusing several erro-

neously estimated indices over noisy channels. Moreover, since

FACS fuses completely the estimated support sets of recon-

struction algorithms, then reconstructing the signal using the re-

stricted support (union of support set) LS estimate, may some-

what be achieved at the expense of an increased computational

complexity.

In this paper, a new fusion framework, namely Collaborative

Table 1. Summary of notations and symbols.

Notation Representation of the symbol or symbol

k Sparsity number i.e., number of non-zero elements

of a vector

| · | Cardinality operator

�·� The ceiling function

#{·} Number of elements

L Channel length

h Channel impulse response

N Total number of subcarriers

y Received CS measurements

A Measurement matrix

(·)T Transpose

diag{·} Diagonal Matrix

‖ · ‖0 l0-norm

‖ · ‖1 l1-norm

‖ · ‖2 l2-norm

A† Moore-Penrose pseudo-inverse matrix of A
T̂� The set of indices contained in T̆ that is pruned by the algorithm.

IN Identity matrix of size N
R

(·) Real field with dimension (·)
CN Complex Gaussian distribution

∅ Empty set

AT̆ Column submatrix of A, with column indices equal to

elements in the set T̆
supp(x) The support of a vector x
xp Sub-vector formed by the elements of vector x listed

in the set p.

T c Complements of the set T
\ Difference set

T̃ , T̆ and T̂ Estimated support set

h̃, and ĥ Cox-Ingersoll-Ross (CIR) estimates

A∗ Conjugate transpose or Hermitian transpose of A

Framework of Algorithms (CoFA), is proposed to pursue accu-

rate reconstruction of the sparse signals from far fewer linear

measurements. Unlike FACS, the CoFA scheme exploits both

the estimated support-set and sparse coefficients of algorithms

to revise the estimate of support set of the target signal, with

the aim of correcting erroneously estimated atoms chosen from

the sensing basis. Hence, the CoFA scheme builds on two main

ingredients which include the pre-selection support of OMP al-

gorithm and thresholding—to yield a revised estimate of the es-

timated support set of any participating algorithm considered

in the fusion framework. Using the RIP, the theoretical analy-

sis of the CoFA scheme and the sufficient conditions (guaran-

tees) for realizing an improved reconstruction performance are

presented. Simulation results demonstrate that an improvement

in mean squared-error (MSE) and bit-error-rate (BER) perfor-

mance can be achieved by using the proposed scheme when

compared with the FACS scheme.

The remainder of this paper is organized as follows. Section

II presents an overview of the CS theory and the formulation

of the system model as a CS problem. Section III presents the

proposed sparse recovery scheme as well as the derivation of

the performance bounds and reconstruction guarantees of the

scheme. Section IV presents the results of numerical experi-

ments. Finally, Section V concludes this paper.

II. CS THEORY AND SYSTEM MODEL

In this section, an overview of the fundamental theories asso-

ciated with the CS scheme is presented. The detailed description
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of the basic improvements in CS can be found in the study of [8],

[32]–[35].

A. CS Theory

CS is a very efficient sub-Nyquist signal sampling scheme

that allows, under certain assumptions, the accurate recovery

of signals that are sparse or compressible with respect to some

known representation basis [10], [15]. The efficiency of this

scheme relies on the measurement technique employed and the

reconstruction algorithm used for support identification (i.e., to

identify the sparse set of representation coefficients). If Ψ =
[ψ1,ψ1, · · ·,ψN ], with ψn ∈ R

N , is a representation basis for

a real-valued, discrete-time signal x ∈ R
N, where N is the sig-

nal dimension, then the sparse representation assumes that the

original signal x =
∑N

i=1 ψiφi = ΨΦ is compressible. Such

that φi = 〈x, ψi〉 is the representation of x in a basis Ψ which

form an N × 1 vector Φ = [φ1, φ2, · · ·, φN ]T . Typically, since

Φ is sparse, then the signal x is called k-sparse. Consequently,

‖Φ‖0 ≤ k with k � N , which denotes the l0-norm measure,

counts the number of non-zero elements in the vector Φ i.e.,

‖Φ‖0 = #{φi 
= 0, i = 1, 2, · · ·, N}. In many practical applica-

tions, x is unknown, but through CS (sampling), it is measurable

in the form of compressed measurements given as

y = Θx = ΘΨΦ = AΦ, (1)

where Θ ∈ R
NP×N represents the sensing matrix, NP the size

of y with NP < N , A ∈ R
NP×N = ΘΨ represents the measure-

ment matrix such that k < NP < N . When NP < N , this nec-

essarily leads to an underdetermined system of equations with

infinitely many solutions of x satisfying (1). To have a single

unique solution, the measurement matrix A is required to satisfy

NP > N . Nonetheless, the required estimation is, however, an

underdetermined system in order to reduce the amount of pilot

overhead required for CE. Since x is k-sparse, the unique solu-

tion (which is necessarily the sparsest possible) can be derived

by using the CS framework to solve the l0-norm minimization

problem, as long as spark(A) > 2k is satisfied [9]. The spark

of a matrix is the smallest number of atoms of that matrix that

are linearly dependent [9]. To express differently, the following

minimization problem needs to be solved

Φ̂ = argmin
Φ

‖Φ‖0, s.t. y = AΦ, (2)

where ‖ · ‖ is the l0-norm, but unfortunately, this minimization

problem is combinatorial (specifically, NP-hard), and cannot be

solved in polynomial time [22], [23]. Alternatively, since the

measurement matrix A, approximately preserves the norm of x
when the matrix A is occupied by independent and identically

distributed (i.i.d.) random entries [10], [9], in relation to basis

pursuit (BP), one can attempt to solve the l1-norm minimization

problem of the form

Φ̂ = argmin
Φ

‖Φ‖1, s.t. y = AΦ. (3)

This problem is a convex optimization problem and can be re-

cast as a linear programming problem [9]. A reliable accurate

solution can be obtained provided that the matrix A is a ran-

dom matrix and that the number of NP = O(klog(N/k)) mea-

surements required, are satisfied [22]. For large scale problems,

the BP algorithm is known to converge very slowly [36]. Fortu-

nately, approximate solutions are available using the GP algo-

rithms [22].

For GP algorithms, let the ith column of A be represented

by ci, where i ∈ [N ] and [N ] := {1, 2, · · ·, N}. As the entries

in y are a linear combinations of k columns of A, solving the

sparse approximation problem can be formulated to as the prob-

lem of accurately identifying the support {c1, c2, · · ·, ck} of the

k-sparse signal, to then efficiently recover the signal x from its

measurements y.

B. System Model

Consider an OFDM system with a comb-type pilot arrange-

ment having N subcarriers, of which NP subcarriers are in-

dexed with pilots, in position P = {p1, p2, · · ·, pNp
} ⊆ {1 ≤

p1 < p2 < · · · < pNp
≤ N} which are known a priori

to the receiver. Let W ∈ C
NP×N represents the pilot place-

ment matrix. If the equivalent transmitted signal is denoted as

x(0), x(1), · · ·, x(N − 1), then the received signal vector can be

formulated as

y = XH + v = XFh + v, (4)

where y � [y(0), y(1), · · ·, y(N − 1)]T is the received chan-

nel measurements, X is an N × N diagonal matrix de-

noted as X � diag{x(0), x(1), · · ·, x(N − 1)} which rep-

resents the equivalent transmitted signals on the main diago-

nal, H � [H(0), H(1), · · ·, H(N − 1)]T is a vector of sam-

pled channel frequency response, v � [v(0), v(1), · · ·, v(N −
1)]T ∼ CN (0, σ2

vIN ) is the additive white Gaussian

noise (AWGN) experienced by the channel, and h �
[h(0), h(1), · · ·, h(L − 1)]T is the k-sparse received baseband

CIR with length L, F is an N ×L partial discrete Fourier trans-

form (DFT) submatrix which includes only the first L columns

of a standard N ×N DFT submatrix whose (m,n)th element of

F is given by [F ]m,n = 1√
N
e−j2πmn/N , where 0 ≤ m ≤ N−1

and 0 ≤ n ≤ L− 1. Therefore, the received signal at pilot loca-

tion is expressed as

y(p) = X(p)F(p)h + v(p) = Ah + v(p), (5)

where y(p) � Wy � [y(p1), y(p2), · · ·, y(pNP
)]T represents

the received channel measurements at the pilot placement set

p, X(p) � WXWT � diag{x(p1), x(p2), · · ·, x(pNP
)} repre-

sents the transmitted signal matrix at the pilot placement set p,

v(p) � Wv � [v(p1), v(p2), · · ·, v(pNP
)]T ∼ CN (0, σ2

vINP
)

represents the AWGN at pilot placement set p, F(p) � WF
represents an NP × L DFT submatrix which includes only the

rows that corresponds to the pilot placement set p and the first

L columns of a standard N × N DFT submatrix and whose

(m,n)th element of F is given by [F]m,n = 1√
N
e−j2πmn/N ,

where 0 ≤ m ≤ NP − 1 and 0 ≤ n ≤ L − 1 while

A � X(p)F(p) represents the designed NP × L measurement

matrix.

According to (5), the objective of CE is to obtain an estimate

of the CIR, h by using both the measurement matrix A and the

very small set of linear measurements y(p). In order to reduce

the overhead of pilot transmission, the measurement matrix with

less number of rows (pilot signals, NP ) than columns (channel

coefficients, L) is considered i.e., NP < L. Consequently, the
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matrix A becomes ill-conditioned and the resulting system of

linear equations becomes underdetermined. Hence, the method

of LS which is capable of accurately estimating h under the con-

dition of NP > L, now becomes inaccurate. However, through

CS, h is accurately estimated and the originally transmitted sig-

nal is uniquely reconstructed on a condition that the target signal

is k-sparse.

In CS, robust recovery guarantee of the sparse vectors, h is

possible from noisy measurements if the matrix A satisfies the

RIP. This property is presented as follows

Definition 1 (RIP [18]): A matrix A ∈ R
NP×L satisfies RIP

with restricted isometry constant (RIC) of δk, if

(1− δk)‖h‖22 ≤ ‖Ah‖22 ≤ (1 + δk)‖h‖22 (6)

holds for all k-sparse vectors h ∈ R
L such that ‖h‖0 ≤ k, and

0 ≤ δk < 1. Equivalently, for all k-sparse vectors h ∈ R
L with

‖h‖2 = 1, (6) may be reformulated as (1−δk) ≤ ‖Ah‖22 ≤ (1+
δk). Hence, the smaller the k-th RIP parameter of A, i.e., δk(A),
the better RIP is for that k value. In other words, RIP measures

the “overall conditioning” of the set of NP × k submatrices of

A [37], [38]. The following Lemma shows that RIC satisfies the

monotonicity property.

Lemma 1 (Monotonicity of δk [27]): If the measurement ma-

trix satisfies the RIP of orders 2k and 3k, respectively, then

δk ≤ δ2k ≤ δ3k (7)

for any δ2k ≤ δ3k. This property is called the monotonicity of

the RIC.

III. COLLABORATIVE FRAMEWORK OF ALGORITHMS

In this section, a new sparse recovery scheme, namely

CoFA, is proposed to reconstruct the unknown sparse signal

from far fewer linear measurements. In what first follow, is

an exploratory investigation of the viability of the proposed

scheme, followed by a detailed description of the proposed

scheme. Lastly, the theoretical performance analysis of the pro-

posed scheme is presented.

A. Exploratory Investigation

Consider an OFDM system with a data sequence modulated

by 4QAM with N = 256 subcarriers, where NP subcarriers

are assumed to be pilots subcarriers. The length L of the sparse

Rayleigh multipath fading channel h, is modeled with L = 50
taps, where k = 4 positions are randomly selected as nonzero

channel taps that are independently and identically distributed

(i.i.d.) CN (0, 1). Hence, these nonzero entries corresponds to

T = {c1, c2, · · ·, ck} ⊆ {1 ≤ c1 < c2 < · · · < ck ≤ L}
columns of A ∈ R

NP×L which represents the true support set

of the sparse signal. For the recovery of the sparse channel,

two GP reconstruction algorithms were used, the OMP [21] and

the ROMP [26] and averaged over 5,500 sparse channel real-

izations. The simulations are performed using MATLAB v8.5

(Release 2015a) on a PC Workstation equipped with Intel Core

i5-4460 CPU at 3.20 GHz with 4 GB installed memory (RAM).

Table 2. Average number of correctly estimated atoms N = 256, k = 4,

L = 50.

NP 8 10 12 14 16

Avg|T̂(OMP )| 1.8 2.4 3.2 3.8 3.9

Avg|T̂(ROMP )| 1.7 2.1 2.4 3.1 3.8

Avg|T̄ min| 1.9 2.6 3.4 4.0 4.4
Avg|T̄ max| 2.5 3.1 3.9 4.7 5.3

The conceptual framework of this exploratory investigation

is such that, in each sparse channel realization, each algorithm

compares their estimated support set T̂ with the true support set

of the sparse signal T (i.e., |b| = T̂ ∩ T {x : x ∈ T̂ and x ∈ T },

where |b| is the cardinality of the elements of the intersection

T̂ ∩T . The number of true atoms detected are then average over

t = 5500 sparse channel realizations i.e., avg|b| = (
∑t

i |bi|)/t.
Two new functions are defined that finds support of a vector,

as follows

supp(ĥ, T̂ , β) � {the subset of indices in set T̂ that cor-
responds to β largest magnitude of the

estimated sparse coefficients in ĥ}

and

supp(ĥ, T̂ , β̈) � {the subset of indices in set T̂ that cor-
responds to β smallest magnitude of the

estimated sparse coefficients in ĥ}.

Let T̂(OMP ) and |T̂(OMP )| and then T̂(ROMP ) and |T̂(ROMP )|
represent the estimated support-set and cardinality of OMP and

ROMP, respectively. In the same simulation environment, a

framework of collaboration between OMP and ROMP is in-

vestigated in two different scenarios. Let ĥ(ROMP ) represent

the output vector of estimated sparse coefficients of ROMP

which has k nonzero elements corresponding to T̂(ROMP ). Let

T̃(ROMP ) = T̂(ROMP ) \ T̂(OMP ) = {x : x ∈ T̂(ROMP )

and x 
∈ T̂(OMP )} represent the indices in ROMP but not in

OMP. As an illustration, we consider a particular case where

β = 2. Let T̃ max
(ROMP ) = supp(ĥ(ROMP ), T̃(ROMP ), β), and

T̃ min
(ROMP ) = supp(ĥ(ROMP ), T̃(ROMP ), β̈), represent the sub-

set of indices in set T̃(ROMP ) that corresponds to β = 2

largest and smallest magnitudes of ĥ(ROMP ), respectively. Let

T̆ max = T̂(OMP ) ∪ T̃ max
(ROMP ) and T̆ min = T̂(OMP ) ∪ T̃ min

(ROMP )
represent the framework of collaboration between OMP and

ROMP based on the two different scenarios. Consequently,

|T̄ max| = T̆ max∩T and |T̄ min| = T̆ min∩T represent the cardi-

nality of the column indices that were correctly identified for the

two different scenarios, respectively. The results of this experi-

ment is presented in Table 2. The simulation results in Table 2

shows that, the average number of atoms correctly identified by

OMP is 3.02 and by ROMP is 2.62. Additionally, the average

atom identified by Avg|T̄ min| = 3.26, and Avg|T̄ max| = 3.90.

Interestingly, while ensuring that too many incorrect indices

were not merged in the union of support sets (i.e., by admit-

ting only β number of promising indices from the participat-

ing algorithm, ROMP), the set T̆ max = T̂(OMP ) ∪ T̃ max
(ROMP )

dominated by its ability to find the true indices of the target

signal. Hence, this collaborative framework between algorithms



UWAECHIA AND MAHYUDDIN: COLLABORATIVE FRAMEWORK OF ALGORITHMS ... 13

),,(lg]~[ kyAaT ompomp

),,(lg]~,~[ kyAaTh parparpar

CoFA

),~,~(s~
nparr ThuppT

ompparn TTT ~\~~

romp TTT ~~ 0,†
cT TT hyAh

est -sparse support 
)(suppˆ

khT

0ˆ, ˆ
†

ˆ cT T
hyAh

Th ˆ,ˆ

Fig. 1. Schematics block diagram of the CoFA scheme.

will be exploited in the following section and may possibly lead

to accurate reconstruction of sparse signals from noisy CS mea-

surements.

B. Algorithm Description

The CoFA scheme is proposed to pursue accurate sparse sig-

nal recovery by identifying the true support set of the target

signal. Since, OMP can reliably recover any k-sparse signal of

dimension N using NP = 0(klnN) limited number of linear

measurements and have comparable performance guarantee to

that of BP [23], [39], it has become an attractive alternative to

BP [23]. However, OMP may fail to identify a correct index

at a fixed iteration if the cumulative coherence of the measure-

ment matrix is too similar [40], i.e. if the measurement matrix

coherence is too high. Therefore, many revolutionary GP algo-

rithms have been proposed to improve the identification step

of OMP. This is also revisited, as a special case of the CoFA

scheme, for accurate support recovery of the high-dimensional

sparse signal. Hence, the two main ingredients of CoFA are the

pre-selection wherein, the estimated support-set of OMP is se-

lected and the thresholding–to remove the unpromising indices

from the estimated support set of any participating algorithm be-

fore fusion (i.e., T̆r = supp(h̃par, T̃ , β) such that, indices in set

T̆ that corresponds to the β largest coefficients of h̆par yield a

revised estimate of support T̆r). The schematic block diagrame

of the CoFA scheme is presented as Fig. 1.

The pseudo-code for the CoFA scheme is shown as Al-

gorithm 1. Define T̃omp and T̃par, as the estimated support

set of OMP and any participating algorithm, respectively. Let

β = �α|T̃par|� = �αk�, where α takes values defined by

0.1 ≤ α ≤ 1. In other words, α ∈ [Λ], such that [Λ] :=
linspace(0.1, 1, k) generates a row vector consisting of k lin-

early equally spaced points within the range of 0.1 and 1, in the

form [Λ] := {λ1, λ2, · · ·, λk}. Here, k denotes the sparsity level

of the true signal. Hence, β can take on any value within �λ1 ·k�,

�λ2 · k�, · · · , �λk · k�. Since β is dependent on parameters such

as the dimension of the sparse signal, sparsity level k, measure-

ment noise level, and the number of measurements NP , then

Algorithm 1 CoFA Scheme

Input: Received signal at pilot subcarriers yp, measurement

matrix A, sparsity level k, parameter α;

Output: Estimated sparse channel vector ĥ, estimated sparse

support set T̂
Initialization: ĥ = [0, 0, · · ·, 0]T ;

1: [T̃omp] = alg(A, yp, k); {Estimated support set for

OMP}

2: [h̃par, T̃par] = algPar(A, yp, k); {h̃par and T̃par repre-

sent the estimated channel coefficients and the correspond-

ing support-set of any participating algorithm, respectively}

3: β = �αk�; {α ∈ [Λ], and [Λ] := linspace(0.1, 1, k)}
4: T̃n = T̃par\T̃omp; {x : x ∈ T̃par and x 
∈ T̃omp}

5: T̃r = supp(h̃par, T̃n, β); {T̃r ⊂ T̃n i.e., T̃r contains in-

dices in T̃n corresponding to β largest magnitude elements

in ĥpar }

6: T̆ = T̃omp ∪ T̃r ;

7: h̆T̆ = A†
T̆

yp, h̆T̆ c = 0;

8: T̂ = supp(h̆k); {h̆k is the best k-sparse approximation

of h̆}

9: ĥT̂ = A†
T̂

yp,ĥT̂ c = 0;

10: return ĥ, T̂ .

proper value of α must be selected to determine the threshold-

ing parameter β.

In order to identify the support set of the underlying sparse

signal, the estimated support sets of OMP and that of any

other participating algorithm are first generated in the form of

[T̃omp] = alg(A, yp, k) and [h̃par, T̃par] = algPar(A, yp, k),
respectively. The notation T̃omp, denotes the estimated support

set of OMP, while h̃par and T̃par denote the estimated sparse

coefficients and support-set of any participating algorithm. The

support set of OMP is then pre-selected for inclusion into the

union of support set. Subsequently, the set difference of T̃omp

and T̃par, i.e., T̃n = T̃par\T̃omp {x : x ∈ T̃par and x 
∈ T̃omp},

which represents the set of elements in T̃par but not in T̃omp

is generated. And then T̃r = supp(ĥpar, T̃n, β), which yields

a revised estimate of the support set of the participating algo-

rithm, where T̃r represents the indices in T̃n that corresponds to

β largest magnitude of ĥpar. Subsequently, a union of indices

is formed, i.e., T̆ = T̃omp ∪ T̃r. Following the identification

of the sparse approximation supports, T̆ , a new estimate of the

CIR, h̃T̆ is obtained. Lastly, the k largest values of the estimated

channel coefficient are maintained and a new estimate of the

sparse coefficient is generated, ĥ while the remainder are zero

padded, i.e., ĥT̂ c = 0.

C. Theoretical Analysis of CoFA Scheme in the CS Framework

In this section, the theoretical analysis of the CoFA scheme

is presented using the RIP of the measurement matrix A. Let

|T̃omp| = |T̃par| = k be the support set cardinality of OMP and

that of any participating algorithm, respectively. In the CoFA

scheme, T̆ = T̃omp ∪ T̃r denotes the union set formed by OMP

and the revised estimate of support set of any participating algo-

rithm. Consequently, |T̆ | = k+�αk� = k+β, since |T̃omp| = k
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and |T̃r| = β, where (k + β) ≤ NP . Subsequently, the LS so-

lution is then obtained hT̂ = argmin
u

‖yp − AT̂u‖2 = A†
T̂

yp
which furnishes a k-sparse signal estimate, h with a correspond-

ing support set T̂
Hence, since the matrix A satisfies the k-RIP with RIC of

δk+β , then the NP × L dimensional matrix A satisfies RIP with

RIC δk+β if

(1− δk+β)‖h‖22 ≤ ‖Ah‖22 ≤ (1 + δk+β)‖h‖22 (8)

holds for all (k + β) ≤ NP sparse vector h, where

0 ≤ δk+β < 1. Since matrix A has RIC δk+β , then according

to Proposition 3.1 in [15], it holds that

‖A∗
T̂

y‖2 ≤
√
1 + δk+β‖y‖2

‖A†
T̂

y‖2 ≤ 1√
1− δk+β

‖y‖2

(1− δk+β)‖h‖2 ≤ ‖A∗
T̂

AT̂ h‖2 ≤ (1 + δk+β)‖h‖2
1

1 + δk+β
‖h‖2 ≤ ‖(A∗

T̂
AT̂ ‖)−1h‖2 ≤ 1

1− δk+β
‖h‖2, (9)

where (A)† = (A∗A)−1A∗ (for complex A with linearly inde-

pendent columns, assuming A is full-rank). Hence, from Corol-

lary 3.3 in [15], given that A has RIC of δk+β with a set of

indices, T̂ , and with h as a vector of CIR, it then follows that

‖A∗
T̂

AhT̂ c‖2 = ‖A∗
T̂

AT̂ chT̂ c‖2 ≤ δk+β‖hT̂ c‖2 (10)

provided that k+β ≥ |T̂ ∪supp(h)|. Accordingly, the follow-

ing lemma can be shown

Lemma 2: For the CS framework stated in (4), if the union

of identified support-set is given as T̆ and ĥ is the estimated

channel coefficient of h derived via ĥT̆ = A†
T̆

y, ĥT̂ c = 0, then

the following relation holds

‖h − ĥ‖2 ≤ δ2k+β

1− δ2k+β
‖hT̂ c‖2 +

1√
1− δ2k+β

‖v‖2, (11)

from this it can be deduced further that

‖hT̂ c‖2 ≤ ‖h − ĥ‖2,

and that

‖hT̂ c‖2 =
1 + δ2k+β

1− δ2k+β
‖hT̆ c‖2 +

2

1− δ2k+β
‖v‖2.

This then provides a reconstruction guarantee of

‖h − ĥ‖2 ≤ 1 + δ2k+β

(1− δ2k+β)2
‖hT̆ c‖2 +

3

(1− δ2k+β)2
‖v‖2.

Proof of Lemma 1 can be found in Appendix B. �
Hence, according to the monotonicity property of RIC in (7),

the CoFA scheme is seen to satisfy RIP with RIC δ2k+β , where

β = 2. However, in the FACS scheme, the measurement matrix

A satisfies RIP with RIC δR+k, where R � |Γ| ≤ NP and

Γ = ∪P
i=1T̂i represents the union of P number of estimated

support-sets. Hence

δ2k ≤ δ2k+β ≤ δR+k.

Finally, it is worth mentioning that if matrix A satisfies RIC of

order δ2k, δ2k+β , or δR+k, then it can be interpreted that, matrix

A approximately preserves the distance between any pair of k-

sparse vectors for the respective value of RIC. Therefore, the

RIC of δR+k for FACS will indeed have significant implications

regarding to its robustness to noise and therefore, FACS may not

provide performance guarantee improvement in all cases.

IV. NUMERICAL EXPERIMENTS AND RESULTS

In this section, simulation experiments were performed to in-

vestigate and compare the performance of the proposed scheme

with other estimation algorithms such as LS, OMP, CoSaMP, SP

and the FACS scheme. The following simulation experiments

were performed using MATLAB v8.5 (Release 2015a) on a PC

Workstation equipped with Intel Core i5-4460 CPU at 3.20GHz

with 4GB installed memory (RAM).

A. Simulation Set-up

An OFDM system with 4QAM baseband modulation, with

N = 256 subcarriers is considered, where NP = 16 subcarriers

are assumed to be pilots, unless otherwise mentioned. For the

recovery of sparse channel, 4,000 realizations of sparse mul-

tipath channels with L = 50 are employed in each settings,

where k = 6 location of the nonzero channel taps are ran-

domly generated and the channel attenuation is based on the

independently and identically distributed (i.i.d.) CN (0, 1). In

each of the following experiments, the parameter α ∈ [Λ],
with [Λ] := linspace(0.1, 1, k) is employed, such that α ∈
{0.10, 0.28, 0.46, 0.64, 0.82, 1.00}. Hence, in applying the term

to β = �α|T̃pat|�, a corresponding value of β ∈ {1, 2, 3, 4, 5, 6}
indices of the participating algorithm will be admitted into the

union of support set.

B. Performance of the CoFA Scheme

In the first experiment, the variation on the performance of

the proposed scheme, namely CoFA with respect to signal-to-

noise ratio (SNR) for different settings of β is studied, where

β = �αk� and α ∈ [Λ]. Two different randomly-generated pilot

patterns were used as presented in Appendix-A with Np = 12
and Np = 14 number of pilot subcarriers, respectively. Fig. 2

plots the MSE versus SNR of the proposed scheme over the var-

ious settings of α for a corresponding value for β. Fig. 2 indi-

cates how the CoFA scheme is robustness in terms of sparsity

level, the number of linear measurements, measurement noise

level and sparse signal dimension over various parameter set-

tings of β. It is observed that using the different parameter set-

tings of α ∈ {0.10, 0.28, 0.46, 0.64, 0.82, 1.00} strongly influ-

ences the overall system performance. However, the proposed

scheme showed a better MSE performance with a setting of

α = 0.28 (i.e., β = �αk� = �0.28 × k� = 2, where k = 6) for

the two pilot patterns.

In the second experiment, CE performance is compared

between the proposed scheme and the FACS scheme using
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Fig. 2. MSE performance of the CoFA scheme with various number of pilots
and settings of β.

LS

SP

OMP

FACS (T̂OMP ∪ T̂SP )

CoFA (T̆OMP,SP ), β = 2

Fig. 3. MSE performance of the LS, SP, OMP algorithms and the FACS and
CoFA schemes.

OMP and SP algorithms to develop CoFA(T̆OMP,SP ) and

FACS(T̂OMP ∪ T̂SP ) schemes, respectively. In this experiment,

a randomly generated pilot pattern with NP = 16 subcarriers

was employed (see Appendix A). Additionally, the uniformly

spaced pilot pattern was also used, as it proves to be the most

effective approach for the conventional CE methods. The com-

parisons of MSE performance and the BER performance for

sparse CE are shown in Figs. 3 and 4, respectively. It can be seen

that the proposed scheme provides better MSE performance as

well as system BER than the other methods of channel estima-

tion including the FACS scheme. For example, at SNR = 30
dB the MSE for LS, SP, OMP, FACS and CoFA algorithms are

1.29×10−2, 7.4×10−3, 6.0×10−3, 4.8×10−3, and 3.9×10−3,

respectively. In other words, CoFA achieves a better MSE per-

formance than FACS using a reduced number of fused support

indices.

In the third experiment, CE performance is compared be-

tween the proposed scheme and the FACS scheme using OMP

and CoSaMP algorithms to develop CoFA(T̆OMP,CoSaMP ) and

FACS(T̂OMP∪T̂CoSaMP ) schemes, respectively. The uniformly

spaced pilot pattern is also plotted as the performance bench-

LS

SP

OMP

FACS (T̂OMP ∪ T̂SP )

CoFA (T̆OMP,SP ), β = 2

Fig. 4. BER performance of the LS, SP, OMP algorithms and the FACS and
CoFA schemes.

LS

CoSaMP

OMP

FACS (T̂OMP ∪ T̂CoSaMP )

CoFA (T̆OMP,CoSaMP ), β = 2

Fig. 5. MSE performance of the LS, CoSaMP, OMP algorithms and the FACS
and CoFA schemes.

LS

CoSaMP

OMP

FACS (T̂OMP ∪ T̂CoSaMP )

CoFA (T̆OMP,CoSaMP ), β = 2

Fig. 6. BER performance of the LS, CoSaMP, OMP algorithms and the FACS
and CoFA schemes.

mark. The MSE and BER performance of CE are shown in Fig. 5

and Fig. 6, respectively. It can be seen that the proposed scheme

has a significantly improved performance in terms of CE errors
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Fig. 8. Successful channel recovery percentage versus channel sparsity.

compared to the FACS scheme. This improved performance by

CoFA is best explained by its ability to find the true support in-

dices of the sparse signal, while ensuring that too many incorrect

indices are not fused. Additionally, Fig. 7 plots a rough estimate

of the computational complexity of OMP, CoSaMP, FACS and

CoFA algorithms based on the CPU run time. However, it is

noteworthy to mention that, in spite of the fact that the CPU

runtime is not an exact measure of complexity, it can still pro-

vide a rough estimate of the computational complexity. In Fig. 7

it is observed that, the computational complexity of CoSaMP is

much higher than that of OMP. This can be further explained

as the obvious effect of always selecting a fixed number of

atoms, 2k, with the largest correlation value in magnitude per

iteration, unlike OMP which selects only one element from the

correlation vector per iteration. Furthermore, FACS is observed

to have a somewhat higher computational complexity than the

CoFA scheme due to the fact that if fuses all indices to the union

of support set (say Γ), and hence, requires an extra computa-

tion for the calculation of the LS approximation restricted to the

union of support set via the Moore-Penrose pseudoinverse (i.e.,

h̃Γ = A†
Γy, h̃Γc = 0).

The fourth experiment compares the sparse signal recovery

LS

ROMP

OMP

FACS (T̂OMP ∪ T̂ROMP )

CoFA (T̆OMP,ROMP ), β = 2

Fig. 9. MSE performance of the LS, OMP, ROMP algorithms and the FACS
and CoFA schemes.

LS

ROMP

OMP

FACS (T̂OMP ∪ T̂ROMP )

CoFA (T̆OMP,ROMP ), β = 2

Fig. 10. BER performance of the LS, OMP, ROMP algorithms and the FACS
and CoFA schemes.

probability with respect to the sparsity of the channel (i.e., the

number of nonzero channel taps) for SNR = 22 dB. Fig. 8

plots the sparse signal recovery probability with respect to the

sparsity of the channel for both FACS(T̂OMP ∪ T̂CoSaMP ) and

CoFA(T̆OMP,CoSaMP ) schemes. It shows how the two schemes

are robust against the sparsity of the channel. It can be observed

that as the channel sparsity level k increases, the probability of

successful channel recover decreases for both schemes. This is

because, as the level of sparsity k increases, the number of re-

quired measurements NP = Cklog(N/k), also increases. How-

ever, since the number of measurements (pilot subcarriers) used

in this experiment, is kept fixed at NP = 16 (where N = 256),

at higher sparsity level k the available measurements becomes

insufficient for perfect reconstruction of the sparse signal and re-

sults in a decrease in the successful channel recovery probabil-

ity. However, in Fig. 8, it is observed that the proposed scheme

is more robust and offered the best channel recovery probability

against channel sparsity compared to the FACS scheme.

In the last experiment, CE performance is compared between

the proposed scheme and the FACS scheme using the OMP and

ROMP algorithms to develop the CoFA(T̆OMP,ROMP ) and the
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FACS(T̂OMP ∪ T̂ROMP ) schemes, respectively. The uniformly

spaced pilot pattern is also plotted as the performance bench-

mark. The comparisons of the MSE performance and the BER

performance for sparse CE are shown in Figs. 9 and 10, respec-

tively. It can be seen from Figs. 9 and 10 that the use of the pro-

posed scheme provides noticeable MSE and BER performance

improvement over the FACS scheme.

V. CONCLUSION

In this paper, the fusion based signal recovery problem was

investigated for sparsity-based CE technique in OFDM system

and a new scheme, namely CoFA, was proposed to efficiently re-

alize sparse signal reconstruction from far fewer linear measure-

ments. The CoFA scheme uses a pair of algorithms beneath a

collaborative framework, to correct erroneously estimated atoms

chosen from the sensing basis, for the accurate reconstruction of

the k-sparse signal. The performance guarantees of the CoFA

scheme based on the RIP, has been examined. It was shown

that the requirement on the RIC of the measurement matrix for

guaranteeing exact/stable signal recovery from the compressed

measurements is improved, compared to the FACS scheme. Ad-

ditionally, the experimental results demonstrate that the CoFA

scheme achieves a better MSE performance for the channel es-

timate, as well as the system BER when compared with the ex-

isting CE algorithms including the FACS scheme.

APPENDIX A

SPECIFIC PILOT PATTERN

The location of the randomly generated pilot pattern for

NP = 12 is set as {2, 9, 37, 68, 111, 170, 182, 205, 216, 226, 248,
255}. The location of the randomly generated pilot pattern for

NP = 14 is set as {1, 7, 15, 28, 35, 63, 74, 138, 199, 238, 242,
248, 250, 251}. The location of the randomly generated pilot

pattern for NP = 16 is set as {1, 6, 38, 76, 82, 89, 107, 128, 137,
154, 160, 189, 204, 222, 240, 255}. The location of the uni-

formly spaced pilot pattern for NP = 16 is set as

{1, 18, 35, 52, 69, 86, 103, 120, 137, 154, 171, 188, 205, 222, 239,
256}

APPENDIX B

PROOF OF LEMMA 2

We note here that this lemma is as well employed in a some-

what similar form to that of Theorem 1 in [28], [15] and Ap-

pendix A in [27]. However despite these connections, we can

obtain a more tighter error bounds with the CoFA scheme. To

prove (11), we first consider

‖h − ĥ‖2 ≤ ‖hT̂ − A†
T̂

y‖2 + ‖hT̂ c‖2
= ‖hT̂ − A†

T̂
(AT hT + v)‖2 + ‖hT̂ c‖2

≤ ‖hT̂ − A†
T̂

AT hT ‖2 + ‖A†
T̂

v‖2 + ‖hT̂ c‖2
= ‖hT̂ − A†

T̂
AT∩T̂ hT∩T̂ − A†

T̂
AT̂ chT̂ c‖2 + ‖A†

T̂
v‖2

+ ‖hT̂ c‖2

= ‖hT̂ − A†
T̂

[
AT∩T̂ AT̂−T

][
hT∩

0
T̂

]
− A†

T̂
AT̂ chT̂ c‖2

+ ‖A†
T̂

v‖2 + ‖hT̂ c‖2
= ‖hT̂ − A†

T̂
AT̂ hT̂ − A†

T̂
AT̂ chT̂ c‖2 + ‖A†

T̂
v‖2

+ ‖hT̂ c‖2
= ‖hT̂ − hT̂ − A†

T̂
AT̂ chT̂ c‖2 + ‖A†

T̂
v‖2 + ‖hT̂ c‖2

= ‖A†
T̂

AT̂ chT̂ c‖2 + ‖A†
T̂

v‖2 + ‖hT̂ c‖2. (12)

Note that the term −A†
T̂

AT̂ chT̂ c is replace with A†
T̂

AT̂ chT̂ c

as there will be no effect in an l2-norm. Having that A† =
(A∗A)−1A∗, and that the cardinality of T̆ is k + β, with h be-

ing k-sparse, then following Proposition 3.1 and Corollary 3.3

in [15], implies that

‖h − ĥ‖2 ≤ ‖(A∗A)−1A∗AT̂ chT̂ c‖2 + ‖(A∗A)−1A∗v‖2
+ ‖hT̂ c‖2

≤
(
1 +

δ(k+β)+k

1− δ(k+β)+k

)
‖hT̂ c‖2 +

‖v‖2√
1− δ(k+β)+k

≤ 1

1− δ(k+β)+k
‖A∗AT̂ chT̂ c‖2 +

‖v‖2√
1− δ(k+β)+k

≤ δ(k+β)+k

1− δ(k+β)+k
‖hT̂ c‖2 +

1√
1− δ(k+β)+k

‖v‖2

≤ δ2k+β

1− δ2k+β
‖hT̂ c‖2 +

1√
1− δ2k+β

‖v‖2. (13)

Additionally, having that

‖h − ĥ‖22 = ‖hT̂ − A†
T̂

y‖22 + ‖hT̂ c‖22 ≥ ‖hT̂ c‖22
by further simplification, could be reduced to

‖h − ĥ‖2 ≥ ‖hT̂ c‖2.

To determine an upper bound for ‖hT̂ c‖2, we consider the fol-

lowing definitions for notational convenience; let T̂� := T̆ \ T̂
be the set of indices contained in T̆ that is pruned by Algo-

rithm 1. We can perceive that T̂ ⊂ T̆ , subsequently, by applying

T̂ c = T̆ c ∪ T̂� we arrive at

‖hT̂ c‖2 ≤ ‖hT̆ c‖2 + ‖hT̂�‖2. (14)

Furthermore, consider the following

‖(h̃T̆ )T̂�‖2 = ‖hT̂� + (h̃T̆ − hT̆ )T̂�‖2
≥ ‖hT̂�‖2 − ‖(h̃T̆ − hT̆ )T̂�‖2.
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By means of re-ordering the terms, we obtain

‖hT̂�‖2 ≤ ‖(h̃T̆ )T̂�‖2 + ‖(h̃T̆ − hT̆ )T̂�‖2
≤ ‖(h̃T̆ )T̂�‖2 + ‖(h̃T̆ − hT̆ )‖2. (15)

Since, ‖(h̃T̆ )T ‖22 − ‖(h̃T̆ )T̂ ‖22 ≤ 0 we then have

‖(h̃T̆ )T̂�‖22 = ‖(h̃T̆ )T̂�‖22 + ‖(h̃T̆ )T̂ ‖22 − ‖(h̃T̆ )T̂ ‖22
= ‖h̃T̆ ‖22 − ‖(h̃T̆ )T̂ ‖22
= ‖(h̃T̆ )T̆\T ‖22 + ‖(h̃T̆ )T ‖22 − ‖(h̃T̆ )T̂ ‖22
≤ ‖(h̃T̆ )T̆\T ‖22.

Applying square root property we get

‖(h̃T̆ )T̂�‖2 ≤ ‖(h̃T̆ )T̆\T ‖2
= ‖(h̃T̆ )T̆\T − hT̆\T ‖2
= ‖(h̃T̆ − h)T̆\T ‖2
≤ ‖h̃T̆ − hT̆ ‖2. (16)

Merging (16) with (15) gives

‖hT̂�‖2 ≤ 2‖(h̃T̆ − hT̆ )‖2. (17)

Simplifying the RHS of (17) gives

‖(h̃T̆ − hT̆ )‖2 = ‖hT̆ − A†
T̆
(Ah + v)‖2

= ‖hT̆ − A†
T̆
(AT hT + v)‖2

≤ ‖hT̆ − A†
T̆

AT hT ‖2 + ‖A†
T̆

v‖2
= ‖hT̆ − A†

T̆
AT∩T̆ hT∩T̆ − A†

T̆
AT̆ chT̆ c‖2

+ ‖A†
T̂

v‖2

= ‖hT̆ − A†
T̆

[
AT∩T̆ AT̆−T

][
hT∩

0
T̆

]

− A†
T̆

AT̆ chT̆ c‖2 + ‖A†
T̆

v‖2
= ‖hT̆ − A†

T̆
AT̆ hT̆ − A†

T̆
AT̆ chT̆ c‖2 + ‖A†

T̆
v‖2

= ‖hT̆ − hT̆ − A†
T̆

AT̆ chT̆ c‖2 + ‖A†
T̆

v‖2
= ‖A†

T̆
AT̆ chT̆ c‖2 + ‖A†

T̆
v‖2

= ‖(A∗
T̆

AT̆ )
−1A∗

T̆
AT̆ chT̆ c‖2 + ‖A†

T̆
v‖2

(a)

≤ δ(k+β)+k

1− δk+β
‖hT̆ c‖2 +

1√
1− δk+β

‖v‖2

≤ δ(k+β)+k

1− δ(k+β)+k
‖hT̆ c‖2 +

1

1− δ(k+β)+k
‖v‖2.

(18)

Hence, δk+β ≤ δ(k+β)+k, 0 ≤ δk+β ≤ 1. Substituting (17), and

(18) in (14) gives

‖hT̂ c‖2 ≤
(
1 +

2δ(k+β)+k

1− δ(k+β)+k

)
‖hT̆ c‖2

+
2

1− δ(k+β)+k
‖v‖2

=
1 + δ(k+β)+k

1− δ(k+β)+k
‖hT̆ c‖2 +

2

1− δ(k+β)+k
‖v‖2

=
1 + δ2k+β

1− δ2k+β
‖hT̆ c‖2 +

2

1− δ2k+β
‖v‖2. (19)

Combining (19) in (13) yields

‖h − ĥ‖2 ≤ 1 + δ2k+β

(1− δ2k+β)2
‖hT̆ c‖2

+

(
1√

1− δ2k+β

+
2

(1− δ2k+β)2

)
‖v‖2

≤ 1 + δ2k+β

(1− δ2k+β)2
‖hT̆ c‖2 +

3

(1− δ2k+β)2
‖v‖2. (20)
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