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QRS Complex Detection Based on Primitive
Seungmin Lee, Daejin Park, and Kil Houm Park

Abstract: The detection of the QRS complex is one of the most
important issues in electrocardiogram (ECG) signal analysis. Al-
though research on the detection of the R-peak has demonstrated a
high detection rate through a diverse number of studies, research
on the detection of the onset and offset boundaries of the QRS com-
plex has proven to be difficult, as the locations of these endpoints
are often unclear, and the detection results are difficult to interpret.
Hence, detection research through improved algorithms continues
to be an important component of the ECG signal analysis, espe-
cially given the importance of the QRS complexs role in the diag-
nosis of arrhythmia through measuring the length of the onset and
offset of the QRS complex. This paper proposes an improved algo-
rithm that focuses on the primitive of the QRS complex for detect-
ing the onset and offset of the complex based on the morphological
characteristics of the QRS complex. The proposed algorithm was
tested through experiments based on QT database (QT-DB) data
provided by Physionet, and the outcome revealed not only the reli-
able detection of the QRS complex boundaries but also results that
were superior to the location information recorded in the QT-DB.

Index Terms: electrocardiogram (ECG), QRS complex, QRS dura-
tion, primitive, QT database (QT-DB)

I. INTRODUCTION

THE electrocardiogram (ECG) signal is an electrical signal
representing the electrical activity of the heart, which is

measured from the surface of the body [1]. The steps of the
electrical activity of the heart represent the depolarization and
re-polarization activities of the atrium and ventricular cells, and
are displayed as a continuous waveform of the P-wave, QRS
complex, and T-wave [2], [3]. The P-wave, the QRS complex,
and the T-wave represent the depolarization of the atrium, the
depolarization of the ventricles, and the polarization of the ven-
tricles, respectively, where the intervals, amplitude, shape, etc.,
of the waveform provide useful information for diagnosing heart
disease [4].

The QRS complex is the most prominent characteristic wave-
form of the ECG signal and is easier to detect than other wave-
forms are because it has the highest amplitude in each heartbeat
period. Generally, the QRS complex is considered a basic step
in ECG signal analysis, as the measurement of the heartbeat in
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beats per minute (BPM) is based on the detection of the QRS
complex, and is also the basis of P-wave and T-wave detection.
Hence, the QRS complex has been proposed in diverse detec-
tion methods, such as QRS type detection in differentiation of
ECG signal [5], the Hilbert transform [6], and the Wavelet trans-
form [7].

Significant research related to the detection of the QRS on-
set and offset boundaries has been conducted [8]–[10]. Given
that the width of the QRS complex is an important feature in
the diagnosis of arrhythmia, the onset and offset detection of the
QRS complex is an essential research component for the auto-
matic classification of arrhythmia. In this respect, the Hilbert
transform and Wavelet transform are commonly used to detect
the onset and offset of the QRS complex. Moreover, in addition
to playing an important role in determining arrhythmia, QRS
boundary detection is also useful for compressing the ECG sig-
nal at vertex points [11].

In general, the width of the QRS complex is approximately
0.06 to 0.10 s, which varies depending not only on the heart rate
of an individual but also on errors generated by different forms
of QRS complexes in the individual. Notably, the shape of the
QRS complex can vary significantly in the case of measuring
arrhythmia. Moreover, due to fluctuations in the baseline of the
QRS complex, it is not only difficult to use the value of the am-
plitude but the process can also generate detection errors due
to signal distortions that arise in the process of removing base-
line fluctuations. For these reasons, it is difficult to determine
the fixed boundaries of the QRS complex and to understand the
QRS complex, since an extreme peak, such as the R-peak, is not
readily evident.

Therefore, in this paper, we propose a method of detecting
a reliable onset and offset of the QRS complex based on the
morphological characteristics of the QRS complex by using the
primitive of the QRS complex. This method begins with deter-
mining the primitive of the QRS complex from the initial normal
heartbeat acquired from the input ECG signal. Next, the left and
right primitives are separated around the R-peak point from the
acquired primitive of the QRS complex. Upon separation, each
primitive is horizontally scaled in the search window at a length
of 0.05 s given that the normal width of the QRS complex is ap-
proximately 0.10 s. For each horizontally scaled primitive, ver-
tical scaling and vertical direction translation are also taken at
both ends of the primitive to ensure a proper match between the
primitive and the input signal. Finally, after matching the two
endpoints for each horizontally scaled primitive and input sig-
nal, the average error between the primitive and the input signal
is calculated with the smallest average errors at the two detected
endpoints as the onset and offset for the scaled primitive.

We propose a simple method to determine the primitive and to
efficiently extract the time-voltage information of onset, offset,
and peak for given ECG signal so that the ECG signal-aware
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Table 1. Distribution of 105 records of QT-DB.

Provider Type Record
MIT-BIH Arrhyt. 15
MIT-BIH ST-DB 6
MIT-BIH Sup. Vent. 13
MIT-BIH Long Term 4
ESC STT 33
MIT-BIH NSR DB 10
Sudden Death 24

signal processing algorithm can be easily embedded into tiny
microcontrollers without transferring raw data of the sampled
data for the server-side signal processing. The small set of the
fiducial points of the onset, offset, peak positions detected by
the proposed algorithm will be only transferred via a wireless
interface in wearable devices, which results in the reduction of
communication overhead.

The proposed algorithm was derived from experiments con-
ducted with QT-DB data, as provided by PhysioNet. QT-DB
provides manually recorded data on waveforms, including the
normal sinus rhythm database (NSRD). Based on data from the
QT-DB, we were able to confirm the superiority of our pro-
posed algorithm by comparing the clustering diagrams of the
QRS complex from the NSRD annotated results with the de-
tected results from our proposed algorithm.

This paper is organized as follows. Section II introduces the
QT-DB used in the experiments, including an explanation of the
conventional QRS complex detection algorithm. Section III in-
troduces the proposed algorithm, which is the primitive-based
QRS onset and offset detection algorithm. Section IV explains
the experimental results of the proposed algorithm of QT-DB,
and Section V presents our conclusions.

II. REVIEW ON EXISTING METHODS

A. QT Database

ECG morphologies were taken from the QT-DB [12] to ac-
count for a wide variety of QRS and ST-T morphologies. The
records were primarily chosen from existing ECG databases, in-
cluding the MIT-BIH Arrhythmia Database [13], the European
Society of Cardiology ST-T Database [14] (courtesy of Prof.
Carlo Marchesi), and several other ECG databases collected at
Boston’s Beth Israel Deaconess Medical Center. Notably, the
QT-DB was chosen for our experiments due to the diversity and
unique aspects of the data within, of which we have added refer-
ence annotations marking the locations of waveform boundaries.

Data that did not show significant baseline fluctuations or in-
terference were intentionally selected from the QT-DB, which
included a total of 105, fifteen-minute excerpts of two-channel
ECGs, as shown in Table 1.

All records were sampled at 250 Hz, and between 30 and 100
representative beats were manually annotated within each record
by cardiologists who identified the beginning, peak, and end of
the P-wave, QRS complex, T-wave, and U-wave. Based on this
annotated information, we were able to evaluate the quality of
the algorithm, including the calculated length of the interval or
the location information of each record.

B. QRS Complex Detection Method

B.1 Hilbert Transform

Various algorithms have been developed for detecting the
QRS complex onset and offset, including the Hilbert transform.
In the Hilbert transform algorithm [15], the R-peak is first de-
tected with an algorithm that takes into account the amplitude
and the curvature of the ECG signal, to distinguish the R waves
from other waves. Subsequently, an auxiliary signal is defined
by using the Hilbert transform and differentiation. Equation (1)
is the Hilbert transform of the ECG signal.

ECGe(k) =
√
ECG2(k) + ECG2

H(k) (1)

ECG(k) is an amplitude of the ECG signal, ECGH(k) is an
amplitude of the imaginary value of the Hilbert transform, and
ECGe(k) is the envelope signal. From (1), the slope of the en-
velope signal is defined as (2), and the auxiliary signal(AS(k))
is determined as (3).

ECG′e(k) ≈ 1

10
(2(ECGe(k + 2r)− ECGe(k − 2r))

+ ECGe(k + r)− ECGe(k − r)) (2)
AS(k) = 2(ECG′e(k))2 (3)

Using an auxiliary signal, two search windows containing the
QRS onset and offset are defined. Inside these windows, the de-
tection of the QRS onset and offset is achieved with the aid of a
hypothesis test. However, the algorithm using the Hilbert trans-
form produces an error in accordance with an auxiliary signal,
which can be distorted by preprocessing algorithms for remov-
ing the baseline wandering and reducing noise.

B.2 Wavelet Transform

The wavelet transform can analyze the signal in the time-scale
domain and represent the temporal features of a signal at a dif-
ferent resolution. Therefore, it is suitable to use the wavelet
transform for analyzing the ECG signal, as it is characterized by
the cyclic occurrence of patterns with different frequency waves.
Moreover, the noise and artifacts affecting the ECG signal also
appear at different frequency bands, thus generating different
contributions at various scales. Generally, the wavelet transform
of the ECG signal is shown in (4).

Wax(b) =
1√
a

∫ +∞

−∞
x(t)ψ(

t− b
a

)dt (4)

a and b denote the dilation and translation factors, respec-
tively, and ψ(t) is a single prototype wavelet. The greater
the scale factor a, the wider the basis function; consequently,
the corresponding coefficient provides information about lower-
frequency components of the signal and vice versa. One of the
wavelet transform algorithms using the multi-scale method [7]
determines the threshold value for each scale of the given ba-
sis function. If the position of sampled signal satisfies these
determined threshold values and it can be detected as the zero-
crossing point in the first scale, it is treated as the QRS complex.
This approach finds out a peak position of QRS with the zero-
crossing point, so that this peak point guides to locate onset po-
sition before the first significant slope and offset position after
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Fig. 1. Determination of the QRS end by the threshold.

the last significant slope of the QRS, which can be associated
with a maximum value of QRS width. A higher reliability of
the basis functions means that the performance of the wavelet
transform is adequate. However, it is difficult to determine a
suitable basis function because the shape of the cyclic pattern,
especially the QRS complex, varies, and designating the corre-
sponding threshold is difficult.

B.3 Low-Pass Differentiation

Low-pass differentiation (LPD) [16] makes use of the dif-
ferentiated ECG signal and information about the wave shape.
In an adaptation of differentiation described by Pan and Tomp-
kins [5], the R-peak can be determined as the QRSj(i) of the
position of beat i in lead j. The QRS position given by the detec-
tor may be Q, R, or S wave peaks. Thus, the algorithm searches
for the nearest zero-crossing position before (pb) and after (pa)
for theQRSj(i) position in the differentiated signal (ECGDER)
of the band-pass filtered signal (ECGPB). According to the po-
larity and relative value of these peaks, the algorithm decides if
QRSj(i) belongs to the Q, the R, or the S wave. The adjacent
wave positions are detected as the nearest zero-crossing points
to QRSj(i) in ECGDER. The threshold value is experimentally
adjusted and is different for Q, R, S, or R’ waves, ranging from 3
to 10% of the maximum QRS slope. Fig. 1 shows this procedure
for QRS end determination.

From the zero point (S wave position), the algorithm searches
for the adjacent peak (pk) on the right (at the end). Us-
ing ECGDER(pk), a threshold (TH) is defined as TH =
ECGDER(pk)/k. Thus, the algorithm determines the end
point of the wave as the forward threshold crossing point from
zero in the ECGDER signal. Because the value of k is a con-
stant that is experimentally adjusted, it is hard to determine the
thresholds, and more errors occur if the number of leads is re-
duced.

III. PROPOSED METHOD

A. Preprocessing

In general, a number of interference factors can be found in
an ECG signal, including the interference of the power supply,

Input signal

Remove baseline

R-peak detection Determine primitive 

Left side of QRS Right side of QRS

Left side of primitive Right side of primitive

Detect onset Detect offset

Fig. 2. Proposed algorithm flowchart.

noise due to the surface amplitude of baseline fluctuations, and
movement of the measurement object. To eliminate these ele-
ments and improve the quality of the signal, various preprocess-
ing filters can be employed, such as a finite impulse response
(FIR) filter, the empirical mode decomposition (EMD) method,
and morphological operations, which helps with the detection
of the QRS complex as the R-peak signal becomes relatively
stronger.

A key proposition of this paper is that the detection of the
QRS complex onset and offset can be determined through the
primitive based on improved R-peak detection results. Because
the QRS complex is characterized by its repeated nature, the
primitive can be determined with respect to the input signal.
Moreover, the shape of the primitive can be adaptively converted
and matched to detect the QRS complex onset and offset based
on the acquired R-peak points. This paper’s proposed QRS com-
plex detection process using the primitive is depicted in Fig. 2.

B. Determine Primitive

Fig. 3 depicts the division of the QRS complex into the Q-
wave, R-wave, and S-wave of the input signal.

Generally, the starting point of the Q-wave and the ending
point of S-wave are defined as the onset and offset of the QRS
complex, respectively. As shown in Fig. 3, the area of the QRS
complex from the onset to the offset is defined as the primitive
for the initially entered QRS complex. Notably, the shape and
range of the QRS complex can be identified and detected from
the input signal through the primitive. The onset and offset of
the QRS complex can also be detected by adaptively matching
the primitive.

C. Match Primitive

Scaling is essential for matching the primitive to the QRS
complex. The detection process must be based on an optimum
scale value of the primitive given that the width of the QRS com-
plex can slightly increase or decrease and that the amplitude
value can rise or fall in accordance with an individual’s heart-
beat. However, due to baseline fluctuations in the ECG signal,
the vertical length of the left and right signals is likely to change,
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Fig. 3. Composition of QRS complex.

which not only makes vertical scaling difficult but also creates
difficulties with horizontal scaling, as the distance ratio from the
onset to the R-peak and from the offset to the R-peak is not con-
stant. Resolving this error is a key component of our proposed
detection algorithm.

Fig. 4(a) depicts the difficulty of vertical scaling due to base-
line fluctuations as seen through changes in the signal amplitude
of an ECG, whereas Fig. 4(b) shows the difficulty of horizontal
scaling as seen through the nonalignment in the lengths of the
left and right regions.

To resolve this problem, we propose separating the primitive
into a left and right primitive by using the R-peak as the separa-
tion point. From this separation, we can determine the optimal
scaling ratios for separated primitives and detect the onset and
offset at the endpoints of each divided primitive.

Looking at the left primitive, as shown in (5) and (6), we de-
fine the initial primitive signal and N horizontally scaled primi-
tive,

P = {(xP1 , yP1 ), · · ·, (xPn , yPn )}, (5)

P j = {(xPj

1 , y
Pj

1 ), · · ·, (xPj
nj
, yPj

nj
)}. (6)

P is the initial primitive signal, P j is the jth horizontally
scaled primitive, and n is the number of the sample data of ini-
tial primitives P and P j . The sample of the P j signal can be
acquired by using linear interpolation, as shown in (7),

y
Pj

k = yPi + (yPi+1 − yPi )
x
Pj

k − xPi
xPi+1 − xPi

, x
Pj

k ∈ (xPi , x
P
i+1). (7)

(xPi ) and (xPi+1, y
P
i+1) are the data of P from which we can

acquire (x
Pj

k , y
Pj

k ), which is located between the two.
In general, spline interpolation is better than linear interpo-

lation, and differences become apparent when interpolating a
large number of data. However, in this case, the linear interpo-
lation method is relatively acceptable because the variation of
the number of data is not large.
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Fig. 4. Variation of the vertical and horizontal ratios of the QRS complex in
the QT-DB sel33m: (a) Vertical ratio variations and (b) horizontal ratio his-
togram.

Next, we apply vertical scaling for P j to match the original
input signal. The original signal, which is matched to P j data,
is defined in (8).

Sj = {(xSj

1 , y
Sj

1 ), · · ·, (xSj
nj
, ySj

nj
)} (8)

The number of the data of P j and Sj is the same as nj due
to linear interpolation, and we can match both endpoints of the
two signals by using vertical scaling, as shown in (9),

P̄ j = (P j − yPj

1 )
y
Sj
n − ySj

1

y
Pj
n − yPj

1

+ y
Sj

1 . (9)

y
Pj

1 and ySj

1 are the amplitudes of the left endpoints of P j and
Sj , respectively, and yPj

n and ySj
n are the amplitudes of the right

endpoints of P j and Sj , respectively. Through this process, we
can acquire the horizontally and vertically scaled primitive de-
noted as P̄ j .

To match the two signals, Sj and P̄ j , we next calculate the
mean difference of the signals as shown in (10), with the differ-
ence denoted as Dj .



446 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 19, NO. 5, OCTOBER 2017

Sample n 105
1.5043 1.5043 1.5044 1.5044 1.5045 1.5045

A
m

pl
itu

de
m

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 5. Adaptive determining of primitive scale.
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Fig. 6. QRS complex detection result by using primitive.

Dj =

∑nj

i=1 |S
j
i −

¯
P j
i |

nj
(10)

Red signals as depicted in Fig. 5 are the P̄ j signals, which
were acquired using (5)–(8), whereas the blue signal signifies
the mth primitive signal P̄m, which has a minimized mean dif-
ference, Dj . For this signal, each endpoint signifies the onset
and offset of the QRS complex.

Fig. 6 shows the results of detecting the onset and offset of the
QRS complex based on the proposed primitive method of detec-
tion. The black signal represents the adaptively scaled primitive
when the error is minimized, whereas the red marks represent
the detected onset and offset based on the given primitive. As
shown in Fig. 6, primitive scaling as detected by the proposed
method of this paper can accurately estimate the QRS complex.

D. Improved Algorithm

As depicted in Figs. 6(b), 6(c), and 6(d), the shape of the QRS
complex can vary significantly, which suggests that estimating
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Fig. 7. False detection result of QRS complex.

the onset and offset of the QRS complex with high precision
depends on a scaling form in which the average error is mini-
mized. However, in the case of a primitive with a simple shape
that lacks a Q-wave and an S-wave, such as the one shown in
Fig. 6(a), detection of the QRS complex is relatively straight-
forward, but the onset and offset points can often be detected
incorrectly, as shown in Fig. 7.

As depicted in Fig. 7, the red lines represent the location of
the onset and offset of the QRS complex based on the proposed
algorithm using data provided in QT-DB, which suggests that
detection errors can occur with the proposed algorithm. Addi-
tionally, the red triangular markers are the QRS complex onset
and offset determined by the primitive. Such false detection er-
rors arise when the primitive form is simple due to distortions in
the QRS complex. Hence, an improved algorithm is needed to
address this problem.

This paper proposes that the complexity of the QRS complex
can be improved by expanding the length of the primitive, then
using this expanded baseline region of the primitive for detec-
tion. Based on this expanded primitive, the onset and offset of
the QRS complex can be detected, and the location of the onset
and offset can be readjusted in view of the expanded length of
the primitive.

Fig. 8(a) shows the endpoint detection results of the QRS
complex onset and offset based on the expanded primitive,
whereas Fig. 8(b) shows the readjusted locations of the QRS
complex onset and offset based on the length of the extended
primitive. The result in Fig. 8 demonstrates that the proposed
approach is capable of being an effective approach to mitigate
detection errors by the initial version of our proposed primitive-
based method, as shown in Fig. 7.

IV. PERFORMANCE ANALYSIS BY SIMULATION

This paper evaluated the proposed algorithm through exper-
iments conducted with QT-DB data as provided by Physionet.
The data included information related to the onset, peak, and
offset of the P-wave, QRS complex, and T-wave, respectively.
In particular, comparative location information was manually
recorded for approximately 30 s for each datum as a means to
comparatively evaluate the performance of the algorithm. Com-
parative performance results of the proposed algorithm that de-
tected boundaries of the QRS complex are highlighted through
various diagrams, which confirms that the consistency of the
proposed algorithm is more reliable than when the location is
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Fig. 8. Improved QRS complex detection algorithm: (a) Detection result of
expanding primitive and (b) adjust detection result.

manually measured, as visually depicted through clustering of
the QRS complex.

The detected locations of the onset and offset by the proposed
algorithm, as shown in Fig. 9, confirm that the endpoints were
accurately detected. However, in instances where errors arose in
the detection results, the source of the errors was deemed to be
from not only the shape of the QRS complex and the algorithm,
but also due to the erroneous representation of the location in-
formation of the QT-DB data.

Fig. 10 depicts the QRS complex onset and offset location
information of sel 17453, as included in the NSRD of the QT-
DB. The diagram confirms a relative deviation in the location
information of the QRS complex onset and offset.

In contrast, Fig. 11 depicts the normalized clustering of QRS
complex data from the NSRD based on the first QRS complex.
For each case, the left diagram represents the clustering results
of the QRS complex location information recorded manually
from the QT-DB, whereas the right diagram represents QRS
complex detection results using the proposed primitive.

As shown in Fig. 10, the clustering diagram was unstable
due to the erroneous representation of the location information
of the QRS complex onset and offset. In contrast, the cluster-
ing diagrams of the proposed algorithm were both stable and
dense. To evaluate the algorithm, we propose a normalized
cross-correlation (NCC) that is calculated between the primitive
and QRS complex cluster. NCC is calculated as (11).

NCC(i) =
1

N

N∑
x=1

(Ci(x)− C̄i)(P (x)− P̄ )

σCiσP
, (11)

where Ci is the ith QRS complex signal of the cluster, P is the
primitive signal with length N , and NCC(i) is the normalized
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Fig. 9. The result of proposed algorithm: (a) sel 30, (b) sel 33, (c) sel 38, and
(d) sel39.

cross-correlation of two signals. C̄i, P̄ , σCi , and σP are the
mean and standard deviation (STD) of Ci and P , respectively.

In this respect, Fig. 12 shows the difference between the prim-
itive signal and 30 normalized QRS complexes through NCC,
based on each datum depicted in Fig. 11.

Fig. 13 shows the NCC distributions of QT-DB and the pro-
posed algorithm. We can clearly see that the proposed algorithm
more densely detects the QRS complex.

Table 2 shows the results of calculating the mean and STD
of NCC for the data in Fig. 11, which clearly confirms that the
detection results of the proposed algorithm are more accurate
than QT-DB annotation information.

We summarized the evaluation results in Table 3 to compare
between the proposed algorithm and the related works for the
entire data set in QT-DB. As shown in Table 3, the accuracy
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Fig. 10. The error of QRS complex annotation in sel 17,453m.

Table 2. The mean and STD of NCC about NSRD.

Record QT mean QT std P. A. mean P. A. std
sel 16265 0.9150 0.0430 0.9957 0.0084
sel 16272 0.8427 0.0557 0.9712 0.0211
sel 16273 0.9861 0.0115 0.9958 0.0042
sel 16420 0.9673 0.0356 0.9825 0.0134
sel 16483 0.9675 0.0199 0.9878 0.0105
sel 16539 0.9736 0.0153 0.9865 0.0163
sel 16773 0.9859 0.0143 0.9911 0.0084
sel 16786 0.9693 0.0260 0.9924 0.0067
sel 16795 0.9678 0.0206 0.9879 0.0129
sel 17453 0.9803 0.0177 0.9925 0.0102

Table 3. QRS segmentation performance comparison in the QT-DB.

Method QRS onset (ms) QRS offset (ms)
This work 2.21±4.86 -8.81±5.28

Martinez et al. [7] 4.6±7.7 0.8±8.7
Martinez et al. [8] -0.2±7.2 2.5±8.9

Madeiro et al. [10] 2.85±9.90 2.83±12.26
Laguna et al. [16] -1.1±8.3 -7.2±14.3

Tolerance 6.5 11.6

of the proposed algorithm results are in an acceptable range,
which can be regarded as a reasonable method in spite of a small
overhead in the proposed signal processing algorithm. In addi-
tion, using the proposed algorithm facilitates the reduction of
encoded packets of the ECG waves by presenting the repeated
QRS wave information using the onset, the offset, and the prim-
itive of QRS. Fig. 14 compares the originally captured signal
with the reconstructed signal using primitives in the server-side
application, by only sending the extracted primitives instead of
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Fig. 11. The comparison of clustering results: (a) sel 16265, (b) sel 16272, (c)
sel 16273, (d) sel 16420, (e) sel 16483, (f) sel 16539, (g) sel 16773, (h)
sel 16786, (i) sel 16795, and (j) sel 17453.

transferring entire raw data to the server. The approximated re-
sult is very different from the input signal. This result shows
that our approach can be applied in small wearable devices with
small batteries by reducing the communication overhead.

Recent studies have investigated achieving powerful perfor-
mance in detecting QRS detection systems [17]. In this study,
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Fig. 12. The result of normalized cross-correlation of Fig. 11: (a) QT-DB and
(b) proposed method.
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we focused on developing a simple and efficient algorithm of
detecting QRS from ECG signals based on the primitive, which
can be easily applied to tiny signal processing systems built
on low-cost commercial off-the-shelf ATmega2560 microcon-
trollers. We used a peak detector circuit to detect an R-peak
position. Fig. 15 shows a prototype of the system implemen-
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)

Fig. 14. The signal reconstruction from the encoded QRS data set.

Fig. 15. System implementation using off-the-shelf ATmega2560 microcon-
troller with the proposed algorithm.
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Fig. 16. System architecture and signal processing flow based on off-the-shelf
ATmega2560 microcontroller.

tation for ECG signal acquisition and QRS detection using the
proposed algorithm, illustrating that this approach can a feasible
solution with small cost in terms of embedded code size of about
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6 KB (2.3% of maximum 256 KB) and required data memory of
about 2 KB (32% of maximum 8 KB). Fig. 16 describes the
systems architecture and signal processing flow based on the
ATmega2560 microcontroller. The internally-embedded RAM
block performs double buffering for the incoming signal set us-
ing the data swapping method to reduce the required amount of
data memory. The ECG detection algorithm can be completed
with an execution time of 1.2 ms under the 16 MHz CPU clock
speed, which is a relatively low overhead of the computation
cost compared to the signal acquisition time of 0.8–1.2 s.

Based on the experiments for various cases in the QT-DB, we
identified the limitation of the current study, which is that the
proposed method can be only applied for similar signals with
the expected primitives. This is due to the fact that the pro-
posed algorithm tries to effectively detect primitives for the spe-
cific regions of the signals. In this study, we proposed a simple
and reasonably accurate algorithm using primitives in match-
ing the ECG signal, so that it can be easily integrated into tiny
microcontroller-based signal processing systems. In future stud-
ies, improvement of the algorithm for exceptional cases of vari-
ous ECG signals is needed.

V. CONCLUSION

This paper has proposed a method for detecting the onset and
offset of the QRS complex based on the morphological features
of the QRS complex, such as the periodically repeated wave-
form. The proposed algorithm matches the adaptively scaled
primitive considering the vertical and horizontal asymmetric ar-
eas to the right and left of the baseline fluctuations and the heart-
beat, which allows for the detection of the onset and offset of
the QRS complex based on the scaled primitive. Additionally,
the proposed algorithm extends the length of the primitive to in-
crease the complexity of the QRS complex and the detection ac-
curacy of the onset and offset endpoints for the case of a simple
QRS complex that lacks a Q-wave and S-wave. Finally, the pro-
posed algorithm confirmed that the QRS complex detection re-
sults are more accurate than the manually entered location infor-
mation, based on comparisons between the proposed algorithm
and manually entered location information from the QT-DB.
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