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On Generalized Downlink Beamforming with
NOMA
Jinho Choi

Abstract: Recently, nonorthogonal multiple access (NOMA) has
been studied to increase the spectral efficiency of downlink in a
multiuser system by exploiting the notion of superposition cod-
ing with successive interference cancellation (SIC). NOMA can be
employed with downlink beamforming for downlink transmissions
from a base station (BS) equipped with an antenna array, which
results in NOMA beamforming. In this paper, we formulate a mul-
tiuser NOMA beamforming problem as a semidefinite program-
ming (SDP) problem and generalize it in order to include the con-
ventional (multiuser) beamforming. A low-complexity approach to
decide SIC sets for the generalized NOMA beamforming is stud-
ied using the correlation between channel vectors for better per-
formance. From analysis and simulation results, we show that
the (generalized) NOMA beamforming can outperform the con-
ventional beamforming, especially under limited scattering envi-
ronments.

Index Terms: Downlink beamforming, nonorthogonal multiple ac-
cess (NOMA), semidefinite programming, superposition coding.

I. INTRODUCTION

THE notion of superposition coding (SC) [1] has been stud-
ied to find the capacity of multiple access channels in con-

junction with successive interference cancellation (SIC) [2]. In
[3], experimental evaluations of some SC approaches are car-
ried out. SC can also be considered to improve the spectral ef-
ficiency by exploiting different powers of multiple signals in a
multiple access channel. The resulting multiple access scheme
is often called nonorthogonal multiple access (NOMA) and re-
cently studied in [4]–[7]. In [8], multiuser superposition trans-
mission (MUST) schemes are proposed to implement NOMA
within standards. A power allocation method is investigated
for a practical MUST scheme in [9]. In [7], [10], multiple in-
put multiple output (MIMO) for NOMA is studied to see how
NOMA can be applied to MIMO systems. In addition, in [11],
NOMA is studied for downlink coordinated two-point systems.
A performance analysis is presented in [12] and a power allo-
cation problem for NOMA is studied in [13]. Furthermore, it is
shown that NOMA can be employed without SIC in [14] at the
cost of insignificant performance degradation.

To increase the spectral efficiency of downlink in a mul-
tiuser system, multiuser downlink beamforming can also be con-
sidered. Among various multiuser downlink beamforming ap-
proaches, multiuser downlink beamforming problems with in-
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dividual quality-of-service (QoS) constraints using the signal-
to-interference-plus-noise ratio (SINR) are widely studied and
solved by exploiting the uplink-downlink duality [15]–[17].
They can also be solved using semidefinite programming (SDP)
[18]–[20], which has been used for other beamforming prob-
lems such as multicast beamforming [19].

While there are various approaches for multiuser downlink
beamforming without NOMA, only few beamforming schemes
are studied with NOMA. For example, zero-forcing (ZF) ap-
proaches are considered in [5], [7] and random beams are used
in [21], [22]. In [23], a minorization-maximization algorithm
(MMA) is employed for form beams to maximize the sum rate
in NOMA. In [24], beamforming with limited feedback is stud-
ied. In this paper, in order to improve the performance of mul-
tiuser beamforming with NOMA and exploit the power domain
as well as spatial domain, we consider optimal NOMA beam-
forming problems by formulating an SDP problem with indi-
vidual SINR constraints for downlink transmissions in a single-
cell system under the assumption that a base station (BS) has
perfect channel state information (CSI). This problem differs
from the conventional multiuser beamforming problem due to
an extended set of SINR constraints and the presence of SIC for
NOMA, which changes the SINR formulation in deriving opti-
mal beams. In addition, the problem in this paper differs from
that in [23] as we have SINR constraints to guarantee certain
QoS.

Interestingly, we show that the optimal performance of
NOMA beamforming can be worse than that of the conventional
multiuser beamforming (without NOMA) when the correlation
between channels is sufficiently low. In other words, the perfor-
mance improvement by exploiting the power and space domains
using SC with SIC may not be better than that by only exploit-
ing the space domain for channel vectors when the interference
is not significant due to a low spatial correlation. To avoid this
problem, we consider a generalization of NOMA beamforming
using variable SIC sets that can take into account the spatial cor-
relation between channel vectors.

From the analysis and simulation results in this paper, we
can see that the generalized NOMA beamforming can outper-
form the conventional multiuser beamforming, especially un-
der limited scattering environments, which would be typical
in millimeter-wave based cellular systems [25]–[27]. Thus, the
generalized NOMA beamforming might be well-suited to beam-
forming in millimeter-wave based cellular systems to improve
the spectral efficiency. While we consider optimal design for
generalized NOMA beamforming in this paper, we note that it
is also possible to consider random beamforming for NOMA in
millimeter-wave systems as in [28].

While we mainly focus on the optimization for NOMA beam-
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forming with a generalization in a narrow sense by introducing
each user’s SIC set in this paper, there could be different general-
izations of NOMA (not just NOMA beamforming) that include
radio resource (e.g., power, bandwidth, and beam) allocation is-
sues for multicarrier systems as in [22]. Thus, we could consider
optimization problems for NOMA beamforming as well as other
radio resource allocation for multicarrier systems, which would
be a further research topic.

The main contributions of the paper are i) to formulate an
optimization problem for optimal NOMA beamforming as an
SDP problem; ii) to generalize NOMA beamforming with a low
complexity approach to decide SIC sets based on the correlation
between channel vectors through the analysis of the impact of
the correlation on the generalized NOMA beamforming. From
the analysis and simulation results in this paper, we can see that
the generalized NOMA beamforming can outperform the con-
ventional multiuser beamforming, especially under limited scat-
tering environments, which would be typical in millimeter-wave
based cellular systems [25]–[27].

The rest of the paper is organized as follows. In Section II,
we present a system model for downlink beamforming in a
single-cell with the conventional multiuser beamforming prob-
lem. We formulate a downlink multiuser beamforming problem
with NOMA in Section III. We generalize the NOMA beam-
forming and take into account the spatial correlations between
channel vectors to form SIC sets for the generalized NOMA
beamforming in Section IV. After presenting simulation results
in Section V, we finally conclude the paper with some remarks
in Section VI.

Notation: Matrices and vectors are denoted by upper- and
lower-case boldface letters, respectively. The superscripts ∗,
T, and H denote the complex conjugate, transpose, Hermitian
transpose, respectively. The p-norm of a vector a is denoted by
||a||p (If p = 2, the norm is denoted by ||a|| without the sub-
script). Tr(X) denotes the trace of a square matrix X. E[·] and
Var(·) denote the statistical expectation and variance, respec-
tively. CN (a,R) represents the distribution of circularly sym-
metric complex Gaussian (CSCG) random vectors with mean
vector a and covariance matrix R.

II. MULTIUSER DOWNLINK BEAMFORMING

In this section, we present a system model for multiuser
downlink beamforming in a single-cell system that consists of a
BS and multiple users. In addition, we formulate a well-known
multiuser beamforming problem to minimize the total transmis-
sion power with SINR constraints to take into account individual
QoS requirements [15]–[17].

A. System Model

Suppose that there are K users in a cell and a BS is equipped
with an antenna array of L elements. Throughout the paper, we
assume that each user is equipped with a single receive antenna
and denote by hH

k the channel vector from the transmit antenna
array at the BS to user k, which is a 1 × L vector. Let sk and
wk denote the data symbol and beamforming vector for user k
in downlink transmissions, respectively. For convenience, it is
assumed that E[sk] = 0 and E[|sk|2] = 1 for all k. Note that the

transmission power to user k is decided by wk, which is ||wk||2
and denoted by Pk (i.e., Pk = ||wk||2). The transmitted signal
from the BS to all K users is given by

x =

K∑
j=1

wjsj . (1)

At user k, the received signal becomes

rk = hH
k x + nk = hH

k

 K∑
j=1

wjsj

+ nk, (2)

where nk ∼ CN (0, σ2
k) is the background noise.

B. Downlink Beamforming with SINR Constraints

Throughout the paper, we assume that the channel vectors,
{hk}, are available at the BS. This can be accomplished exploit-
ing the channel reciprocity in time division duplexing (TDD)
[29] or CSI feedback [30], [31]. However, we do not discuss
this issue as it is beyond the scope of the paper.

From (2), we can find the SINR at user k as follows:

γk =
|hH
kwk|2∑

j 6=k |hH
kwj |2 + σ2

k

. (3)

To decide the beamforming vectors, we can consider the follow-
ing optimization problem to minimize the total (or sum) trans-
mission power (i.e.,

∑K
k=1 Pk =

∑K
k=1 ||wk||2) with SINR

constraints for individual QoS requirements:

min{wk}
∑K
k=1 ||wk||2

γk ≥ Γk, for all k, (4)

where Γk is the target SINR for user k. For convenience,
this problem is referred to as standard problem. The result-
ing beamforming is referred to as the conventional (multiuser)
beamforming.

There have been various approaches to find the solution of
standard problem [15]–[17]. It is also known that semidefi-
nite relaxation can be applied to standard problem in order to
convert it into an SDP problem [18], [20]. While the solution
of standard problem is well-known and can be easily found,
its application might be limited to the case where the number
of transmit antennas, L, is larger than or equal to the number
of users, K, i.e., L ≥ K, for sufficiently high target SINRs.
This condition can be easily verified using the uplink-downlink
duality [16], [32]. For the virtual uplink channel with a set of
linearly independent channel vectors, {hk}, we can find beam-
forming vectors, {wk}, to meet sufficiently high target SINRs if
L ≥ K. On the other hand, if L < K (i.e., overloaded cases),
only low target SINRs may allow feasible solutions.

III. DOWNLINK BEAMFORMING IN NOMA SYSTEMS

In NOMA systems, it is possible to transmit signals to multi-
ple users without beamforming using SC and SIC. Thus, we can
consider downlink beamforming for the case of L ≥ K as well
as that of L < K (i.e., overloaded cases) in NOMA systems. In
this section, we formulate a downlink beamforming problem for
NOMA systems and show that it can be converted into an SDP
problem.
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A. NOMA Systems

In NOMA systems, we assume that all the signals are coded
signals1 at certain rates that can be decoded if the SINRs at
users meet required target SINRs. This assumption is consid-
ered throughout the paper. From this assumption, we can see
that x in (1) is a superposition coded signal.

In order to illustrate that a NOMA system can be used for the
case of K > L, we consider the case of K = 2 and L = 1. In
addition, let wk =

√
Pk. The received signals are given by

r1 = h∗1
√
P1s1 + h∗1

√
P2s2 + n1

r2 = h∗2
√
P1s1 + h∗2

√
P2s2 + n2.

We can assume that user 1 is closer to the BS than user 2. Thus,
we expect that P2 might be higher than P1. From this, user 1 can
decode s2 first and subtract it to decode s1. At user 1, the SINR
of user 2’s signal is given by γ1,2 = |h1|2P2

|h1|2P1+σ2
1

. If γ1,2 ≥ Γ2,

user 1 can decode s2 and subtract it as z1 = r1 − h∗1
√
P2ŝ2,

which is used to decode s1. Here, ŝ2 is a decoded signal of s2

and it is assumed that ŝ2 = s2 if γ1,2 ≥ Γ2. The resulting
scheme is called SIC. After SIC, the signal-to-noise ratio (SNR)
at user 1 becomes γ1,1 = |h1|2P1/σ

2
1 . To decode s1, we need

γ1,1 ≥ Γ1. It is noteworthy that P1 does not need to be high to
compete with P2 as s2 is removed. Consequently, we may have
a lower transmission power than a conventional system that does
not employ SC and SIC. This is the main advantage of NOMA
systems.

At user 2, no cancellation is assumed. Thus, the SINR be-
comes

γ2,2 =
|h2|2P2

|h2|2P1 + σ2
2

.

Thus, for successful decoding at user 2, we need γ2,2 ≥ Γ2. As
a result, we have the following constraint to decide P1 and P2

for successful decoding: |h1|2 0
−Γ2|h1|2 |h1|2
−Γ2|h2|2 |h2|2

[ P1

P2

]
≥

 Γ1σ
2
1

Γ2σ
2
1

Γ2σ
2
2

 . (5)

It is desirable to find P1 and P2 that satisfy (5) with the mini-
mum total power, P1 + P2. The solution for the minimum to-
tal power is given in [33]. In the next subsection, based on
the above approach, we formulate a beamforming problem for
NOMA systems with K ≥ 2 users.

B. Beamforming with NOMA

As in (4), we can formulate an optimization problem to decide
beamforming vectors with SC and SIC. For convenience, we
assume that user k can decode the signals to user j, j = k +
1, · · ·,K. In addition, the descending order is used for decoding.
For example, if K = 3, user 1 is to decode s3 first and then s2.
In this case, the SINR constraints are as follows:

|hH
1 w3|2 ≥ Γ3(σ2

1 + |hH
1 w1|2 + |hH

1 w2|2)

|hH
1 w2|2 ≥ Γ2(σ2

1 + |hH
1 w1|2)

|hH
1 w1|2 ≥ Γ1σ

2
1 . (6)

1Although sk represents a data symbol to user k, it is assumed to be an ele-
ment of a coded signal sequence of sufficiently long length.

As in (6), the SINR constraints can be found for any K when
SC and SIC are employed. A total power minimization problem
is given by

min
{wk}

K∑
k=1

||wk||2

subject to ||hH
kwj ||2 ≥ Γj

(
σ2
k +

j−1∑
l=1

||hH
kwl||2

)
,

j = k, · · ·,K; k = 1, · · ·,K. (7)

In (7), the set of SINR constraints is necessary for user k to
decode the users’ signals with the indices lager than k for SIC,
while the signals to the users with the indices smaller than k are
present as interference. Let Wk = wkw

H
k and relax the rank-1

constraint for Wk. Then, the minimum total power problem in
(7) can be re-formulated as follows:

min
{Wk}

K∑
k=1

Tr(Wk)

subject to

(a) hH
kWjhk ≥ Γj

(
σ2
k + hH

k

(
j−1∑
l=1

Wl

)
hk

)
,

j = k, · · ·,K; k = 1, · · ·,K,
(b) Wk � 0, k = 1, · · ·,K. (8)

For convenience, this problem is referred to as NOMA prob-
lem. In addition, the beamforming based on (8) is referred to as
NOMA beamforming. This NOMA problem in (8) differs from
the problem in [23] where the sum rate maximization is consid-
ered with a total transmission power constraints. In (8), we have
the SINR constraints, which are required to guarantee QoS in
terms of data rates.

Note that in (8), we use semidefinite relaxation as the rank-1
constraint is not imposed. This problem (i.e., NOMA problem)
can be solved as an SDP problem [20]. However, a rank-1 solu-
tion may not be available for a large K. To see this, we need to
consider the relationship between the ranks of the optimal solu-
tions of (8), denoted by Ŵk, and the number of the constraints,
which is NC =

∑K
j=1(K − j + 1) = K(K + 1)/2. From [34,

Theorem 3.2], we have

K∑
k=1

rank2(Ŵk) ≤ NC =
K(K + 1)

2
. (9)

Thus, for example, if K = 3, the rank of Ŵk can be 2. To find
the rank-1 solution, we may need to use successive approxima-
tions in [35], [36].

The problem in (8) is a quadratically constrained quadratic
program (QCQP) problem. The worst case complexity is known
to beO((K2+L2)3.5) [37]. It is also shown in [35] that the com-
plexity order per iteration of successive approximations, which
can be used to solve (8) is O(L3). In [36], it is also shown that
the number of iterations is not large (e.g., few tens). Thus, the
complexity to solve (8) mainly depends on L. Thus, for large
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arrays, the computational complexity can be prohibitively high.
Thus, we may need to consider user clustering [5], [22] to sim-
plify beamforming problems.

C. Optimal User Order

In NOMA systems, the user order is important. In general,
user k has higher SNR than user k′, if k < k′. Thus, the trans-
mission power to user k′ is higher than that to user k, which
allows user k to decode the signal to user k′ prior to decoding
its signal provided that the target SINR for successful decod-
ing is the same for both users k and k′. Thus, if the same target
SINR is assumed, the user order can be based on SNRs as the
transmission power is inversely proportional to the SNR. How-
ever, it does not take into account the interference and may not
be optimal.

Based on the formulation in (8), it is possible to find an op-
timal user order. For all possible user orders, we can find the
solutions of NOMA problem in (8). The user order that has the
minimum total transmission power can be considered as the op-
timal order.

Denote by u(k) the user index to be decoded at the (K − k+
1)th stage. Let U = {u = [u(1) · · · u(K)]T} be the set of all
the possible user orders. Then, NOMA problem in (8) can be
extended as follows:

min
u∈U

min
{Wu(k)}

K∑
k=1

Tr(Wu(k))

subject to

(a) hH
u(k)Wu(j)hu(k)

≥ Γu(j)

(
σ2
u(k) + hH

u(k)

(
j−1∑
l=1

Wu(l)

)
hu(k)

)
,

j = k, · · ·,K; k = 1, · · ·,K,
(b) Wk � 0, k = 1, · · ·,K. (10)

Unfortunately, since there are |U| = K! possible user orders,
for a large K, finding the optimal user order may require a pro-
hibitively high computational complexity, which is one of the
main difficulties in NOMA. Thus, for a large K, with taking
into account the different target SINRs, we may consider the
following order:

||hu(1)||2

Γu(1)
≥ · · · ≥

||hu(K)||2

Γu(K)
. (11)

This ordering is similar to that in [38] apart from the normaliza-
tion with the target SINRs. If there is no interference, the order
in (11) is the descending order of required transmission powers,
which is typically used in NOMA, provided that σ2

k = σ2 for
all k. In the presence of interference, this order is not optimal.
While finding the optimal order is an important open problem,
we employ the user order in (11) for simplicity throughout the
paper unless stated otherwise, and let u(k) = k.

IV. GENERALIZED NOMA BEAMFORMING

In Section III.B, we formulated an optimization problem for
NOMA beamforming. In this section, we show that NOMA

beamforming can outperform conventional beamforming when
the correlation between channels is high. On the other hand,
conventional beamforming performs better than NOMA beam-
forming for low correlation. Based on this observation, we pro-
pose a generalized NOMA beamforming to take into account the
correlation between channels through SIC sets.

A. Impact of Channel Correlation

To see the impact of the correlation on beamforming, we con-
sider special cases with K = 2.

Property 1: Suppose that h1 ⊥ h2 with K = 2. Then,
the total transmission power of the NOMA beamforming in (8)
is greater than that of the conventional beamforming in (4).
In particular, the total power difference is 1

||h1||2 Γ2(Γ1σ
2
1 +

σ2
2). In other words, the NOMA beamforming consumes

1
||h1||2 Γ2(Γ1σ

2
1 + σ2

2) more transmission power than the con-
ventional beamforming.
Proof: See Appendix A.

According to Property 1, we can see that NOMA beamform-
ing can be worse than the conventional one if h1 and h2 are
orthogonal to each other. Actually, it is pointless to perform
NOMA beamforming if two channels are orthogonal as there
is no interference. In general, if the correlation between chan-
nel vectors is low, we should use the conventional beamforming
approach. We now consider the opposite case where h1 ∝ h2.

Property 2: Suppose that h2 = αh1, where |α| < 1. Then,
there is no feasible solution of standard problem (i.e., in the
conventional beamforming) if Γ1Γ2 > 1. On the other hand,
NOMA beamforming has a feasible solution. That is, the so-
lution of NOMA problem has a finite total transmission power
(the amount of the finite total transmission power is given in
Appendix B as a closed-form expression).
Proof: See Appendix VI.B.

Based on Properties 1 and 2, we can see that the correlation
between channel vectors plays a crucial role in deciding a beam-
forming strategy. This motivates us to consider a generalization
in the following subsection.

B. Generalization

For a generalization, we define index sets Ik for users, k =
1, · · ·,K. At user k, the signals to user l ∈ Ik are to be de-
coded using SIC and the signals to user q ∈ Ick are considered
as inter-user interference. Thus, k should be an element of Ik,
i.e., k ∈ Ik. For convenience, Ik is referred to as the SIC set
at user k. With the SIC set, Ik, we can consider a general-
ized NOMA beamforming scheme and find optimal beamform-
ing vectors from the following optimization problem:

min
{Wk}

K∑
k=1

Tr(Wk)

subject to

(a) hH
kWjhk ≥ Γj

 ∑
l∈Ik,l<j

hH
kWlhk +

∑
q∈Ick

hH
kWqhk + σ2

k


j ∈ Ik; k = 1, · · ·,K,

(b) Wk � 0, k = 1, · · ·,K. (12)
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For convenience, the problem in (12) is referred to as general-
ized NOMA (GNOMA) problem. The resulting NOMA beam-
forming is a generalization that can include the conventional and
NOMA beamforming approaches. To see this, let Ik = {k}.
Then, the problem in (12) becomes that in (4), i.e., standard
problem. On the other hand, if Ik = {k, · · ·,K}, the problem
in (12) becomes NOMA problem in (8).

In the generalized NOMA beamforming, it is possible to op-
timize the SIC sets, {Ik}, for better performance as follows:

min{Ik}min{Wk}
∑K
k=1 Tr(Wk)

subject to the SINR constraints in (12). (13)

Then, this optimization leads to the generalized NOMA beam-
forming approach that can always provide a better performance
than (at least the same as) any of the conventional and NOMA
beamforming approaches. However, it suffers from a high com-
putational complexity due to the outer optimization with respect
to {Ik} in (13), which is a combinatorial optimization. To see
this, consider an example of K = 3. Noting that k has to be
an element of Ik, we can have the following possible sets for
Ik when k = 1: I1 = {1}, {1, 2}, {1, 3}, or {1, 2, 3}. Thus,
for any K, the number of the possible sets for Ik can be given
by Nk =

∑K−k
i=0

(
K−k
i

)
= 2K−k. This implies that there are∏K

k=1Nk = 2
∑K
k=1(K−k) = 2

K(K−1)
2 possible combinations

for {Ik}. In addition, if the user order is to be optimized in
conjunction with the optimization of SIC sets, the number of
possible combinations becomes

Ncomb = K!×
K∏
k=1

Nk = K!× 2
K(K−1)

2 . (14)

Certainly, it is computationally prohibitive to choose the best
SIC sets when K is not small. For example, if K = 5, then
there are about 103 possible combinations for all the possible
SIC sets, {Ik}.

C. Criteria for SIC Sets

In order to find good SIC sets for the generalized NOMA
beamforming with low computational complexity, we may need
to consider the correlation between channel vectors, {hk}. In
particular, for a low correlation, it is desirable to have Ik = {k}
(i.e., conventional beamforming). However, if the correlation
is high, we may need to have Ik = {1, · · ·,K} (i.e., NOMA
beamforming). Thus, based on the correlation between channel
vectors, the SIC sets can be decided with low complexity. To
this end, we consider the following criterion to decide Ik:

ψk,j = |ρ(hk,hj)|, (15)

where

ρ(x,y) =
xHy

||x|| ||y||
. (16)

The absolute correlation, |ρ|, is bounded as 0 ≤ |ρ| ≤ 1 due to
the Cauchy-Schwarz inequality. With ψk,j , we can decide Ik as

Ik = {j |ψk,j ≥ δ, j = k + 1, · · ·,K} ∪ {k}, (17)

where δ ∈ [0, 1] is a design parameter. If δ = 0, we have
Ik = {1, · · ·,K}. That is, the generalized NOMA beamforming
becomes the NOMA2 beamforming in (8). However, if δ = 1,
we have Ik = {k} (provided that h1, · · ·,hK are linearly inde-
pendent), which means that the generalized NOMA beamform-
ing becomes the conventional beamforming in (4).

In order to see the behavior of the generalized NOMA beam-
forming with {Ik} in (17) for a fixed δ, we first consider the
probability that Ik has more than one element (note that Ik
should have its user index k) under rich scattering environments
(the case of limited scattering will be discussed later).

Property 3: Suppose that the hk’s are independent. In ad-
dition, hk ∼ CN (0, βkI), where βk > 0 (the corresponding
channel environment is referred to as the rich scattering envi-
ronment). Then, the probability that |Ik| > 1 is bounded as

Pr(|Ik| > 1) = Pr(ψk,j ≥ δ, for any j ∈ {k + 1, · · ·,K})
≥ Pk(δ)

= 1−

(
2CL

L−2∑
t=0

(
L− 2

t

)
(−1)t

2t+ 1

(
1− δ2t+1

))K−k
,

(18)

where CL =
Γ(L− 1

2 )
Γ(L−1)

√
π

. For a sufficiently large δ, let ε = 1 −
δ � 1. The lower bound in (18), Pk(δ), is approximated as

Pk(δ) ≈ 1−
(
1− CL(2ε)L−1

)K−k ≈ (K − k)CL(2ε)L−1.
(19)

Note that Pk(δ) is a lower-bound on the probability of high cor-
relation between two channel vectors, which decreases exponen-
tially with L.
Proof: See Appendix C.

The results in Property 3 show that the probability that the
SIC set can include other signals decreases exponentially with
L for a large δ (or ε = 1−δ � 1). In addition, from (19), we can
see that Pk(δ) decreases exponentially with L, while it increases
linearly with K. This implies that when both L and K grow at
a fixed ratio, the impact of L on Pk(δ) is more dominant than
that of K. In other words, the probability of high correlation
decreases quickly when both L and K grow at a fixed ratio.

Note that the number of constraints in GNOMA problem in
(12) for the generalized NOMA beamforming is

NC =

K∑
k=1

|Ik|. (20)

From (9), we can have the rank-1 solution of (12) ifNC < K+3
[34]. According to Property 3, for a large δ, we have a low
probability that |Ik| > 1. Thus, we may have an overwhelm-
ing probability of rank-1 solution of GNOMA problem for a
sufficiently large δ.

In above, we have considered the rich scattering environment
for the generalized NOMA beamforming. As opposed to rich
scattering environments, we now consider limited scattering en-
vironments, which might be applied to millimeter-wave commu-
nications [26], [27]. In a small-cell with millimeter-wave com-
munications, a channel may consist of the line-of-sight (LoS)

2The resulting NOMA beamforming is the ordered one as we assume in (11).
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path and few non-LoS paths due to a high path loss [27], [39].
In this case, the channel vectors can be highly correlated. For
tractable analysis, we consider a special case where there is only
LoS path without non-LoS paths and find the following result.

Property 4: Suppose that the BS has a uniform linear array
(ULA) with antenna spacing d and the channel vector is given
by hk =

√
βka(θk), where

√
βk is the large scale fading coeffi-

cient, θk is the angle-of-departure (AoD) to user k, and a(θ)
is the array response vector (ARV) that is given by a(θ) =

1√
L

[1 e−i2π
d
λ sin θ · · · e−i2π(L−1) dλ sin θ]T, where i =

√
−1 and

λ is the wavelength. In addition, assume that the θk’s are uni-
formly distributed over (−π/2, π/2) and independent (the re-
sulting channel environment is referred to as the limited scatter-
ing environment). Then, the probability that ψk,j is greater than
or equal to 1/

√
2 any j ∈ {k + 1, · · ·,K} is lower-bounded as

Pr

(
ψk,j ≥

1√
2

for any j ∈ {k + 1, · · ·,K}
)

≥ 1−

(
1−

4 sin−1 ∆HP

2

π

)K−k
≈ (K − k)

2∆HP

π
, (21)

where ∆HP ≈ 0.981 λ
Ld [40] if L ≥ 10.

Proof: See Appendix D.
Property 4 shows that the probability of high correlation de-

creases with L. However, the rate is slow as it follows O(1/L)
in the limited scattering environment. Thus, if K and L are of
the same order, we can see that the probability of high correla-
tion (e.g., ψk,j ≥ 1/

√
2 = 0.7071) can be high.

According to Properties 3 and 4, we can see that the corre-
lation between channel vectors depends on the scattering envi-
ronment. Thus, for a fixed δ, the SIC sets, {Ik}, may have more
elements in the limited scattering environment than those in the
rich scattering environment. Furthermore, the performance of
the generalized NOMA beamforming would depend on the scat-
tering environment. This implies that the value of δ needs to be
chosen carefully depending on a given set of parameters (e.g.,
L, K, and target SINRs) as well as the scattering environment.

We may find the optimal value of δ as follows:

minδ∈[0,1] min{Wk}
∑K
k=1 Tr(Wk)

subject to the SINR constraints in (12). (22)

In (22), Ik is decided for a given δ as in (17). Note that since
the generalized NOMA beamforming becomes the conventional
beamforming or the NOMA beamforming if δ = 1 or δ = 0,
respectively, the optimization with respect to δ over [0, 1] can
provide a performance that is better than (or equal to) those of
the conventional beamforming and the NOMA beamforming at
the expense of high computational complexity. For a reasonably
low computational complexity, δ can be found from a finite set
as δ ∈ {0, µ, · · ·, 1 − µ, 1}, where µ � 1, while efficient ways
to optimize δ might be considered as a further research topic.

It is noteworthy to see that for the outer optimization, a com-
binatorial optimization (with respect to {Ik}) in (13) is replaced
with a single-parameter one (with respect to δ) in (22), which
can reduce the computational complexity significantly at the
cost of degraded performance. In particular, the complexity
order for the outer optimization changes from an exponential

one (in K) to constant (i.e., O(1/µ)). Thus, the generalized
NOMA beamforming approach becomes computationally feasi-
ble by (22).

V. SIMULATION RESULTS

In this section, we present simulation results for various scat-
tering environments with the following Rician channel model:

hk,ζ =
√
βk

(√
ζ

1 + ζ
a(θk) +

√
1

1 + ζ
uk

)
,

where uk ∼ CN (0, 1
LI) is a CSCG random vector, θk is the

AoD to user k, and ζ is the Rician factor. Here, a(θ) is the
ARV for a ULA of half-wavelength spacing. Note that if ζ = 0,
we have rich scattering as in Property 3. On the other hand,
if ζ → ∞, we have limited scattering as in Property 4. It is
also assumed that the users are uniformly distributed within a
cell. The radius of cell is normalized and the large scaling fad-
ing factor is decided as βk = 1/dηk, where dk is the distance
between the BS and user k (0 < dk ≤ 1) and η is the path loss
exponent, which is set to 3.8. For convenience, we assume that
Γk = Γ and σ2

k = 1 for all k. The total transmission power is
used for the performance measure in this section. Note that we
do not use any successive approximations [35], [36] in simula-
tions to find a rank-1 solution when the solutions are not rank-1.
Thus, the minimum total power from simulation results would
be lower than that from a rank-1 solution. However, as will be
shown later, since we can obtain a rank-1 solution with a high
probability, simulation results might be reasonable.

For the generalized NOMA beamforming with optimized δ
in simulations, we consider (22), with a finite number of δ as
δ ∈ {0, 0.1, · · ·, 0.9, 1}. Among the results with a finite number
of δ, we choose the best one.

We consider the performance of beamforming in terms of the
total transmission power under the rich (i.e., ζ = 0) and limited
(i.e., ζ →∞) scattering environments for different target SINR,
Γ, and show the results in Fig. 1, where we have (L,K) = (4, 4)
in the rich scattering environment and (L,K) = (8, 4) in the
limited scattering environment. We can see that NOMA beam-
forming provides almost the same performance in both rich and
limited scattering environments. On the other hand, the perfor-
mance of the conventional beamforming depends on the scat-
tering environment. In particular, in the limited scattering en-
vironment, the performance of the conventional beamforming
becomes poor due to a high spatial correlation. The general-
ized NOMA beamforming with optimized δ outperforms the
others at the cost of increasing complexity. Since we consider
δ ∈ {0, 0.1, · · ·, 0.9, 1}, its complexity is 11 times higher than
the generalized NOMA in this case.

As mentioned earlier, due to the semidefinite relaxation in
(12), the solution may not be rank-1. In Fig. 2, we show the
probability of rank-1 solution. It is shown that if L ≥ K = 4
with δ = 0.6, the solution is rank-1 with a high probability
(nearly 1). If a rank-1 solution is not obtained, we can use suc-
cessive approximations in [35], [36] to obtain a rank-1 solution.
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Fig. 1. Total transmission power versus target SINR with (L,K) = (4, 4)
for rich scattering environment and (L,K) = (8, 4) for limited scattering
environment.
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Fig. 3 shows the total transmission powers of the different
beamforming methods for various values of ζ when L = K = 4
and Γk = Γ = 6 dB. It is shown that as the Rician factor in-
creases (i.e., the spatial channels are more correlated), the con-
ventional beamforming scheme performs worse than the others
and its total transmission power increases, while the NOMA
beamforming schemes have similar total transmission powers
regardless of ζ. Note that for a large ζ (i.e., a limited scattering
environment), the conventional beamforming scheme may not
have feasible solutions or require a significantly high transmis-
sion power. We exclude them in obtaining the total transmission
power of the conventional beamforming scheme in Fig. 3.

In order to see the impact of L on the performance under
different scattering environments, we consider the generalized
NOMA beamforming with optimized δ when K = 4 and Γ = 6
dB in Fig. 4. Under the rich scattering environment, with a rea-
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Fig. 3. Total transmission power versus Rician factor when L = K = 4 and
Γk = Γ = 6 dB (for the generalized NOMA beamforming, we assume
δ = 0.6).

sonable performance gap (the difference between the total trans-
mission powers of the conventional and generalized NOMA
beamforming schemes), we can see that the generalized NOMA
beamforming can be used even if L < K (e.g., L = 2, 3), while
the conventional beamforming cannot be employed (as there is
no feasible solution). Under the limited scattering environment,
the performance gap becomes significant due to high spatial cor-
relations between channel vectors. Furthermore, this gap does
not decrease quickly although L increases. From this, we can
see that the generalized NOMA beamforming needs to be em-
ployed when the channels are highly correlated.
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Fig. 4. Total transmission power versus L (K = 4 and Γ = 6 dB) under the

rich and limited scattering environments.

Finally, we present simulation results when K is varying for
a fixed L (L = 4 (12) under the rich (limited, resp.) scatter-
ing environment) with Γ = 6 dB, which are shown in Fig. 5.
We also consider the generalized NOMA beamforming with op-
timized δ. Under the rich scattering environment, the conven-



326 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 19, NO. 4, AUGUST 2017

tional beamforming can be used up to K = 4 users when L = 4
without outage events. For the case of K = 5, a total trans-
mission power of the conventional beamforming in Fig. 5 is
obtained over the cases where feasible solutions exist among
1,000 runs. If K > 5, the conventional beamforming does not
have feasible solutions, which means it cannot be employed for
overloaded cases in general. On the other hand, the generalized
NOMA beamforming can be employed for a wide range of K
(from 2 to 7) and provide a better performance than the conven-
tional beamforming.
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Fig. 5. Total transmission power versus K under the rich and limited scattering

environments with L = 4 and L = 12, respectively, when Γ = 6 dB.

Under the limited scattering environment, the conventional
beamforming suffers from high correlation and has a much
higher total transmission power than that of the generalized
NOMA beamforming as shown in Fig. 5. Furthermore, the prob-
ability of outage (i.e., the probability that there is no feasible so-
lution) increases with K as shown in Fig. 6. This demonstrates
that the generalized NOMA beamforming needs to be employed
when the channels are highly correlated with a reasonably large
number of users.

VI. CONCLUDING REMARKS

In this paper, we studied NOMA beamforming that can ex-
ploit not only the power domain, but also the space domain to
improve the spectral efficiency. In order to find optimal beam-
forming vectors, we formulated an SDP problem. To improve
the performance further, we also considered the user ordering
and a generalization. The resulting generalized NOMA beam-
forming can include the conventional (multiuser) beamforming
and offer a better performance than the conventional and NOMA
beamforming schemes. The impact of the spatial correlation be-
tween channel vectors has been studied. From this, we proposed
a low-complexity approach to determine the SIC sets for the
generalized NOMA beamforming. Simulation results showed
that the generalized NOMA beamforming can outperform the
conventional beamforming, especially under the limited scatter-
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Fig. 6. The probability of outage versus K when L = 12 and Γ = 6 dB under
the limited scattering environments.

ing environment. Thus, we believe that the generalized NOMA
beamforming can play a crucial role in improving the spectral
efficiency for millimeter-wave based next generation systems.

APPENDIX

A. Proof of Property 1

For NOMA beamforming, the set of SINR constraints be-
comes

|hH
1 w2|2 ≥ Γ2(|hH

1 w1|2 + σ2
1) (23)

|hH
1 w1|2 ≥ Γ1σ

2
1 (24)

|hH
2 w2|2 ≥ Γ2(|hH

2 w1|2 + σ2
2). (25)

Since h1 and h2 are orthogonal, w1 can be chosen from the
subspace that is orthogonal to h2 (otherwise, w1 introduces the
interference to user 2 without improving the SNR at user 1).
Thus, the constraint in (25) is reduced to

|hH
2 w2|2 ≥ Γ2σ

2
2 . (26)

Noting that the minimum value of |hH
1 w1|2 is Γ1σ

2
2 from (24),

we can see that a minimum power solution of w1 is w1 =√
Γ1σ2

1

||h1||2 h1, and from (23) we also have the following inequal-
ity

|hH
1 w2|2 ≥ Γ2(Γ1σ

2
1 + σ2

2). (27)

From (26) and (27), we can see that the optimal w2 is a linear
combination of h1 and h2. Otherwise, it may have a larger norm
of w2. Thus, we have

w2 = τ1h1 + τ2h2. (28)

To decide τ1 and τ2, we can substitute (28) into (26) and (27).
Then, a minimum power solution of w2 can be obtained using

|τ1|2 =
Γ2(Γ1σ

2
1 + σ2

2)

||h1||4
and |τ2|2 =

Γ2σ
2
2

||h2||4
.
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Consequently, the minimum transmission powers of w1 and w2

for NOMA beamforming are given by

P1 =
Γ1σ

2
1

||h1||2
and P2 =

Γ2(Γ1σ
2
1 + σ2

2)σ2

||h1||2
+

Γ2σ
2
2

||h2||2
.

For the conventional beamforming, we only need to con-
sider the SINR constraints in (24) and (25) or (26). Thus, the
minimum transmission powers of w1 and w2 become P1 =
Γ1σ

2
1/||h1||2 and P2 = Γ2σ

2
2/||h2||2, which shows that the total

transmission power of the conventional beamforming is lower
than that of NOMA beamforming and the transmission power
gap is Γ2(Γ1σ

2
1 + σ2

2)/||h1||2. This completes the proof.

B. Proof of Property 2

Let h = h1. Since h2 = αh, in order to have minimum
transmission powers, we have

w1 =
√
P1h̄ and w2 =

√
P2h̄, (29)

where h̄ = h/||h||. For the conventional beamforming, the
SINR constraints from (4) become

HP1 ≥ Γ1(HP2 + σ2
1)

|α|2HP2 ≥ Γ2(|α|2HP1 + σ2
2), (30)

where H = ||h1||2. The two constraints can be combined and
results in the following inequality:

HP1 ≥ Γ1Γ2HP1 + Γ1Γ2
σ2

2

|α|2
+ Γ1σ

2
1 .

A necessary condition to hold this inequality is Γ1Γ2 ≤ 1. Thus,
if Γ1Γ2 > 1, there is no feasible solution for the conventional
beamforming.

In NOMA beamforming, with (29), we can decide P1 and P2

using (5), where |h1|2 and |h2|2 are replaced withH and |α|2H .
From [33, Lemma 1], the solution is given by

P1 =
Γ1σ

2
1

H

P2 = max

{
Γ2(Γ1 + 1)σ2

1

H
,

Γ2

(
Γ1σ

2
1 + σ2

2

)
H

}
. (31)

C. Proof of Property 3

The correlation between random vectors x and y in (16) is
given by r = xTy

||x|| ||y|| , and has the following distribution [41]

f(r) =
Γ
(
n−1

2

)
Γ
(
n−2

2

)√
π

(1− r2)
n−4
2 = Cn

2
(1− r2)

n−4
2

for −1 ≤ r ≤ 1, if x ∼ N (0, σ2
xI) and y ∼ N (0, σ2

yI) and
they are independent. Here, n is the length of x and y.

For two complex-valued vectors, hk and hj , the correlation
can be defined as in (16). For independent CSCG random vec-

tors, let h̄k =

[
<(hk)
=(hk)

]
and h̄j =

[
<(hj)
=(hj)

]
with n = 2L.

The correlation between h̄k and h̄j is r̄ =
h̄T
k h̄j

||h̄k|| ||h̄j ||
. It is

noteworthy that ρ in (16) is a complex variable. Thus, r̄ 6= ρ.
However, we have r̄ = <(ρ), which implies that |r̄| ≤ |ρ|.

The probability density function (pdf) of r̄ is given by

f(r̄) = CL(1− r̄2)L−2, −1 ≤ r̄ ≤ 1. (32)

The probability that |Ik| > 1 is bounded as

Pr(|Ik| > 1) = 1−
K∏

j=k+1

Pr(ψk,j < δ)

= 1− (Pr(|ρ| < δ))
K−k

≥ 1−

(∫ δ

−δ
f(r̄)dr̄

)K−k
, (33)

where the inequality is due to |r̄| ≤ |ρ|. It can be shown that∫ x

−x
f(r̄)dr̄ = 2CL

∫ x

0

(1− r̄2)L−2dr̄

= 2CL

L−2∑
t=0

(
L− 2

t

)
(−1)t

2t+ 1
x2t+1. (34)

Substituting (34) into (33), we can obtain the lower-bound,
Pk(δ), in (18).

If δ is sufficiently large (or close to 1), we have∫ δ

−δ
f(r̄)dr̄ = 1− 2CL

∫ 1

1−ε
(1− r̄2)L−2dr̄

≈ 1− 2CLε(2ε)
L−2 = 1− CL(2ε)L−1. (35)

Thus, the lower-bound can be approximated as in (19).

D. Proof of Property 4

For the ULA, we can show that [40]

ψk,j =
1

L

∣∣∣∣ sin
(
Lπ dλ (sin θj − sin θk)

)
sin
(
π dλ (sin θj − sin θk)

) ∣∣∣∣. (36)

For a pair of k and j, k 6= j, ψk,j becomes 1/
√

2 when | sin θj−
sin θk| = ∆HP [40, Eq.(2.100)]. Thus,

Pr

(
ψk,j ≥

1√
2

)
= Pr(| sin θj − sin θk| ≤ ∆HP).

Since

sin θj − sin θk = 2 sin
θj − θk

2
cos

θk + θj
2

≤ 2 sin
θj − θk

2
,

we have

Pr

(
ψk,j ≥

1√
2

)
≥ Pr

(
|θj − θk| ≤ 2 sin−1 ∆HP

2

)
=

4 sin−1 ∆HP

2

π
. (37)

Since {ψk,k+1, · · ·, ψk,K} are independent for given k, the
lower-bound in (21) can be obtained from (37).

For a large L, ∆HP can be sufficiently small such that
sin−1(∆HP/2) ≈ ∆HP/2. Then, the approximation in (21) can
be obtained for ∆HP/2� 1.
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