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Competition-based Distributed BS Power
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Abstract: Existing cellular technologies in unlicensed band such

as license assisted access (LAA)-LTE do not capture inter-cell in-

terference (ICI) management which becomes more important in

modern small cell network environments. Moreover, existing ICI

management techniques not only can be operated in only licensed

frequency band due to their centralized properties, but also have

high computational complexities. In this paper, by invoking dis-

tributed optimization, we propose a fully distributed base station

(BS) activation and user scheduling framework which can be oper-

ated in even unlicensed band because of its competition properties.

Our simulation results demonstrate that (i) proposed competition-

based BS activation and user scheduling framework (CBA) in-

creases throughput of cell edge users by 112%–335% compared

to conventional algorithms, (ii) the CBA properly catches up with

the performance of optimal algorithm up to 93% in terms of over-

all performance and up to 95% in terms of edge user throughput,

and (iii) the CBA also provides higher performance gains in the

larger ratio of edge users and the smaller cell size, which indicates

that the CBA well adapts to cellular network trend where cells are

gradually smaller and densely deployed.

Index Terms: Distributed algorithm, edge user, inter-cell interfer-

ence, small cell, transmit power activation control, user scheduling.

I. INTRODUCTION

WITH the growth of the number of mobile devices, a wire-
less network is confronted with increasing demands for

ubiquitous wireless coverage and higher data rates. According
to a recent survey on mobile traffic in Cisco, the number of
mobile-connected devices exceeded the world’s population in
2014, and monthly global mobile data traffic will surpass 24.3
exabytes by 2019 [1]. Up to now, many technologies such as car-
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rier aggregation (CA), multiple-input multiple-output (MIMO)
systems and coordinated multipoint transmission and reception
(CoMP) have been studied in cellular networks to support the
increasing traffic demands (see e.g., [2] and references therein).
However, the network capacity achieved by such novel tech-
nologies still may not catch up with the mobile traffic explo-
sion.

Because it is difficult to cover mobile traffic explosion with
only licensed band, there exists a strong motion for standardiza-
tion to utilize unlicensed band even in cellular networks, which
is one of key technologies for 5th generation (5G) wireless net-
works. Recently, extending LTE to unlicensed spectrum has at-
tracted great attention as a means to accommodate drastically
increasing mobile traffic [3]–[8]. Standard activities related to
LTE in unlicensed spectrum are mainly focused on licensed-
assisted carrier aggregation operation, referred to as licensed
assisted access (LAA). In the LAA mode, the licensed bands
are utilized as the primary downlink and primary uplink, and
the unlicensed bands are only used as the supplement solution
of the licensed band, including downlink only as well as both
downlink and uplink [9].

Meanwhile, because current cellular networks are more likely
to densely deploy base stations (BSs), e.g., pico or femto BSs,
in order to increase frequency reuse, inter-cell interference (ICI)
may become more severe in such small cell environments (i.e.,
radio range of femto cell is 10–50 meters while that of macro
cell is 300–2,000 meters [10]). To handle these ICI challenges,
many techniques have been studied to coordinate transmit power
coupled with user scheduling [11]–[14]. Cho et al. [11] ad-
dressed with an analytical framework that maximizes general-
ized utilities of multi-cell networks through opportunistic user
scheduling and BS power control. Furthermore, the authors
showed that the maximization can be transformed into a pure
binary optimization with much lower complexity under some
region (e.g., under a physical layer region where the channel ca-
pacity is linear in the signal-to-interference-plus-noise ratio). As
an extension of the work, Son et al. [12] decomposed the joint
optimal algorithm into two sub-problems in which BS power
control runs at a slower time scale than user scheduling. Note
that these works have modeled binary power control in the cellu-
lar system because optimal control of continuous transmit power
for multi-cell networks is typically intractable in practice due to
its extremely high computational complexity [15], [16]. Also,
some works [13], [14] dealt with almost blank subframes (ABS)
which is introduced in 3GPP Release-10 for mitigating interfer-
ence between macro cells and pico cells, and they developed the
joint optimal algorithm which determines ABS proportion and
user association rules in order to achieve network wide utility
maximization in heterogeneous networks comprised of macro
cells and pico cells.
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However, existing unlicensed band technologies in cellular
networks (e.g., LAA-LTE [3]–[8]) have not properly addressed
with optimal inter-cell interference managements,1 and there ex-
ist some challenges for applying existing ICI management tech-
niques (e.g., [11]–[14]) at unlicensed band as it is: (i) Because
existing ICI management algorithms determine transmit power
and user scheduling in advanced by centralized computations, it
is not suitable for competition based unlicensed band environ-
ments, i.e., anyone can use the band without permission. (ii)

The existing ICI management techniques did not consider in-
terference with other types of wireless technologies (e.g., WiFi,
Bluetooth and Zigbee) operated at unlicensed frequency band.

To tackle these challenges, in this paper, we propose
competition-based BS activation and user scheduling frame-

work (CBA), which is operated by a fully distributed manner.2

In CBA, all BSs have a competition period where each BS inde-
pendently determines on and off of its transmit power by com-
petition protocol without any help of the central coordinator. In
the competition period, transmit power activation decision of
BS is controlled by two individual operations: (i) random wait-

ing time selection and (ii) interference measurement. The wait-
ing time gives BS priority to determine the transmit power (i.e.,
shorter waiting time means higher priority to determine the ac-
tivation), and each BS makes final decision whether to activate
or deactivate the transmit power by measuring the interference
from neighboring BSs.

By invoking the proposed algorithm, each BS adaptively ac-
tivates or deactivates its transmit power depending on the net-
work environments, which leads to network-wide utility maxi-
mization. Our CBA is novel in the sense that it not only inher-
its a distributed competition idea from well-known carrier sense
multiple access (CSMA) in wireless local area networks (LANs)
and its related works [17]–[19] to mitigate ICI in the cellu-
lar networks, but also jointly controls transmit power and user
scheduling. The optimal CSMA algorithm is known as achiev-
ing throughput-optimality of max-weight problem for on/off in-
terference model [17]. In this paper, we abstract SINR based
interference model into on/off interference model using inter-
ference threshold decision method. By doing so, we are able to
inherit optimality nature of optimal CSMA algorithms. We for-
mulate max-weight independent set problem, which selects set
of BSs which activate the transmit power, and design the mean
waiting time decision algorithm to obtain near optimal BS trans-
mit power activation solution, in conjunction with user schedul-
ing.

Main contributions of this paper are as follows:
1. We propose a fully distributed joint user scheduling and bi-

nary BS power control whereas previous works [11]–[14] in
cellular networks have proposed centralized algorithms or re-
quired message passing among BSs. In the proposed algo-
rithm, each BS is able to capture the interference effect from
the other BSs without any massage passing among the other
BSs and centralized controller, hence it has a fully distributed

1Actually, current approach to address interference problem among LTE un-
licensed band and WiFi networks is to use the channel if unused channel is
available without any optimized parameter.

2Our framework is not developed based on the LAA-LTE standard as it is,
but the fundamental rules (i.e., competition based features) are similar with the
standard. A proposed framework can be a reference to the development of other
unlicensed band standards as well as that of LAA-LTE.

interference management nature.
2. Unlike the optimal CSMA work [17], which is link schedul-

ing problem under on/off interference model, our problem is
a joint problem of user scheduling and BS transmit power ac-
tivation decision under SINR based interference model. Our
work has novel contributions compared to the optimal CSMA
algorithm in the sense that we consider user scheduling and
interference threshold decision problem.

3. Compared to the conventional distributed schemes, a pro-
posed algorithm obtains remarkable performance gains under
various network configurations (i.e., user distributions and
cell sizes), and it properly catches up with the performance
of an optimal algorithm. Most notably, we verify that effec-
tive ICI management scheme becomes even more essential
for performance improvement of edge users as cell coverages
get gradually smaller.

In the rest of this paper, we begin with a description of the
system model including the definition of notations in Section II.
Next, in Section III, we present the problem formulation and
then describe an optimal algorithm. In Section IV, we explain
the details of the proposed algorithm. In Section V, we evalu-
ate the performance of four different algorithms on ICI manage-
ment under various network topologies and scenarios. Finally,
we conclude this paper in Section VI.

II. SYSTEM MODEL

A. Network and Link Model

We consider downlink small multi-cell networks (e.g., femto
or pico cells) which use universal frequency reuse. Denote
the set of BSs and users by M

.
= {1, · · ·,M} and N

.
=

{∞, · · ·,N}, respectively. We assume that user associations are
given to all BSs and each user is associated with only a sin-
gle BS. Denote the set of users associated with the BS m by
Nm ⊆ N , and denote the BS with which user n is associated by
mn ∈ M, i.e., N = N1∪· · ·∪NM and Nl∩Nm = for l 6= m,
where l,m ∈ M. We consider a time-slotted system indexed by
t = 0, 1, · · ·. All BSs are assumed to be time-synchronized by
fast backhual networks. Also, BSs are assumed to have enough
data to send in every time slot (i.e., infinite backlog). A BS
is allowed to schedule only one user when the BS activates its
transmit power. Let Gn,m(t) be the time varying channel gain
of user n from BS m, where the channel gain takes into account
log-normal shadowing and path loss. Channel gain is assumed
to be constant over each time slot. Through the user feedback
signal, each BS is assumed to know the perfect channel infor-
mation of all associated users.3

B. Resource Model

We define a pattern as a combination of activations of BSs.

A pattern is denoted by x = {0, 1}|M|
and activation indicator

of BS m is denoted by xm. Then, the mth element of x is 1
(i.e., xm = 1) if BS m activates its transmit power under pat-
tern x, and xm = 0 otherwise. Let X be the set of all possible

3Even though we do not know perfect channel information, there exists a lot
of channel estimation techniques (see [20] and references therein). However,
we simply assume the perfect channel estimation for simplicity of the system
model.
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patterns. Pattern x is said to activate BS m if the activity of
BS m is ON under pattern x. Denote the set of activated BSs
under pattern x by Mx ⊆ M. In parallel, we denote the set
of patterns that activate the BS m by Xm ⊆ X . Also, we de-
note the pattern selection indicator for pattern x by Px(t), i.e.,
Px(t) = 1 when pattern x is used at slot t, and 0 otherwise.
Then, because only one pattern is used per one slot, we have the
following constraint:

∑

x∈X

Px(t) = 1. (1)

In regard to user scheduling, we denote user scheduling indi-

cator at time slot t by In(t), i.e., In(t) = 1 if user n is scheduled
at time slot t, and In(t) = 0 otherwise. Because at most one
user can be scheduled by each BS at time slot t, we have the
following user scheduling constraint for given pattern x:

∑

n∈Nm

In(t)

{

≤ 1, if Px(t) = 1 and m ∈ Mx;
= 0, otherwise.

(2)

Then, we define the transmission rates of users. When pattern x

is given and user n is scheduled by its serving BS at slot t, the
received signal to interference plus noise ratio (SINR) for user
n at slot t is computed as follows:

SINRn,x(t)

=

{

Gn,mn
(t)P̄mn

N0W+
∑

m∈Mx,m 6=mn
Gn,m(t)P̄m

, if mn ∈ Mx;

0, otherwise,

(3)

where P̄m and N0 is the maximum transmit power of BS m and
the noise spectral density, respectively. Gn,mn

(t) is the channel
gain of user n from its serving BS mn at slot t. Note that user n
suffers from interference only by BSs activated under the pattern
x. From the Shannon’s formula, the data rate for user n under
pattern x at slot t is computed as follows:

rn,x(t) = BW log2

(

1 +
1

γ
SINRn,x(t)

)

In(t), (4)

where γ and BW are the SINR gap to the capacity [21] and
the system bandwidth, respectively. Note that rn,x(t) = 0 for all
mn /∈ Mx, i.e., user n does not receive any service if its serving
BS deactivates transmit power under pattern x. Also, rn,x(t) is
an actual data rate only if the user n is scheduled at slot t, and
it becomes 0 when other user, associated with the same BS, is
scheduled for service.

III. PROBLEM FORMULATION AND OPTIMAL
ALGORITHM

This paper aims to find the near optimal solution of an op-
timization problem by jointly controlling BS power on and off
and user scheduling in a distributed manner. Therefore, we first
formulate an optimization problem that maximizes the long-
term network utility by:

(Long-term P)

max
R̄

∑

n∈N

U(R̄n) (5)

s.t. R̄ ∈ Γ, (6)

where R̄ = (R̄n, n ∈ N ) is the vector of long-term user
throughputs and Γ is the set of all achievable rate vectors,
i.e., throughput region. U(·) is the long-term utility function
which is continuously differentiable and strictly increasing con-
cave function. In this paper, we consider the generalized α-
proportional fair utility function in [22]:

U(R̄n) =

{

log R̄n, if α = 1;

(1− α)
−1

R̄1−α
n , otherwise,

(7)

where α (≥0) is a tradeoff parameter between the data rate effi-
ciency and the fairness among users. When α = 0, the system
gets maximum sum rates, and as α goes to infinity, the system
achieves maximum fairness among users.

In order to develop a joint pattern selection and user schedul-
ing algorithm every time slot, we apply a stochastic gradient-
based algorithm [23] to a long-term utility maximization prob-
lem (Long-term P). Then, solving the following optimization
problem (Slot-by-slot P) every time slot, which jointly deter-
mines the pattern selection P(t) = (Px(t),x ∈ X ) and user
scheduling I(t) = (In(t), n ∈ N ), can lead to the following
asymptotic solution for the original problem (5)–(6):

(Slot-by-slot P)

max
P(t),I(t)

∑

n∈N

U ′(R̄n(t− 1))rn(t) (8)

s.t.
∑

x∈X

Px(t) = 1, (9)

∑

n∈Nm

In(t)

{

≤ 1, if Px(t) = 1 and m ∈ Mx;
= 0, otherwise,

(10)

where rn(t) =
∑

x∈X Px(t)In(t)rn,x(t) is the actual data rate
of user n at slot t and R̄n(t) is the long-term throughput for user
n until time slot t.

The problem (Slot-by-slot P) can be solved by an optimal
exhaustive search for every possible combinations of patterns
and user scheduling. However, the optimal exhaustive search has
computationally intractable complexityO((2M −1)·

∏

m |Nm|)
where M denotes the number of BSs. Instead of all possible
user scheduling combinations, according to [12], we can con-
sider only the case where the best users are selected by intra-
cell user scheduling. Then, the problem (Slot-by-slot P) can be
decomposed into |Mx| independent intra-cell user scheduling
problems for a given pattern x as follows:

n⋆
m(t) = arg max

n∈Nm

U ′(R̄n(t− 1))rn,x(t), ∀m ∈ Mx. (11)

For each pattern x, the best user of each BS is selected from
(11), and then the best pattern x

⋆(t) is chosen among the total
possible patterns.

Optimal pattern selection and user scheduling algorithm

Every time slot t, compute (x⋆(t), n⋆
m(t),m ∈ M) satisfying

x
⋆(t) = argmax

x∈X

∑

m∈Mx

max
n∈Nm

U ′
(

R̄n(t− 1)
)

rn,x(t), (12)
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n⋆
m(t) = arg max

n∈Nm

U ′
(

R̄n(t− 1)
)

rn,x⋆(t), ∀m ∈ Mx. (13)

Although the complexity of the joint optimal algorithm can
be reduced by O((2M − 1) ·

∑

m∈M |Nm|) = O((2M − 1) ·N )
due to the independent user scheduling operations for a given
pattern,4 the optimal algorithm still needs centralized operation
and high complexity in order to consider all possible activation
patterns, i.e., it still does exhaustive search for optimal activa-
tion pattern selection. In addition, the central coordinator run-
ning the optimal algorithm should collect following information
from each BS m ∈ M within slot t: Instantaneous data rate
rn,x(t) of all its associated users n ∈ Nm on activating patterns
x ∈ Xm. Thus the feedback complexity might be high, i.e.,
(
∑

m∈M |Nm||Xm|), although they should be delivered along
with high speed wired backhaul networks. Unfortunately, this
backhaul requirement is hard to implement in practice as the
number of small-cells increases. To tackle such difficulties, we
propose a new distributed algorithm with low complexity and
feedback overhead by invoking the idea of optimal CSMA algo-
rithm [17], [24] in on/off interference model.

IV. COMPETITION-BASED BS POWER ACTIVATION
AND USER SCHEDULING FRAMEWORK

In this section, we propose a competition-based BS trans-
mit power activation decision protocol using the idea of opti-
mal CSMA algorithms. As a part of the protocol, we design
the mean waiting time decision (MWD) algorithm and interfer-
ence threshold decision (ITD) rule. For given power activation
pattern, we describe the user scheduling algorithm and through-
put update. For the rest of this paper, we call this framework as
CBA.

A. Overall Framework (CBA) Description

We first describe our frame structure as shown in Fig. 1. In
our frame structure, a new competition period is added at the
head of the basic frame, and then several user scheduling slots
follow up the competition period. In order to reduce the com-
petition delay overhead, we grouped the time slots into periods
[kT+1, (k+1)T ], (k = 0, 1, 2, · · ·) with period length T . Then,
user scheduling is performed every time slot, while BS power
activation pattern changes every T slot. Note that the competi-
tion period consists of mini time slots, called waiting time slots,
which is much smaller than unit of user scheduling slot.5 Thus,
the overhead of competition period to the overall frame structure
may become negligible.

At the beginning of each competition period (every T ), each
BS randomly selects the waiting time which gives the priority to
activate the transmit power (e.g., BS who selects shorter wait-
ing time has higher priority to decide its activation). Note that
we denote the selected waiting time and mean waiting time of
BS m by µ̃m and µm, respectively.6 Each BS m ∈ M ran-

4The maximum operation in the intra-cell user scheduling needs linear com-
plexity in the number of associated users.

5In our model, the competition period is considered as 250 µs including wait-
ing time slots of 9 µs which is a same duration in 802.11a [25], while each user
scheduling time-slot length is considered as 5 ms.

6The decision of mean waiting time will be addressed in Section IV.C.

Basic frame for pattern

selection & user scheduling
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Waiting time slot

Pattern selection time scale (T)

User scheduling time scale (t)

Fig. 1. Frame structure for pattern selection and user scheduling; transmit power
activation competition is operated with a long time scale (T ) while user
scheduling is run with a short time scale (t).

domly selects µ̃m between 0 and 2 µm.7 And then, our compe-
tition protocol runs for selecting winning BSs (i.e., BSs which
activate the transmit power). After the competition period ends,
only winner BSs activate the transmit power. The winning BSs
get feedback information from associated users, and then selects
the best users for data transmission. The consequent BS activa-
tion keeps until next competition.

Overall CBA operation

For each BS,
Every T time slot,

1: Each BS update the mean waiting time by MWD
2: Start the competition period
3: Set waiting time µ̃m ∈ (0, 2µm)
4: Run competition protocol based on ITD rule
5: End the competition period, and winning BSs are selected
6: Only winning BSs activate the transmit power

For each BS,
Every t time slot,

1: if it is winning BS, then

2: Gets feedback information of associated users
3: Run the user scheduling for data transmission
4: else

5: Keep deactivation status
6: end

7: Schedule a user and update average throughput

B. Competition Protocol

Now, we describe our competition protocol. In the compe-
tition period, a set of activated-BSs is determined by waiting
for selected time and interference measurements as follows: (i)

Waiting for selected time: A BS should wait for selected waiting
time to get an activation. (ii) Interference measurement: After
the waiting time expires, each BS measures the sum of received
interference from neighboring BSs based on ITD rule which
have already decided to activate the transmit power. Only if the
measured interference is smaller than the interference threshold,
the BS broadcasts a reference signal to neighboring BSs during
the remaining competition period, so that other waiting BSs can

7We assume that the waiting time is uniformly distributed.
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measure the interference using the reference signal. By such a
distributed competition protocol, a BS activation pattern is de-
termined.

BS competition protocol

1: Start the competition
2: Each BS m ∈ M waits for µ̃m.
3: Measure the interference (Imeasure).
4: if Imeasure > Ith, then

5: Lose in competition (set the transmit power to zero)
6: else

7: Win in competition (set the transmit power to P̄m)
and transmit reference signal

8: end

As an example of competition protocol, we consider a sce-
nario that three base stations are competing each other for trans-
mit their data. Let us assume that all BSs have the same interfer-
ence threshold value Imth for BS m, which is marked in Fig. 2. In
case of µ̃1<µ̃3<µ̃2, BS1 first decides whether to activate or de-
activate the transmit power. After the waiting time of BS1 (µ̃1),
sinc BS1 does not receive any reference signal, it wins the com-
petition and broadcasts the reference signal to neighboring BSs
until the competition period ends. Next, after the waiting time
of BS3 (µ̃3), BS3 compares the interference threshold with the
strength of received reference signal from BS1. Since the mea-
sured value is still smaller than the interference threshold Imth,
BS3 also broadcasts the reference signal until the competition
period ends. Then, BS2 receives the reference signal from both
BS1 and BS3, and the sum of received signal strength is larger
than Ith. Therefore, after the waiting time of BS2 (µ̃2), BS2
loses the competition and decides to activate the transmit power.
After the competition period ends, in this example, result pattern
becomes (BS1, BS2, BS3) = (ON, OFF, ON).

Remark: In our competition protocol, both the waiting time
and the interference threshold should be carefully decided for a
near optimal pattern result. The waiting time gives the priority
to activate the transmit power, and thus inappropriate priority
causes unbalanced activation decision among BSs, i.e., some
BSs continuously activate the transmit power while some BSs
continuously deactivate the transmit power. In other words, dif-
ferent waiting time decision rules can result in different acti-
vation patterns which may be undesirable. In the previous ex-
ample, if we supposed µ̃1>µ̃3>µ̃2, the result pattern would be
(BS1, BS2, BS3) = (OFF, ON, ON), which may be undesirable
if BS1 has consecutively deactivated the transmit power for a
long time.

Moreover, the interference threshold is necessary to protect
BSs from being activated in the severe ICI environment, and
thus increase the actual data rate of scheduled users. However,
inappropriate interference threshold can also lead to unneces-
sary waste of wireless resource. For example, too low thresh-
olds make BSs unnecessarily deactivate the transmit power even
in the low ICI environment. This situation causes network per-
formance degradation because many users lose the chance to
obtain high data rates from the serving BS. On the other hand,
too high thresholds make BSs excessively activate the transmit

m easure

m easure

m easure

Fig. 2. Example of activation competition in a network with three BSs. Note
that Im

th
= Ith for all BSs.

power in the severe ICI environment. This situation, called a
“lose-lose" situation, is also undesirable because it merely in-
creases the interference to neighboring BSs, providing low data
rate to the scheduled users. In Section IV.D, we suggest tech-
niques to solve these issues.

C. Mean Waiting Time Decision

In this subsection, in order to achieve a near optimality of
(slot-by-slot P), we first develop the mean waiting time deci-
sion (MWD) algorithm. For the distributed operation of each
BS m ∈ M, activation indicator (xm(t) ∈ {0, 1}) should be
independently decided. However, because rn(t) in (8) depends
on the activation of other BSs, i.e., rn(t) increases as other BSs
deactivate the transmit power, and it decreases as other BSs ac-
tivate the transmit power, it is hard to design BS-independent
operation for activation decision. To tackle this challenge, we
approximate the actual data rate rn(t) by an expected data rate
r̄n(t). The expected data rate is calculated by a running average
value of an achievable data rate of user n, i.e., the average data
rate when its serving BS activates the transmit power and selects
user n. Then, we utilize r̄n(t− 1) · xm(t) to approximate rn(t)
in an average sense before a pattern is determined. From this
approximation, we define cell-weight of BS m denoted by wm

as follows:

wm(t) =
∑

n∈Nm

U ′(R̄n(t− 1))r̄n(t− 1). (14)

Then, by solving the following pattern selection problem, we
can obtain a near optimal pattern in (Slot-by-slot P):

(Pattern selection P)

x
⋆(t) = argmax

x∈X

∑

m∈M

wm(t)xm(t). (15)

Each BS m ∈ M independently decides its activation based
on the cell weight, while the decision of xm(t) is controlled by
the interference threshold. In fact, (Pattern selection P) belongs
to the class of MaxWeight independent set problem, where the
“weight” of a set of BSs is the summation of their cell-weight.
However, finding such a maximal-weighted independent set is
NP-complete in general and is hard even for centralized algo-
rithms when the number of BSs increases. Therefore, its dis-
tributed implementation is not trivial in wireless networks.

In this paper, we invoke the distributed idea from optimal
CSMA algorithms [19], [18] in on/off interference model to
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solve (Pattern selection P), and develop the MWD algorithm.
Because interference model of our framework, i.e., SINR-based
model, is different from that of optimal CSMA works, i.e.,
on/off interference model, we abstract SINR based interference
model into on/off interference model using interference thresh-
old decision method which will be provided in Section IV.D By
doing so, remained procedure of MWD algorithm becomes the
same procedure with optimal CSMA algorithm. For a given in-
terference threshold Imth , if the measured interference is higher
than the threshold Imth, the interference is assumed to exist be-
tween BS n and the other BSs which activate transmit power,
otherwise, BS n regards that there is no interference among
them. Then, we provide MWD algorithm by invoking the op-
timal CSMA algorithm [18].

MWD algorithm

At each time slot t = kT (k = 0, 1, 2, ...), computes wm(t) and
µm(t) for all m ∈ M as follows:

wm(t) =
∑

n∈Nm

U ′(R̄n(t− 1))r̄n(t− 1), (16)

µm(t) = e−Bwm(t), (17)

where B > 0 is constant and µm(t) is mean waiting time.

The MWD algorithm can be interpreted as follows. If a BS
has more associated users or its associated users have higher
channel gain and lower average throughput (i.e., higher utility
drift when α > 0), it gets larger cell-weight, and thus has short
mean waiting time from (17). Then, the BS has higher priority
to activate the transmit power in our competition protocol. Note
that the cell weight and the mean waiting time are updated every
T time slot.

D. Interference Threshold Decision Rule

In our competition protocol, as mentioned in Section IV.B,
an inappropriate interference threshold can lead to undesirable
pattern. In this subsection, we propose a heuristic method to set
the interference threshold of each BSs, which abstracts SINR-
based interference model to on/off interference model. By doing
so, optimal CSMA algorithm can be invoked in our framework.

In fact, the interference threshold is a parameter which deter-
mines a tradeoff between frequency of user scheduling in each
cell and interference strength, which determines real data rate
of scheduled users when the serving BS activates the transmit
power. For example, as the interference threshold is larger, more
BSs are likely to activate transmit powers, hence average inter-
ference strength is larger whereas the frequency of user schedul-
ing is higher. The problem is that average data rate (of users)
which is the metric considered in the objective function (Pat-

tern selection P) when weight wm(t) is the same for all BSs, is
determined by the tradeoff between these two factors (interfer-
ence strength and frequency of user scheduling).

Two-cell network. Therefore, we make a rule to determine
the interference threshold in linear two cell networks to obtain
intuition of the rule where reference edge user n̄1 ∈ N1 is asso-
ciated with BS1 as shown in Fig. 3. We assume that the refer-
ence edge user n̄1 has the longest distance from BS1 to capture

the highest interference effect in the cell. Then, possible patterns
are divided into three patterns x ∈ X = {(1, 0), (0, 1), (1, 1)}
where XBS1 = {(1, 0), (1, 1)} and XBS2 = {(0, 1), (1, 1)}. Un-
der the pattern (1, 0), the real data rate of scheduled user n̄ is
computed as follows:

rn̄1,(1,0)(t) = BW log2(1 +
1

γ

Gn̄,BS1(t)P̄1

N0W
). (18)

Also, under the different pattern (1, 1) where BS1 and BS2 are
interfering each other, the real data rate of scheduled user n̄1 is
computed as follows:

rn̄1,(1,1)(t) = BW log2(1 +
1

γ

Gn̄,BS1(t)P̄1

N0W + I
). (19)

where I is the interference of which user n̄1 receives from BS2.
Note that rn̄1,(1,0)(t) > rn̄1,(1,1)(t) because of the interference
I . Since frequency of user scheduling in the case of (1,0) and
(0,1) is a half of that in the case of (1,1) when time portion of
pattern (1,0) and (0,1) is the same,8 we can determine the inter-
ference threshold Imth for BS m when a half of real data rate in
case of (1,0) is the same as real data rate in case of (1,1) to max-
imize average data rate of the reference edge user as follows:

1

2
rn̄,(1,0)(t) = rn̄,(1,1)(t). (20)

At the initialization slot (i.e., t = 1), Imth = I is computed
from (20) and this value is used in the competition protocol to
control the BS transmit power activation. If I > Imth , pattern
(1, 0) or (0, 1) is desirable, otherwise pattern (1, 1) is desirable.

Multi-cell network. If we extend this method to multi-
cell networks, we should calculate real data rates for all ac-
tive/inactive combinations of all BSs, hence it has exponentially
increasing complexity in terms of number of BSs. To resolve
this problem, we inherit the intuition of the method in linear two
cell network scenario.

The rationale behind this method in multi-cell networks is that
BS m abstracts other neighboring BSs which give interference
to the BS m into one virtual BS. Then, the BS m equally shares
time portion with the virtual BS when there is no interference.
Son et al. [15] revealed that most of interferences to the refer-
ence edge user in some cell comes from the closest BS, which
means the only one closest BS mostly affects to determine in-
terference threshold. Therefore, the most of interference from
the virtual BS would come from the closest BS, which supports
the BS m and the virtual BS almost equally share time portion
when there is no interference between them.

We denote n̄m ∈ Nm as a reference edge user of BS m. Each
BS measures data rate with no interference of a reference edge
user (see (18)), and the interference threshold Imth is determined
as the interference when real data rate with interference Imth is
the same as a half of data rate with no interference9 as follows.

1

2
BW log2

(

1 +
1

γ

Gn̄m,m(t)P̄m

N0W

)

= BW log2

(

1 +
1

γ

Gn̄m,m(t)P̄m

N0W + Imth

)

.

(21)

8Note that pattern (1,0) and (0,1) share the time portion in terms of user n̄1.
9It means BS m and a virtual abstracted BS equally share the time portion.
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Fig. 3. An example of linear two-cell networks: user n̄ is the reference edge
user of BS1.

By summarizing (21) in terms of Imth, we have:

Imth =

√

N0WGn̄m,m(t)P̄m

γ
+N2

0W
2. (22)

E. User Scheduling and Throughput Update

After the pattern is determined from the competition protocol,
only activated BSs perform intra-cell user scheduling at every
slot t until the next competition period. Note that two parame-
ters (R̄n(t) and r̄n(t)) required to run MWD algorithm can be
attained by the user scheduling algorithm, and they are long-
term average of In(t)rn,x(t) and rn,x(t), respectively.

User scheduling algorithm

Given pattern x, only activated BSs select the best user at each
slot t as follows:

n⋆
m(t) = arg max

n∈Nm

U ′(R̄n(t− 1))rn,x(t), ∀m ∈ Mx. (23)

Average throughput & average instantaneous rate update

x is determined, R̄n(t) and r̄n(t) for all n ∈ N are updated at
every slot t as follows:

R̄n(t) = (1− β1)R̄n(t− 1) + β1In(t)rn,x(t), (24)

r̄n(t) =

{

(1− β2)r̄n(t− 1) + β2rn,x(t), if mn ∈ Mx,
r̄n(t− 1), otherwise,

(25)

where β1 > 0 and β2 > 0 are running average parameters.

Table I summarizes the computational complexity and feed-
back overhead of different algorithms. Computational complex-
ity consists of two parts: The complexity from user scheduling
and pattern selection. User scheduling has a linear complexity
(
∑

m∈M |Nm|) with the number of total users for OPT (opti-
mal algorithm), TDA (time-scale decomposed algorithm) and
CBA (competition based algorithm). However, in pattern selec-
tion part, our CBA has much lower complexity O(1) than that
of OPT O(2M − 1) and TDA O(|X | ·maxm |Nm|). Moreover,
the amount of feedback to each BS from its associated users at
each slot is reduced from |Nm||Xm| in OPT to |Nm| in CBA and

TDA, as users only need to send channel information regardless
of pattern. Note that CBA does not send feedback to the central
coordinator due to its distributed operations whereas TDA still
has interaction with centralized coordinator.

V. SIMULATION RESULT

A. Simulation Setup

We consider a multiple small cell network which is consisted
of 6 cells. In modeling the wireless channel, we adopted the
random shadowing with 8 dB deviation and path loss model
(−16.62 − 37.6 log10 d [dB]) where d is the distance between
a user and the BS in meters. Also, we applied some parameters
and channel models in [26]. All simulation results are averaged
over 10 times.

We consider that each BS has five associated users, respec-
tively. Also, all users are assumed to have the same logarithmic
utility function, i.e., log R̄n. Edge users are considered as users
whose distance from serving BS is longer than 16 m. Note that
reference edge user n̄m of BS m, mentioned in Section IV.D,
is considered as if the user is located at 16 m from the serv-
ing BS. At the initialization slot (t = 1), all BSs activate the
transmit power and calculate the instantaneous data rate and av-
erage throughput of all users. Interference threshold used in the
competition for all BSs is determined by interference threshold
decision rule in (22) of Section IV.D.

We compared the performance of five algorithms: 1) Optimal

algorithm which is mentioned in Section III (OPT), 2) time-scale

decomposed algorithm (TDA) [12], 2) proposed competition-

based algorithm (CBA), 3) each BS randomly activates the

transmit power (RAN), and 4) every BS always activates the

transmit power (ALL). As performance metrics, we measured
the geometric average throughput (GAT), the average edge user
throughput (AET), worst user throughput and throughput fair-
ness among users. GAT is a useful metric in a sense that maxi-
mizing GAT can lead to the solution for maximizing our objec-
tive when the utility function is log(·). In addition, AET is an
important metric because improving the edge user throughput is
the main challenge of small cell networks. We also use the so-
called Jain’s fairness index [27] as a tool for measuring fairness
among users.

B. Throughput Performance (GAT, AET, and Worst Throughput)

From the simulation results, we obtain interesting observa-
tions as follows: (i) CBA can obtain higher performance gains

compared to both RAN and ALL. Especially, CBA substantially
increases edge user throughput due to the inter-cell interference
management. (ii) CBA properly catches up with the performance

of OPT by more than 93% and 95% in terms of GAT and AET,

respectively. (iii) CBA achieves similar performance with cen-

tralized based TDA even though it is fully distributed algorithm.

Fig. 6 depicts the performance comparison of five algorithms
with ρ = 0.2. Also, performances of CBA with various T val-
ues are considered. Fig. 6(a) demonstrates the performance of
these algorithms in terms of GAT, AET and worst user through-
put. First, we can identified the impact of competition time scale
T on the algorithm performance. CBAs with different T val-
ues (from T = 1 to T = 40) show very similar GAT and
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Table 1. Complexity and feedback of different algorithms

OPT TDA [12] CBA

Computational complexity O((2M − 1) ·
∑

m∈M |Nm|) O(|X | ·maxm |Nm|) O(
∑

m∈M |Nm|)
Feedback to each BS m at each slot |Nm||Xm| |Nm| |Nm|
Feedback to the central coordinator

∑

m∈M |Nm||Xm|
∑

m∈M |Xm| Zero

(a) (b)

Fig. 4. performance comparison of five algorithms with ρ = 0.2: (a) Performance comparison and (b) Jain’s fairness index.

(a) (b)

Fig. 5. Algorithm performance with various network configurations: (a) Performance with various user distributions and (b) performance with various cell sizes.

AET performances while they have some performance gap in
terms of the worst user throughput. However, all CBAs outper-
form RAN or ALL in term of all performance metrics. Com-
pared to ALL (or RAN), CBA with (T = 10) increases GAT
by 192% (57%) and AET by 335% (112%), respectively. Note
that CBA (T = 10) obtains even more performance gains in
the worst user throughput compared to ALL or RAN. Most no-
tably, CBA (T = 10) achieves more than 93%, 95%, and 82%
of the GAT, AET, and worst user throughput that can be attained
by OPT, respectively. Although there is some performance gap
between OPT and CBA (T = 10) in terms of the worst user
throughput, the performance gap can be reduced if the compe-
tition time scale T decreases. In CBA with (T = 1), the worst
user throughput can be achieved by 92% compared to that of
OPT.10

Next, Fig. 6(b) depicts the distribution of average through-

10However, decreasing T results in increasing overheads for competitions.

put allocated to all users. We verify that OPT and CBA obtain
similar throughput distribution compared with RAN or ALL.
Furthermore, CBA, TDA, and OPT result in narrow-ranged
throughput distribution while RAN and ALL result in wide-
ranged throughput distribution. These results indicate that CBA
also achieve good performance in terms of user throughput fair-
ness.

C. Fairness Performance

In order to quantify the degree of fairness among users, we
used Jain’s fairness index, which is defined as

J =
(
∑N

i=1 R̄i)
2

N
∑N

i=1 (R̄i)2
, (26)

where R̄i is the average throughput of user i. Jain’s fairness
index measures the spread in the users’ average throughput R̄i,



LEE et al.: COMPETITION-BASED DISTRIBUTED BS POWER ACTIVATION AND... 49

and the result ranges from 1/N to 1. J = 1 indicates abso-
lute fairness (i.e., best case) where all users receive the same
allocation, while J = 1/N indicates no fairness (i.e., worst
case). Fig. 6(c) demonstrates the Jain’s fairness index of five
algorithms. Compared with the fairness index of OPT (0.991),

TDA, CBA (T = 1), and CBA (T = 10) can achieve near-to-

absolute fairness with 0.988 and 0.967, respectively. Note that
the fairness indices of RAN and ALL are 0.829 and 0.547, re-
spectively. Therefore, we can clarify that CBA is well operated
in a fair manner among network users.

D. Impact of Different Network Configurations

In order to consider various user distribution environments,
we introduce the concept of “user distribution value” ρ ∈ [0, 1].
It is the measurement of the minimum distance restriction be-
tween users and serving BS as (ρ×R), i.e., the measurement of
the ratio of edge users. For example, if ρ is set to be 0.5, users
should be located in the area where the distance from the serv-
ing BS is longer than half of cell radius (R/2). Similarly, as ρ
is close to 1, all users are located in the cell edge area. Users are
uniformly distributed keeping the minimum distance restriction.

We obtain interesting observation as follows: CBA obtains

higher performance gains compared to both RAN and ALL as

the ratio of edge users increases or cell sizes decrease. This re-
sult indicates that CBA effectively mitigates ICI even in much
denser and smaller cell networks. Fig. 7(a) depicts the GAT
and AET performance of five algorithms in various user distri-
butions. Compared to OPT, CBA can obtain more than 85% (at
ρ = 0) up to 94% (at ρ = 1) in GAT performance and more
than 95% over all user distributions in AET performance. Fur-
thermore, CBA greatly outperforms both RAN and ALL over
all user distributions. Compared with RAN, CBA increases
GAT by 33%–140% and AET by 102%–133% depending on
the user distribution. Particularly, compared with ALL, CBA ob-
tains GAT performance gain from 82% up to tenfold and AET
performance gain from 241% upto 351%. Note that a higher
performance gain was observed when the user distribution value
was larger (i.e., the ratio of the edge users increased). This ob-
servation indicates that CBA, TDA and OPT mainly aims to im-
prove the performance of edge users who are vulnerable to ICI.

In order to check the scalability of our CBA, we also consid-
ered different network configurations with different cell sizes.
Fig. 7(b) depicts the GAT performance of five algorithms as
the cell radius varies with ρ = 0.2. As the cell radius reduces,
GAT performance in both OPT and CBA tends to increase with
smaller performance gap between them, while there is no much
GAT performance variation in ALL or RAN. The small GAT
variation in ALL or RAN is due to the fact that just reducing the
cell size without ICI management results in larger ICI as well
as a stronger signal strength from the serving BS. Most notably,
compared with RAN or ALL, a higher GAT performance gain
was observed in CBA when the cell radius became smaller. This
result indicates that, as the cell size is gradually smaller and the
cell-density is higher, our CBA has more room to get better net-
work performance by efficiently mitigating ICI. For all cases,
CBA achieves similar performance with TDA.

VI. CONCLUDING REMARKS
This paper aimed to develop a low complex and competi-

tion based ICI management framework to increase the edge user
performance in unlicensed band. With the idea of competition
among neighboring BSs to activate the transmit power, we pro-
posed fully distributed protocol and algorithm in the framework
which substantially reduces computational complexity and feed-
back overhead. Proposed distributed binary power control to
mitigate ICI can also be helpful to save energy consumption
of BSs thanks to deactivation of transmit power [28]. While
LTE in licensed bands can guarantee a reliable quality of ser-
vice (QoS), the current unlicensed band technology, e.g., LAA
network, is difficult to achieve a stable QoS because the un-
licensed bands are shared with other communication devices
such as WiFi, Bluetooth, and ZigBee. We leave the performance
evaluation and fairness issues under the coexistent environments
with other wireless technology as a future work.
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