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Intelligent Water Drops Based Joint Subcarrier
Pairing and Power Allocation with Fairness

in Cooperative Relay Networks
Guiyan Liu, Songtao Guo∗, Huan Zhao, and Fei Wang

Abstract: In this paper, we propose a joint subcarrier pairing and

power allocation (JS2PA) scheme with fairness based on the intel-
ligent water drop (IWD) optimization method for orthogonal fre-
quency division multiple access cooperative relay networks. The

proposed scheme consists of a subcarrier pairing and selection al-

gorithm and a power allocation algorithm. We first formulate the

JS2PA problem as a mixed integer programming problem aiming

to maximize the total network utility under the constraints of in-

dividual power, subcarrier fairness requirement and pairing. To

solve the non-convex JS2PA problem, firstly, we propose a subcar-

rier pairing and selection algorithm based on Hungarian method

so as to select the appropriate subcarrier pairs for relaying. Sec-

ondly, we provide a power allocation algorithm based on the IWD

method in which water drops act as the agents to find the optimal

power allocation for each node. In particular, to improve the opti-

mality of power allocation, we integrate network utility and power

requirement into heuristic function to measure the desirability of

the IWD selecting the next visiting node. Finally, we conduct sim-

ulations to validate the proposed algorithms and the results show

that the proposed JS2PA scheme outperforms the existing methods

in terms of convergence, total network utility and fairness.

Index Terms: Cooperative relay networks, fairness, intelligent wa-

ter drop (IWD), power allocation, subcarrier pairing.

I. INTRODUCTION

COOPERATIVE relaying has recently attracted a lot of re-

search interests as an emerging transmit strategy for next

generation wireless communication networks. In cooperative re-

laying, relay nodes are employed to assist the transmission of
source node by relaying the replica of the information. Such co-

operative communication can effectively improve the reliability

of wireless transmission and extend the coverage of nodes by

exploiting the inherent spatial and multiuser diversities.

In cooperative relay networks, network performance depends
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on careful resource allocation, such as subcarrier pairing and

power allocation, due to the scarcity of bandwidth, subcarrier
and power. The subcarrier paring problem is to match the in-

coming and outgoing subcarriers at relay node based on chan-

nel dynamics to provide good system performance. The opti-

mal solution to the problem can be obtained by using the well-

known Hungarian algorithm in combinatorial optimization [1].
Some resource allocation algorithms, such as the Greedy algo-

rithm [2], and the improved Greedy algorithm, including the

worst user first (WUF) Greedy algorithm [3], and the Maximal

Greedy algorithm [4], have been proposed, in which either users
select their desired subcarriers one-by-one from the available

pool based on the channel qualities of subcarriers, or the subcar-

riers are allocated by ordering the users in different ways. These

methods can significantly improve or even achieve near-optimal

error performance after a sufficient number of iterations. How-
ever, their complexity may become very high when the number

of subcarriers and/or the number of iterations are large.

On the other hand, proper power allocation among mobile

stations (MSs) and relay stations (RSs) can significantly re-

duce power consumption and extend network lifetime. Capacity
and throughput can also be enhanced through cooperative re-

source sharing and scheduling among nodes within a network.

At present, the joint subcarrier and power allocation problem is

often formulated as an optimization problem of maximizing the

system throughput or the weighted sum rate under the total sum
power constraint and the individual power constraint, respec-

tively [5]–[8]. The proposed strategies are based on Lagrangian

dual decomposition method. The optimal solution by means of

the dual method depends on the convexity of the investigated

optimization problem. However, the optimization problem for-
mulated by this way is generally difficult to solve due to that the

discrete nature of subcarrier assignment usually leads to an in-

teger programming problem, which is NP-hard.

Recently, a new swarm-based, nature-inspired optimization

method, called intelligent water drops (IWD) method [9], has
become a popular method for solving complex nonlinear opti-

mization problem. The IWD method is a population-based opti-

mization algorithm that imitates some of the processes that oc-

cur in nature between the water drops of a river and the soil

of river bed and uses a constructive approach to find optimal
solution of a given maximization/minimization problem. The

IWD algorithm has been used for solving several NP-hard com-

binatorial optimization problems, such as robot path planning

problem [10], multidimensional knapsack problem (MKP) [11],

job-shop scheduling problem [12], and real-life waste collec-
tion problem [13]. Moreover, in [14], Alijla et al. proposed two
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ranking-based selection methods, namely linear ranking and ex-
ponential ranking, and investigated their effectiveness in the so-

lution construction phase of the IWD algorithm. Furthermore,

in [15], they proposed an IWD ensemble known as the master-

river, multiple-creek IWD (MRMC-IWD) model to improve the

exploration capability of the IWD algorithm. In [16], Mokhtari
provided a nature inspired intelligent water drops evolutionary

algorithm for parallel processor scheduling with rejection. A

main advantage of this method is that it is able to solve the non-

convex optimization and has low computational complexity and

fast convergence.

In this paper, we formulate the joint subcarrier paring and
power allocation (JS2PA) problem with fairness as a utility-

based optimization framework with the objective of maximizing

the total network utility subject to (i) the maximum transmis-

sion power of individual users, (ii) the subcarrier requirement
constraint of each user, and (iii) the subcarrier paring constraint.

Here, the fairness is achieved by associating each user with a fair

utility function and setting a lower and upper bound on the num-

ber of subcarriers occupied by each user. In particular, the for-

mulated JS2PA problem is a mixed integer programming prob-
lem, therefore, the conventional Lagrangian dual method is not

suitable for solving this problem.

To solve the JS2PA problem in orthogonal frequency division

multiple access (OFDMA) based cooperative relay networks,

we propose a subcarrier pairing and selection algorithm based

on Hungarian method to fairly select appropriate subcarriers for
relaying, and a power allocation algorithm based on the IWD

method, called PA-MIWD algorithm, which improves the IWD

algorithm [9], by randomly initializing diverse soil and velocity,

employing a bounded local soil update and using network util-

ity and average power requirement to measure the desirability
of IWD selection of the next visiting edge. To the best of our

knowledge, this is the first work applying the IWD algorithm

to solving the JS2PA problem in OFDMA-based cooperative re-

lay networks. Finally, we conduct simulations to validate the

proposed algorithms and the simulation results demonstrate that
the proposed subcarrier pairing and selection algorithm plays an

imperative role in improving network utility.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present system model and formulate the

optimization problem for joint subcarrier pairing and power al-

location with fairness.

A. System Model

We consider a multiuser OFDMA-based relay network with
K subcarriers, J base stations (BSs)/source nodes, N RS nodes

and M MS nodes, as shown in Fig. 1, and a downlink transmis-

sion scenario where a source node (BS node) is transmitting data

to M destination nodes (MS nodes) using K subcarriers dynam-

ically. A MS is served either by a direct connection between the
BS and the MS or a two-hop connection from the BS, in which

there is a link between the BS and a RS and a link between the

RS and the MS. A RS cannot transmit on a subcarrier and con-

currently receive on another subcarrier to eradicate well-built

intercarrier interference. We assume that only the decode-and-

RS1

RS2

RS3

MS2

MS5

Relaying linkDirect link

Relay

MS3

BS1 BS2 BS3

MS1

MS4

Source Destination

Fig. 1. A multiuser relay network with 3 relay stations and 5 mobile stations.

Table 1. List of notations.

Notation Definition

K Number of subcarriers

N Number of relay stations

M Number of mobile stations

hBR
irk Channel gain from BS i to RS r on subcarrier k

hRM
rjm Channel gain from RS r to MS j on subcarrier m

hBM
ijk Channel gain from BS i to MS j on subcarrier k

λBM
ijk Channel power gain between BS i and MS j

λBR
irk Channel power gain between BS i and RS r

λRM
rjm Channel power gain between RS r and MS j

PBS
ijk BS power in the first time slot for SP (k,m)

PRS
rjm Relay power in the second time slot for SP (k,m)

soil(i, j) Amount of soil on the link between two nodes

soilIWDg Soil of gth IWD

soilIWD Soil of an IWD

velIWDg Velocity of gth IWD

NIWD Number of IWDs

itermax Maximum number of iterations

p
IWDg

i,j Probability of choosing node j for node i

∆soil(i, j)Soil that an IWD loads from edge (i, j),
i.e., soil changes

∆soilmin Lower bound for soil changes in any edge (i, j)
∆soilmax Upper bound for soil changes in any edge (i, j)
ρIWDg

Global soil updating parameter

ρL Local soil update parameter

T IB Iteration best schedule

T TB Total (global) best solution

forward (DF) cooperative relay is used. A transmission period
is divided into two transmission phases. Since these two trans-

mission phases are orthogonal to each other in the time domain,

we call them the first time slot and the second time slot, respec-

tively. In the first time slot, the BS transmits data to the MS or

RS while the MS and RS receive data. In the second time slot,
the RS transmits the data received from the BS in the first time

slot to the MSs while the BS keeps transmitting data to the MSs

via a direct link without relaying. Each subcarrier is subject to

frequency-selective block fading, i.e., the channel state remains

the same within two time slots. For clarity, the variables and
notations used in this paper are summarized in Table 1.

For each subcarrier, only one node transmits data in a given

time slot. Each subcarrier used by the BS in the first time slot
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is paired with another subcarrier used by the RS in the sec-
ond time slot. Thus, the number of subcarrier pairs (SP) in

the transmission is K . If subcarrier k in the first time slot and

subcarrier m in the second time slot are paired, we denote

them as SP (k,m). The packets transmitted on different SPs

are assumed to be independent. Subcarrier pair SP (k,m) might
not be the actual pair participating in the communication. If

SP (k,m) actually participates in the communication, it is said

to be selected. We define the power gains of the channel be-

tween BS i and MS j as λBM
ijk =

∣

∣

∣
hBM
ijk

∣

∣

∣

2

/σ2
BM,ijk , BS i and

RS r as λBR
irk =

∣

∣hBR
irk

∣

∣

2
/σ2

BR,irk on subcarrier k and RS r and

MS j as λRM
rjm =

∣

∣λRM
rjm

∣

∣

2
/σ2

RM,rjm on subcarrier m, where

hBM
ijk , hBR

irk and λRM
rjm are BS i - MS j and BS i - RS r channel

gains on subcarrier k, and RS r - MS j channel gain on subcar-

rier m, respectively. Also, σ2
BM,ijk , σ2

BR,irk and σ2
RM,rjm are

the variances of the additive white Gaussian noise (AWGN) in
the corresponding channels.

Note that the scheme of joint subcarrier paring and power al-

location depends on not only the channel state but also the de-

gree of knowledge of channel state. In this paper, the channel
state information (CSI) at the BSs is required for cooperative re-

lay transmission to gain their benefits. To obtain the knowledge

of channel state, we utilize time-division duplex (TDD) for co-

operative relay system since in TDD system, channel reciprocity

can be used to train on the reverse link and obtain an estimate
of the channel at the BS. In other words, in TDD system, chan-

nel reciprocity allows each BS to obtain the downlink channel

to each user by estimating the uplink channel from the user. We

formulate the optimization problem for the scenario with imper-

fect CSI, i.e., the transmitter knows the instantaneous CSI (ICSI)
of the first hop and the statistical CSI (SCSI) of the second hop.

To emphasize the impact of imperfect channel reciprocity on the

benefits of data sharing, we assume that the channels are fully

shared among the BSs via noiseless and zero latency backhaul

links, and the data intended to the users are partially shared. The
sharing of data and channel information among the coordinated

BSs is achieved by the transmission via backhaul links.

B. Problem Formulation

We assume that each subcarrier pair SP (k,m) works in ei-
ther the relay mode or the direct-link mode in a selective DF

relay. In the relay mode, the half-duplex relay is active and for-

wards the decoded packets on subcarrier k in the second time

slot. In the direct-link mode, the relay does not forward packets

and only the BS-MS link in the first time slot is used to trans-
mit packets. Then the achievable end-to-end weighted rate of

the link from BS i to a MS by RS r forwarding over SP (k,m)
under imperfect CSI can be expressed as [17]

Rij
k,m =











wk

2 log
(

1 + λBM
ijk PBS

ijk

)

, for direct-link mode
wk

2 min{log(1 + λBR
irk P

BS
ijk ),

log(1 + λBM
ijk PBS

ijk + λRM
rjmPRS

rjm)}, for relay mode

(1)

where PBS
ijk and PRS

rjm represent the power of BS i in the first

time slot and the power of RS r in the second time slot, respec-

tively. A weight wk is assigned to the rate on subcarrier k to

reflect QoS requirements. The rate is scaled by 1/2 since the
transmission takes two time slots. In the following, we given a

criterion to decide the working mode of SP (k,m) in selective

DF mode similar to that in [20].

Theorem 1: Using relay model is beneficial when

min
(

λBR
irk , λ

RM
rjm

)

> λBM
ijk . (2)

Otherwise, the relay keeps inactive on subcarrier k in the relay

phase.

Proof: The detailed proof can be found in Appendices A.

✷

Let P ij
k,m = PBS

ijk + PRS
rjm for SP (k,m). We first consider

rate Rij
k,m in the relaying mode. According to [20], we have that

assuming the system has N hops,

Rk,m = min{R1
k,m, R2

k,m, · · ·, RN
k,m}

The rate reaches its maximum when

R1
k,m = R2

k,m = · · · = RN
k,m.

That implies that the maximum achievable rate Rij
k,m for relay

mode in (1) is reached when the following condition is satisfied:

log(1 + λBR
irk P

BS
ijk ) = log(1 + λBM

ijk PBS
ijk + λRM

rjmPRS
rjm).

That is

λBR
irk P

BS
ijk = λBM

ijk PBS
ijk + λRM

rjmPRS
rjm. (3)

Together with P ij
k,m = PBS

ijk + PRS
rjm, we obtain







PBS
ijk =

λRM
rjm

λBR
irk

+λRM
ijm

−λBM
ijk

P ij
k,m,

PRS
rjm =

λBR
irk−λBM

ijk

λBR
ijk

+λRM
rjm

−λBM
ijk

P ij
k,m.

(4)

In the direct-link mode, we can easily obtain PBS
ijk = P ij

k,m and

PRS
rjm = 0. Let λij

k,m be the equivalent channel gain given by

λij
k,m =

{

λBR
irkλRM

rjm

λBR
irk

+λRM
ijm

−λBM
ijk

, relaying mode,

λBM
ijk , direct-link mode.

(5)

Accordingly, we can unify the rate of the link from BS i to the

MS j by RS r forwarding over SP (k,m) as

Rij
k,m =

wk

2
log
(

1 + λij
k,mP ij

k,m

)

. (6)

We assume that each MS user i is associated with a utility

function Ui, which is a function of the total rate Ri, which is

given by

Ri =

N
∑

j=1

K
∑

k,m=1

Rij
k,m

A utility function can reflect the satisfaction with resource

allocation. Different shapes of utility functions can lead to dif-

ferent types of fairness among users [21]. Take the following

utility function, parameterized by α > 0, as an example

Uα
i (R

i) =

{

(1 − α)−1(Ri)1−α, if α 6= 1;
logRi, otherwise.

(7)
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If α = 0, system throughput maximization is achieved; if α = 1,
proportional fairness among users is attained; aiming to maxi-

mize the total utility of the system can be formulated as follows:

OPT-1: max
P,T

M
∑

i=1

Ui(

N
∑

j=1

K
∑

k,m=1

Rij
k,m). (8)

Subject to

C1 : Pmin
k,m ≤ tk,mP ij

k,m ≤ Pmax
k,m ,

C2 : ρmin
j ≤

∑

m∈φ(j)

tk,m ≤ ρmax
j ,

C3 :

K
∑

k=1

tk,m = 1, ∀m, (9)

C4 :

K
∑

m=1

tk,m = 1, ∀k,

C5 : tk,m ∈ {0, 1}, Pk,m ≥ 0, ∀k,m,

where Pmin
k,m and Pmax

k,m are the lower bound and the upper

bound of each subcarrier power P ij
k,m respectively, and φ(j) de-

notes the set of subcarriers allocated to user j. P ∈ R
K×K
+

(with R+ denoting the set of nonnegative real numbers) and

T ∈ {0,1}K×K
are matrices with entries P ij

k,m and tk,m, re-

spectively. C1 specifies the individual power constraint, i.e.,

power consumption over the subcarrier pair (k,m) is bounded

by Pmin
k,m and Pmax

k,m in order to guarantee quality of service and

save energy. C2 is the subcarrier requirement constraint, i.e.,
the number of subcarriers allocated to user j is bounded, which

reflects the fairness of resource allocation and guarantees that

each user may have an opportunity to access some subcarriers.

C3 and C4 correspond to the pairing constraint that each subcar-

rier k in the first time slot only pairs with one subcarrier m in
the second time slot.

Next, we will solve optimization problem OPT-1, which is

divided into two subproblems. The one is the subcarrier pairing

and selection subproblem, i.e. for a given power allocation strat-

egy P = {Pij
k,m}, we need to solve the following optimization

problem:

OPT-2: max
T

M
∑

i=1

Ui(

N
∑

j=1

K
∑

k,m=1

Rij
k,m)

subject to C2-C5, which will be solved in Section III. Here, the

optimization variable is only tk,m.
The other is the power allocation problem, i.e., for a given

subcarrier pairing SP (k,m) and subcarrier selection strategy

T = {tk,m}, we need to solve the following optimization prob-

lem

OPT-3: max
P

M
∑

i=1

Ui(

N
∑

j=1

K
∑

k,m=1

Rij
k,m)

subject to C1, which will be solved in Section IV. Here, the

optimization variable is only P ij
k,m.

It can be observed that OPT-1 is a mixed integer program-

ming problem, which is generally unsolvable in polynomial

time. Moreover, the utility functions in (8) may be nonconcave
and nondifferentiable, the Lagrangian dual method may not be

appropriate. Therefore, to solve OPT-1, we have to decompose

the problem into two subproblems, OPT-2 and OPT-3, and fur-

ther solve the two subproblems in a separate manner. However,

the decomposition and separate optimization may cause perfor-
mance loss, which is because the subcarrier selection variable

tk,m and the power allocation variableP ij
k,m are coupled in OPT-

1 so that the optimal solution to OPT-1 requires the joint opti-

mization of the two variables tk,m and P ij
k,m. This means that

our proposed solution is suboptimal which sacrifices the perfor-
mance for reducing complexity. In fact, the solution obtained

by our method is asymptotically optimal and the gap between

the suboptimal solution and optimal one can be negligible as the

number of subcarriers becomes sufficiently large [24], [25].

III. SUBCARRIER PAIRING AND SELECTION

The subcarrier pairing and selection problem aims at select-

ing appropriate subcarriers for the relay and finding the best sub-

carrier pairing between the source and the relay by solving the

integer programming problem OPT-2, which is equivalent to de-
termining an optimal matrix T. In this section, we propose an al-

gorithm based on Hungarian method to deal with the subcarrier

pairing and selection problems jointly.

Subcarrier pairing and selection algorithms were studied

in [20] and [26], where the proposed solutions are based on
ordering the subcarrier gains: The best source-relay gain is

paired with the best relay-destination. However, those subcar-

rier pairing algorithms are optimal only when all the subcarriers

are available for relaying. In terms of subcarrier selection, a

straightforward algorithm was introduced in [20], where a par-
ticular pair is used for relaying if λBR

irk , λ
RM
rjm > λBM

ijk ; other-

wise, direct link mode is used to transmit data. However, the

straightforward algorithm is effective only for the total power

constrained system.

To overcome the above shortcomings, we present a unified al-
gorithm of subcarrier pairing and selection based on Hungarian

method. Since the channel gains under imperfect CSI are deter-

ministic, we can define the following matrices about subcarrier’s

channel power gains:

D(k,m) =

{

λBR
irkλRM

rjm

λBR
irk

+λRM
ijm

−λBM
ijk

, if (2) is satisfied;

λBM
ijk , otherwise,

(10)

F(k,m) =

{

1, if (2) is satisfied;

−1, otherwise.
(11)

We then have the following result on the integer programming
problem.

Theorem 2: The integer programming problem for subcar-

rier pairing and selection can be reduced to an assignment prob-

lem on the matrix D.

Proof: As aforementioned in Section II.A, each subcarrier
is only assigned to one node to transmit in a given time slot

and each subcarrier used by the source in the first time slot is

paired with another subcarrier used by the relay in the second

time slot to convey a packet. Fig. 2 depicts a simple subcarrier

pairing and selection system with 4 subcarriers. As shown in
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Source
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Destination

1 

2 

3

4

1 

2 

3

4

t1,3=1 

t3,2=1 

First time slot Second time slot

Fig. 2. Subcarrier pairing and selection system with 4 subcarriers.

Fig. 2, the source broadcasts data to the relay and destination

on all the subcarriers in the first time slot, and subcarriers 1 and

3 are selected for relaying in the second time slot. Especially,

subcarriers 1 in the first time slot is paired with subcarriers 3 in

the second time slot, thus we have t1,3 = 1. Similarly, we have
t3,2 = 1, which means that min

(

λBR
3 , λRM

2

)

> λBM
3 , i.e., the

inequality (2) is satisfied. Thus it is not difficult to observe that

the key of the subcarrier pairing and selection is how to pair

K subcarriers for relaying and assign the paired subcarriers to

J source nodes and N relay nodes by the known subcarriers’
channel power gains such that a subcarrier is only assigned to

one node for a given time slot, which is equivalent to finding

an optimal assignment on the matrix D so that the total channel

power gain or transmission rate is maximized. ✷

The above problem can be solved by applying the Hungarian

method [1] and the corresponding algorithm of subcarrier pair-

ing and selection is shown in Algorithm 1. It is worth noting
that since the Hungarian method was initially designed for find-

ing the minimum weight assignment, whereas finding the max-

imum is required in our subcarrier pairing and selection prob-

lem, we update the matrix D by replacing each D(k,m) with

max(D(k,m))−D(k,m). Beside matrix T determined by the
subcarrier pairing and selection algorithm, we can also obtain

which subcarriers are used for direct link mode by flag matrix

F. The time complexity of the Hungarian based subcarrier pair-

ing and selection algorithm is O(K3) for each source and relay.

The fairness of the subcarrier assignment policy is achieved by
removing the subcarrier with low channel power gain from the

available subcarrier set φ(n) when the number of subcarriers al-

located to a relay node n exceeds the upper bound ρmax
n .

IV. POWER ALLOCATION

Having considered subcarrier pairing and selection, in this

section, we focus on how to allocate appropriate power for a

given subcarrier pair by solving the optimization problem OPT-

3 under the individual power constraint C1. To this end, we

will propose a power allocation algorithm based on the IWD

method, called PA-MIWD algorithm. We will first briefly re-

view the IWD algorithm and then present our improved algo-

rithm PA-MIWD.

A. Overview of IWD Algorithm

The IWD algorithm is inspired by the movement of natural

water drops which flow in rivers, lakes and seas. In the original

Algorithm 1 Subcarrier Pairing and Selection

1: Initialize the channel power gains λBM
ijk , λBR

irk and λRM
rjm of

all the channels between the BS i and the RS j over all

subcarriers k,m = 1, · · ·,K; Initialize ρmin
j , ρmax

j and φ(j)
for each RS j;

2: for each source i and relay j do

3: //Subcarrier pairing

4: Construct the channel power gain matrix DK×K and flag

matrix FK×K by (10) and (11) respectively;

5: Compute the maximum channel power gain dmax =
max(D(k,m));

6: Let DK×K = [dmax]K×K −DK×K;

7: Find the minimum of each row in the matrix DK×K, and

subtract it from all the entries of this row. At least one

zero will appear on each row;
8: Find the minimum of each column in DK×K, and sub-

tract it from all the entries of this column. At least one

zero will appear on each column;

9: Draw lines through appropriate rows and columns with

the minimum number of such lines (horizontal or ver-
tical) so that all the zero entries of the reduced matrix

DK×K are covered;

10: Test for Optimality: (i) If the minimum number of cov-

ering lines is K , an optimal assignment of zeros is possi-

ble and the final solution is reached; (ii) If the minimum
number of covering lines is less than K , an optimal as-

signment of zeros is not yet possible. In that case, pro-

ceed to Step 11;

11: Determine the minimum element not covered by any line.

Subtract this element from each uncovered row, and then
add it to each covered column. Return to Step 3;

12: Obtain the matrix T from the matrix D using the flag ma-

trix F, i.e., T(k,m) = 1 if the (k,m)th term in the ma-

trix D is equal to zero and selected in the optimal assign-

ment of zeros; otherwise, T(k,m) = 0.
13: //Subcarrier selection

14: Build the set φ(j) of subcarriers by inserting the elements

with the value of "1" in the matrix T into the set;

15: while the number of subcarriers in φ(j) > ρmax
j do

16: Remove the subcarrier with low channel power gain
from φ(j) while setting the term with the correspond-

ing subcarrier pair as zero in the matrix T;

17: end while

18: Return the set φ(j) and the matrix T.

19: end for

IWD algorithm [9], an IWD is associated with two attributes,
namely, the amount of soil it carries and the velocity that it is

moving. The velocity of an IWD flowing over a path determines

the amount of soil that is removed from the path. Faster wa-

ter drops can gather and transfer more soil from the river beds.

Besides, the velocity of the IWDs is also affected by the path
condition. The amount of soil in a path has an impact on the

IWD’s soil collection and movement. A path with little amount

of soil increases the velocity of the IWD more than a path with

a considerable amount of soil, and the IWDs can attain a higher

speed and collect more soil from that path, while a path with
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Fig. 3. A directed graph of IWDs travelling for a user with S subcarriers.

more soil is the opposite.

In IWD algorithm, the movement of IWDs from a source to a

destination is performed in discrete finite steps. From its current

position to its next position, the IWD velocity is increased by

the amount nonlinearly proportional to the inverse of the soil
between the two positions. The soil increase is inversely and

nonlinearly proportional to the time needed for the IWDs to pass

the two locations. The time duration to travel from one location

to the second location is calculated by simple laws of physics

for linear motion, which is proportional to the velocity of the
IWD and inversely proportional to the distance between the two

positions. In the original IWD algorithm, the desirability of a

path is reflected by the amount of soil in the path. When an IWD

has to choose a path among several candidate paths, it would

prefer an easier path, i.e., a path with less soil. The IWDs select
a path based on a probabilistic function such that the probability

to choose the next path is inversely proportional to the soils of

the available paths.

B. PA-MIWD Algorithm

To facilitate the operation of the IWD method, we need to

build a directed graphG = (V,E) to represent the power alloca-

tion for the JS2PA problem, where V is the set of S×W nodes,
and E denotes the set of 2× (S ×W ) directed edges, which re-

sembles the rivers in the IWD algorithm. Here, S is the number

of the selected subcarriers for user n, i.e., S = |φ(n)| and W de-

notes the precision that is employed to divide the allowed range

for each subcarrier power P ij
k,m. Assume that the range of the

search space for P ij
k,m is between the low bound Pmin

k,m and the

upper bound Pmax
k,m , with Pmin

k,m > 0 and Pmax
k,m < Pmax

ij . Fig. 3

shows a directed disjunctive graph of IWDs travelling for a user

with S subcarriers, where the nodes s and t are fictitious nodes

denoting the starting and ending positions of each IWD, respec-

tively. A directed edge eu,v(P ) connecting node u to node v is

devoted to the bit with a subcarrier power P ij
k,m, which can be

0 or 1. As a result, there will be two directed edges connect-

ing u to v. In each iteration, each IWD starts from node s and
visits every node in the disjunctive graph until it reaches node t.
There will be at least one IWD to find the optimal power on a

subcarrier. The number of IWDs is determined by the user. The

solutions to power allocation are represented by the edges the

IWDs have visited. Then every W consecutively visited nodes
in the graph represent a binary string with W bits, i.e., a solution

for the power value on a subcarrier.

We let Itermax be the maximum number of iterations, and

NIWD be the number of IWDs. In the PA-MIWD algorithm,

the initial soil amount of each edge is a random number and

the initial velocity of each IWD is also randomly chosen, which
aims at providing the PA-MIWD algorithm with a diverse initial

solution space. The pseudo-code of the PA-MIWD algorithm is

given in Algorithm 2. As in Algorithm 2, the algorithm contains

Itermax iterations (Lines 3–15). For each iteration in the for

loop, NIWD IWDs travel from the first node to the last node in
graph G. The path of an IWD can produce a feasible solution

(a power allocation strategy). The soils on the edges the IWDs

pass, soils of the IWDs and velocities of the IWDs are updated

during the traveling of the IWDs (Lines 5–8). After each it-

eration, all the IWDs have constructed their solutions and then
each solution undergoes mutation based local search to improve

its fitness value (Line 10). Furthermore, we find the iteration-

best solution T IB from all the solutions (Line 11). Finally, the

global best solution T TB is updated (Lines 12–13).

Algorithm 2 PA-MIWD Algorithm

1: Initialize an IWDs group A; // A population of IWDs
2: Initialize static and dynamic parameters;
3: while k < Itermax do

4: for each IWDg ∈ A, for which a feasible solution has not been discov-
ered do

5: Select next edge (u, v) to visit according to a conditional probabil-
ity (12) for the IWDg;

6: Update the velocity velIWDg of the IWDg by (15);
7: Calculate the amount of soil, ∆soil(u, v), that the IWDg removes

from edge (u, v) by (19);
8: Update the soil of the edge the IWDg traversed, soil(u, v), by (20)

and the soil contained in the IWDg, soilIWDg , by (21);
9: end for

10: Execute mutation based local search to improve the fitness value of all
discovered feasible solutions;

11: Find the iteration-best solution T IB from all the solutions T IWD found
by the IWDs by (22);

12: Update the soils on the path associated with the best iteration solution
T IB by (23);

13: Update the total best solution TTB by the current iteration-best solution
T IB by (24);

14: k ++;
15: end while

We now discuss the main components of the PA-MIWD algo-

rithm in more details.

B.1 Initializing Static and Dynamic Parameters

Static parameters are those that remain constant during the
lifetime of the IWD algorithm, such as the maximum number of

iterations Itermax, the number of water drops NIWD , the initial

soil amount of each edge, the initial velocity of each IWD, the

quality of the total-best solution T TB , the velocity updating pa-

rameters av, bv, and cv, the soil updating parameters as, bs, and
cs, the local soil updating parameter ρL, the global soil updating

parameter ρIWDg
, the upper bound ∆soilmax and lower bound

∆soilmin of soil change of each edge, etc.

Dynamic parameters are those parameters that are re-

initialized after each iteration of the IWD algorithm, such as the
visited node list vc(IWD) of each IWD, the velocity and soil

of each IWD, etc.

B.2 Choosing the Next Edge to Visit

An important function that each IWD must perform is to se-

lect its next node which does not violate any constraint of the

power allocation problem and is not in the visited node list
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vc(IWD) of an IWD. An IWD prefers a path that contains less
amount of soil and this preference is implemented by assigning

a probability to each edge from the current node to its next node.

Thus an IWD goes from one node to another node through one

of edges (either 0 or 1-edge) depending on the probability which

in turn is determined by the amount of soil on both edges. If the
gth IWD, IWDg , moves from node u to its next node v via the

edge eu,v(P ) (either 0 or 1-edge), the probability to go through

the edge, eu,v(P ), is given by

pIWDg

u,v (P ) =
f(soil(eu,v(P ))) · (1/cu,v(P ))

∑

l=0,1,v′ /∈vc(IWD) f(soil(eu,v′(l)))
, (12)

where soil(eu,v(P )) denotes the amount of the soil on edge

eu,v(P ) and f(soil(eu,v(P ))) computes the inverse of the soil

on edge eu,v(P ), i.e.,

f(soil(eu,v(P ))) =
1

εs + g(soil(eu,v(P )))
. (13)

The constant parameter εs is a small positive number to avoid

the possible division by zero in function f(·). g(soil(eu,v(P )))
is used to shift the soil(eu,v(P )) on edge eu,v(P ) toward posi-

tive values and is calculated by

g(soil(eu,v(P ))) =

{

soil(eu,v(P )), if φ ≥ 0;
soil(eu,v(P ))− φ, else,

(14)

where φ = min
l=0,1,v′ /∈vc(IWD)

(soil(eu,v′(l))). It is worth noting

that the original IWD algorithm computes this probability based

on the soil on edges. In the PA-MIWD algorithm, to increase the

convergence speed of the IWDs, namely, the speed of finding a

best path, the probability is computed based on the soil of edges
and the processing cost cu,v(P ) of the candidate edge eu,v(P ).
By repeatedly applying the above rule, each IWD builds its own

path.

B.3 Updating the Velocity of the IWD

For the gth IWD in node u moving to the next node v via edge

eu,v(P ), its velocity at time t is updated by

velIWDg (t+ 1) = velIWDg (t) +
av

bv + cv · soil2(eu,v(P ))
,

(15)

where av, bv, and cv are the velocity updating parameters to

ensure that the value of the velocity is increased in the same

scale of magnitude as the original velocity. According to the

velocity updating in (15), the velocity of the IWD increases be-
cause soil2(eu,v(P )) ≥ 0. The more the amount of the soil

soil(eu,v(P )) is, the less the updated velocity velIWDg(t + 1)
will be. If the value of the velocity increased is too large, the

IWDs may be trapped in the local optima; if the value of the

velocity increased is too small, the IWDs may need more time
to obtain an allocation assignment. Besides, bv also guarantees

that the equation is not divided by 0.

B.4 Calculating the Removed Soil from the Edge

We need to introduce a local heuristic function HUDPA to

measure the undesirability of the gth IWD to move from node u

to node v via edge eu,v(P ) , which determines the local search
ability. In our power allocation problem, we define the local

heuristic function as the function of the utility in (7) and the

power consumption, i.e.,

HUDPA(eu,v(Pv)) =
Pv

Uv(R)
(16)

where Uu(Pv) is the profit (utility) as defined in (7), when the

gth IWD moves to node v via edge eu,v(P ), and Pv denotes

the power value obtained by IWD moving to node v. It is clear

that for high utility, the undesirability measured by the heuris-

tic function HUDPA becomes small whereas for low utility, it
becomes large. On the contrary, high power consumption will

lead to high undesirability. It is reminded that powers with high

levels of undesirability are chosen fewer times than powers with

low levels of undesirability.

The time taken for the gth IWD with velocity velIWDg(t+1)
to move from the current node u to its next node v via edge

eu,v(P ), denoted by time(u, v; velIWDg), is proportional to the

heuristic function HUDPA, i.e.,

time(u, v; velIWDg) =
HUDPA(eu,v(P )

velIWDg
(17)

such that

velIWDg = velIWDg (t+1)+

{

ε, if
∣

∣velIWDg (t+ 1)
∣

∣ < ε;
0, otherwise.

(18)
We can observe that for the JS2PA problem, the amount of the

soil that the gth IWD with velocity velIWDg removes from its

current path from node u to its next node v via edge eu,v(P ),
namely, ∆soil(eu,v(P )), is calculated by

∆soil(eu,v(P )) =
as

bs + cs · time(u, v; velIWDg)
, (19)

where as, bs, and cs are constant soil updating parameters to

ensure the soil is increased in the same scale of magnitude as the

original soil. Similar to the effect of the value of the velocity on

IWDs, too much increase of the value of soil will cause IWDs to

get trapped in the local optima, in contrast, the IWDs need more
time to obtain an optimal allocation.

B.5 Updating the Soil of the Link the IWD Traverses and the

Soil It Carries

The soil update model is one of the most important compo-

nents of an IWD algorithm. To make full use of the guiding

information and control, and the convergence rate of finding a

path, compared to the soil-updating model in the previous IWD
algorithm, we propose a bounded soil-update model by applying

a lower and upper bound to the soil update process.

Let ∆soilmax and ∆soilmin be the upper bound and lower

bound of soil changes respectively when the IWDs pass through

any link. The lower bound (a small positive constant) prevents
the algorithm from slow convergence, while the upper bound

prevents the algorithm from getting to the local optima too

quickly. Now, after the gth IWD moves from node u to node

v via edge eu,v(P ), the amount of soil on the edge can be re-

duced by
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soil(eu,v(P ))=































(1− ρL)soil(eu,v(P ))− ρL∆soilmin,
if ∆soil(eu,v(P )) < ∆soilmin;

(1− ρL)soil(eu,v(P ))− ρL∆soilmax,
if ∆soil(u, v) > ∆soilmax;

(1− ρL)soil(eu,v(P ))− ρL∆soil(eu,v(P )),
otherwise,

(20)

where ρL is the local soil update parameter.

The gth IWD that have moved from node u to node v, in-

creases the soil soilIWDg it carries by

soilIWDg =























soilIWDg +∆soilmin,
if ∆soil(u, v) < ∆soilmin;

soilIWDg +∆soilmax,
if ∆soil(u, v) > ∆soilmax;

soilIWDg +∆soil(u, v), otherwise.

(21)

Therefore, the movement of an IWD between two nodes re-
duces the soil on the path between the two nodes and increases

the soil of the moving IWD.

B.6 Executing Mutation-Based Local Search

After all the IWDs discover their feasible solutions, these so-

lutions need to undergo the mutation-based local searches. In
this process, an edge eu,v(P ) is randomly selected from the

edges of a solution and is replaced by another edge connecting

node u to node v if this edge replacement improves the fitness

of the solution, namely, the utility. Otherwise, the previous so-

lution remains the same. This process has to be done for several
times for each solution. After completing the mutation-based

local search, a solution (i.e., values of powers allocated for the

selected subcarriers) can be obtained by the following steps.
• Convert every W bits into a decimal number using the binary

coding (gray coding may be better). Let y denote the decimal

number.

• Calculate the power of the kth subcarrier, Pk, by

Pk = Pmin
k +

(

Pmax
k − Pmin

k

)

∗ y

2W − 1

• For all the S selected subcarriers, S power values are calcu-

lated to form the power vectorP = (P1, P2, · · ·, Pk, · · ·, PS)
T .

B.7 Finding the Iteration-Best Solution T IB

For the power allocation problem, a quality function is needed

to measure the fitness of solutions. In this paper, we choose

the utility function U(·) as the quality function, and the qual-
ity of a solution T IWDg founded by the gth IWD is given by

U(T IWDg ). As we know, once an iteration of the PA-MIWD al-

gorithm is completed, all the IWDs have constructed their solu-

tions, T IWD. Then the best solution T IB of the iteration found

by the IWDs is obtained by

T IB = arg max
∀T IWDg

U(T IWDg). (22)

Therefore, the iteration-best solution T IB is the solution that

has the highest utility over all the solutions T IWD found by the

IWDs.

B.8 Updating the Soil on the Paths with the Iteration-Best So-
lution T IB

After identifying the iteration-best solution T IB from all
the solutions T IWD found by the IWDs, the amount of soil,
soil(eu,v(P )), on edge eu,v(P ) with the iteration-best solution

T IB is updated by

soil(eu,v(P )) = (1+ρIWDg
)soil(eu,v(P ))−ρIWDg

1

W − 1
soil

IWDg

IB
,

(23)

where ρIWDg
is the global soil updating parameter which is

chosen from [0, 1], and soil
IWDg

IB represents the soil of the

iteration-best IWD. The iteration-best IWD is the IWD that has
constructed the iteration-best solution T IB in the current itera-

tion. The first term on the right-hand side of (23) is the amount

of soil that remains from the previous iteration. Meanwhile, the

second term of the right-hand side of (23) represents the quality

of the current solution obtained by the IWD. This way of updat-
ing soil assists the reinforcement of the best-iteration solutions

gradually, and thus, the IWDs are guided to search near good

solutions with the expectation of finding the global optimum.

B.9 Updating the Global Best Solution

At the end of each iteration of the algorithm, the total best

solution T TB is updated by the current iteration-best solution

T IB as follows

T TB =

{

T TB, if U(T TB) > U(T IB);
T IB, otherwise.

(24)

By doing this, it is guaranteed that T TB holds the best solution

obtained so far by the PA-MIWD algorithm.

C. Convergence Properties of PA-MIWD Algorithm

In this subsection, we show that the PA-MIWD algorithm is

able to find the optimal solution at least once during its lifetime

if the number of iterations, Z , is sufficiently large. In the fol-

lowing, we study the convergence property of the PA-MIWD
algorithm.

It is known that any solution of the PA-MIWD algorithm is

composed of a number of nodes selected by an IWD in an it-
eration of the algorithm. As a result, as long as the probability

of selecting any node in graph G of the power allocation prob-

lem is great than zero, the chance for any feasible solution to be

found by an IWD from all solutions of the problem is nonzero

in an iteration of the algorithm and it is guaranteed that the op-
timal solution can be found. Because once an IWD finds an

optimal solution, that solution becomes the iteration-best solu-

tion in the algorithm and thus the total-best solution is updated

to the newly found optimal solution by (24). As a result, the
convergence for the PA-MIWD algorithm can be proven if the

probability of choosing any node in graph G in a solution is

nonzero.

In the soil updating of the algorithm, two extreme cases are

considered:

Case 1: Only those terms of the PA-MIWD algorithm, which

increase soil to an edge of graph G, are considered.

Case 2: Only those terms of the PA-MIWD algorithm, which

decrease soil to an edge of graph G are considered.
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For each case, the worst-case is followed. Let k denote the
number of iterations that the algorithm has been repeated so far.

For Case 1, the largest possible value of soil that an edge can

hold after k iterations, soil(edgemax), is [11]

soil(edgemax) =
(

(1− ρL)(1 + ρIWDg
)
)k

S0, (25)

where edgemax denotes the edge with the largest possible value
of soil, S0 is the initial soil of edge edgemax and ρL is used

in (20) and ρIWDg
is used in (23).

For Case 2, the lowest possible value of soil for an edge is

computed. That edge is denoted by edgemin. Then, after k iter-

ations, the soil of edgemin is [27]

soil(edgemin) = k(ρIWDg
− ρLNIWD)

as
bs

, (26)

where soil updating parameters as and bs are defined in (19).

Based on (25) and (26), the following lemma holds.
Lemma 1: The soil of any edge in graph G of the power al-

location problem after k iterations of the PA-MIWD algorithm

remains in the interval [soil(edgemin), soil(edgemax)].
Consider the algorithm is at the stage of choosing next

node v for an IWD in node u. The value g(soil(eu,v(P )))
of edge eu,v(P ) is calculated by (14), which positively shifts

soil(eu,v(P )) by the amount of the lowest negative soil value of

any edge, min
l=0,1,j′ /∈vc(IWD)

(soil(eu,v′(l))), as explained earlier.

To consider the worst case, we let the lowest negative value be

soil(edgemin) and the soil(eu,v(P )) be equal to soil(edgemax).
As a result, we have

g(soil(eu,v(P ))) = soil(edgemax)− soil(edgemin) (27)

with the assumption that soil(edgemin) is negative, which is the

worst case.

Furthermore, f(soil(eu,v(P ))) needs to be computed by (13),

which yields:

f(soil(eu,v(P ))) =
1

εs + (soil(edgemax)− soil(edgemin))
.

(28)

Then the denominator of formula (12) has its largest possi-

ble value when it is assumed that each soil(eu,v′(l)) in (12) is

zero. Consequently, the probability, p
IWDg
u,v (k), of the IWDg

going from node u to node v via edge eu,v(P ) will be larger

than plowest such that

pIWDg

u,v (k) > plowest, (29)

where plowest =
εs·(1/cu,v(k))

(Nc−1)(εs+(soil(edgemax)−soil(edgemin)))
> 0

and Nc = S ∗W .

The probability of finding any feasible solution by an IWD in

iteration k is (plowest)
(Nc−1)

. Since there are NIWD IWDs, the

probability that p(s, k) finds any feasible solution s by the IWD
in iteration k is

p(s, k) = NIWD (plowest)
(Nc−1)

. (30)

The probability of finding any feasible solution s at the end of

Z iterations of the PA-MIWD algorithm is

Prob(s, Z) = 1−

Z
∏

k=1

(1− p(s, k)) . (31)

Since 0 < p(s, k) ≤ 1, by making Z sufficiently large, it is
concluded that

lim
Z→∞

Z
∏

k=1

(1− p(s, k)) = 0. (32)

Therefore, we have limZ→∞ Prob(s, Z) = 1. This fact indi-

cates that any solution s of the power allocation problem can be

found at least once by at least one IWD of the algorithm if the
number of iterations of the algorithm, Z , is sufficiently large.

From the above analysis, we can conclude the following theo-

rem.

Theorem 3: Let Prob(s, Z) represent the probability of

finding any feasible solution s within Z iterations of the PA-
MIWD algorithm. As Z gets larger, Prob(s, Z) approaches to

one, i.e.,

lim
Z→∞

Prob(s, Z) = 1

Based on the fact that the optimal solution s∗ is a feasible

solution of the power allocation problem, from the above result,

the following theorem holds.

Theorem 4: The PA-MIWD algorithm finds the optimal so-
lution s∗ of the power allocation problem with probability one

if the number of iterations Z is sufficiently large.

It is worth noting that the required number of iterations Z to

find the optimal solution S∗ should be decreased by carefully

adjusting parameters of the PA-MIWD algorithm for the power
allocation problem. Finally, it is not difficult to deduce that the

time complexity of the PA-MIWD algorithm is O(NIWD ∗K ∗
W ∗M)).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

algorithms by conducting simulations on the ns-2 simulator.

We assume that the MS users are randomly distributed in the
cell with 0.5 km radius. There are a total of 20 MS users, 4 RS

nodes, 3 BS nodes and 64 subcarriers over 3.2 MHz band. The

bandwidth of every subcarrier is 50 kb/s within the coherence

bandwidth. The channel coefficients for the subcarriers and for
different links, hBM , hBR and hRM , are generated from inde-

pendent and identically distributed (i.i.d.) Rician fading chan-

nel with K-factor = 1. And the variance AWGN is assumed to

be 1, i.e., σ2
BM,ijk , σ2

BR,irk and σ2
RM,ijm equal 1. We let the

lower bound Pmin
k,m and the upper bound Pmax

k,m of each subcar-

rier power P ij
k,m be 0.5 mW and 5 mW respectively, and weight

wk = 2. Furthermore, unless otherwise specified, the minimum

subcarrier requirement ρmin
j is set to 1 as well as the maximum

subcarrier requirement ρmax
j is set to 6 for each node n. The pa-

rameters used by the PA-MIWD algorithm are listed in Table 2.

The initial soil amount of each edge and the initial velocity of
each IWD are random numbers uniformly distributed in [1, 10].
Without loss of generality, we let W = 32.

A. Convergence and Total Utility Comparison

In this subsection, we study the convergence property of the

PA-MIWD algorithm proposed in Section IV and compare the

total utility among JS2PA, ESPA [18], and JOSPA [8]. The ef-

ficient subcarrier, power and rate allocation (ESPA) algorithm
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Table 2. Parameters for PA-MIWD algorithm.

Parameter Value Parameter Value Parameter Value

NIWD 20 Itermax 100 ∆soilmin 10

av 1 bv 0.01 cv 1
as 1 bs 0.01 cs 1

εs 0.01 ε 0.001 U(T TB) -∞
∆soilmax 100 ρL 0.9 ρIWDg

0.9

0 20 80 100
1.15

1.2

1.25

1.3

1.35

1.4
x 10

4

40 60 

Number of iterations

T
o

ta
l
u

ti
lit

y

PA−MIWD

Original IWD

Fig. 4. Convergence comparison between PA-MIWD algorithm and the original
IWD algorithm.

with fairness consideration for OFDMA uplink in [18] aims

to maximize the sum rate under individual rate and transmit

power constraints, where the complexity of the proposed sub-

carrier allocation algorithm is O(K ∗ M) and the complexity
of power allocation algorithm is the same as that of water fill-

ing power allocation algorithm. The joint optimal subcarrier and

power allocation (JOSPA) scheme in [8] aims to achieve sub-

carrier assignment and power control for each relay node and to

minimize a cost function of average relay power for multiuser
wireless OFDM cooperative networks, where the convexity is

O(K ∗N ∗M). However, both ESPA, and JOSPA did not con-

sider subcarrier pairing, which is the main reason that ESPA and

JOSPA have lower complexity than our JS2PA.

We first verify the convergence of the proposed PA-MIWD
algorithm compared with that of the original IWD algorithm.

Fig. 4 shows the convergence of the network utility versus iter-

ations by using the PA-MIWD algorithm and the original IWD

algorithm for 25 trails. It is observed from Fig. 4 that the PA-

MIWD algorithm takes 25 iterations for convergence whereas
the original IWD approach takes almost 50 iterations and the

PA-MIWD algorithm provides more network utility. The under-

lying reason for such superiority of the PA-MIWD algorithm is

that the probability that an IWD chooses next node to visit not

only depends on the amount of soil on the edges but also the
processing cost of the candidate edges.

Fig. 5 plots the convergence and the total utilities achieved by

JS2PA, ESPA and JOSPA when the number of subcarriers is 5.

We can observe that both JS2PA and JOSPA have better conver-

gence, whereas ESPA fluctuates heavily. In the meanwhile, the
proposed JS2PA algorithm can obtain higher total network util-

ity compared with other two algorithms. The underlying reason

is that instead of only considering subcarrier allocation, we take

into account of the joint subcarrier pairing and selection aiming

at maximizing the overall channel power gains and the network
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Fig. 5. Convergence and total utility comparison among JS2PA, ESPA, and
JOSPA, when the number of subcarriers is 5.

utility. Moreover, we apply the proposed PA-MIWD algorithm

to achieve the optimal power allocation for each selected sub-

carrier. However, JOSPA [8] solves the nonconvex subcarrier

and power allocation problem by relaxing the discrete subcar-

rier allocation policy T ∈ {0, 1}K×K to a continuous real num-
ber T ∈ [0, 1]K×K and adopts the “winner-takes-all” policy in

subcarrier allocation instead of considering the fairness of sub-

carrier allocation. Although ESPA [18] considers the fairness

of subcarrier allocation, it does not employ the joint subcarrier

pairing and selection.
Fig. 6 plots the comparison of the proposed solution and the

optimal one to OPT-3. In the computation of the optimal solu-

tion, we first give the optimal subcarrier pairing and selection

for 64 subcarriers by Algorithm 1 in section III. We then adopt

the brute force search method to find the optimal transmission
power from the lower bound Pmin

k,m = 0.5 mW and the upper

bound Pmax
k,m = 5 mW of each subcarrier power P ij

k,m, where

the stepsize of searching is 1.0 ∗ 10−5, such that the objection

function in OPT-3 reaches maximum. Clearly, the computation

cost is very high. We can observe from Fig. 6(a) that the maxi-
mum relative error between them is 0.21% when the number of

iterations is 100 and the obtained total utility by the proposed

PA-MIWD algorithm is gradually close to the optimal solution

to OPT-3 as the number of iterations increases. Both are equal

when the number of iterations reaches about 350, which ver-
ifies the correctness of Theorem 4. Another observation from

Fig. 6(a) is that the maximum relative error between the pro-

posed solution by the JS2PA algorithm and the optimal one to

OPT-3 is 10.1% when the number of subcarriers is 4 and the

difference between both gradually decreases as the number of
subcarriers increases. Both are equal when the number of sub-

carriers reaches 12. The latter shows that the proposed solution

gradually approaches to the optimal solution as the number of

subcarriers become large.

B. Effect of Relay Location on System Performance

To exploit the effect of relay location on system performance,

we assume that the relay RS locates on a line between the source

BS and the destination MS, and the BS-MS distance is one unit.

Denote d (0 < d < 1) as BS-RS distance. Thus, the RS-MS

distance is 1− d. It is clear that the larger d is, the closer the re-
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lay is to the destination. The resulting utility for scenarios where

subcarrier pairing and selection are activated and inactivated are

shown in Fig. 7. Analyzing the results in Fig. 7, we observe that

any scenario without considering subcarrier selection has lower
total utility for all positions of the relay, which means that sub-

carrier selection has an evident effect on network utility. In the

meanwhile, we find also from Fig. 7 that as the BS-RS distance d
increases, the total utility becomes larger and reaches maximum

at about d = 0.45, then decreases gradually. These results show
that subcarrier pairing is more effective than subcarrier selection

when the relay is closer to the source, and subcarrier selection

becomes dominant when the relay goes towards the destination.

This is because that when the relay is close to the source, both

BS-RS channel and RS-MS channel are better than the BS-MS
channel and most of subcarriers are used for relaying regardless

subcarrier selection is activated or not.

C. Effect of Subcarrier Requirement on Resource Allocation

This subsection will verify the effect of the subcarrier require-

ment constraints on resource allocation.

Fig. 8 compares the total utilities and the number of starved
users and starved subcarriers of JS2PA, ESPA, and JOSPA as

the minimum and maximum numbers of subcarriers, ρmin
n and

ρmax
n . From Fig. 8(a)–(c), we can see that with the increase of

the minimum number of subcarriers, the total utility of all three

algorithms decreases. This is because as the minimum num-
ber of subcarriers increases, the users with poor channel condi-

tions will have less opportunity to be allocated subcarriers and

be paired with other users, which leads to the reduction of utility.

However, compared to other two algorithms, JS2PA has higher

utility. In the meanwhile, we can also observe that as the min-

imum number of subcarriers increases, the number of starved
users and starved subcarriers will increase at the same time.

Fig. 8(d)–(f) show that as the maximum number of subcarri-

ers increases, JS2PA still has higher utility than other two algo-

rithms and the number of starved subcarriers will decrease while

the number of starved users varies slightly. The reason is that the
users with a good communicating environment will be allocated

more subcarriers, and the users with a poor communicating en-

vironment have already own a minimum number of subcarriers,

and may always fail to obtain its subcarriers in future.

D. Effect of Power Allocation on Total Utility

In this subsection, we study the performance of the proposed

PA-MIWD algorithm for the JS2PA problem with individual
power constraints compared to other two algorithms, ESPA and

JOSPA. Fig. 9 illustrates the total utility versus the number of

subcarriers for the selective DF relaying mode. We consider the

cases that subcarrier number N is set to an integer from 4 to 16.
We can observe from Fig. 9 that the total utility increases

with the number of subcarriers for all three algorithm, however,

JS2PA always outperforms other two algorithms without subcar-

rier pairing. This is because more subcarriers can provide the

PA-MIWD algorithm with more frequency diversity and more
flexibility in pairing. Moreover, we introduce the utility (ben-

efit) and average power requirement in the heuristic function

HUDPA (16) to measure the desirability of the gth IWD to

move from a node to its next node. We can also find from Fig. 9

that the larger the subcarrier number is, the bigger the perfor-
mance gap among JS2PA, ESPA, and JOSPA.

VI. CONCLUSIONS

In this paper, we have presented a JS2PA scheme for OFDMA

cooperative relay networks. We first formulate the JS2PA prob-

lem as an optimization problem of network utility maximization

under the constraints of transmission power, subcarrier require-

ment and pairing. Since the formulated maximization problem
is a mixed integer programming problem, the traditional dual

and subgradient method is not appropriate for solving this opti-

mization. To solve the optimization problem, furthermore, we

propose the subcarrier pairing and selection algorithm based on

Hungarian method and the power allocation algorithm based on
the IWD method, in which compared with the original IWD

algorithm in [9], we improve the probability of choosing next

visiting node, the desirability measure function for power al-

location and the soil update strategy to accelerate convergence

speed and avoid local optima. Simulations verify the conver-
gence of the proposed JS2PA scheme and the effect of relay lo-

cation, subcarrier requirement and power allocation on system

performance. Numerical results show that the proposed JS2PA

scheme outperforms other two existing algorithms in terms of

convergence and total utility.

APPENDICES

I. PROOF OF THEOREM 1

Similar to [28], we introduce a binary indicator ρk,m ∈ {0, 1}
that is 1 if SP (k,m) works in direct-link mode, and 0 if it works
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in relay mode. Furthermore, by (3), we have PBS
ijk = αijP

RS
rjm,

where αij =
λRM
rjm

λBR
irk

−λBM
ijk

. Hence the total amount of power P ij
k,m

allocated to subcarrier pair SP (k,m) will be given by P ij
k,m =

PBS
ijk +PRS

rjm = (1+αij)P
RS
rjm = PBS

ijk (1+αij)/αij . Then (1)

can be rewritten as

Rij
k,m =

wk

2
[ρk,m log

(

1 + λBM
ijk P ij

k,m

)

(33)

+(1− ρk,m) log(1 + λBR
irk P

ij
k,mαij/(1 + αij)].

where for the direct-link mode, P ij
k,m = PBS

ijk and PRS
rjm = 0,

while for the relay mode, P ij
k,m = PBS

ijk + PRS
rjm with PBS

ijk =

αijP
RS
rjm.

The solution of mode selection can be given by taking the

derivatives of Rij
k,m with respect to the indicators. We have

∂Rij
k,m

∂ρk,m
=

wk

2
log

(

1 + λBM
ijk P ij

k,m

1 + λBR
irk P

ij
k,mαij/(1 + αij)

)

,(34)

{

> 0, ρk,m = 1,
< 0, ρk,m = 0.

(35)

It is clear that when

λBM
ijk ≤ λBR

irk αij/(1 + αij), (36)

i.e.,
∂Rij

k,m

∂ρk,m
< 0, we have ρk,m = 0 and SP (k,m) should work

in relay mode.

It is not difficult to obtain from (1) that when one has λBM
ijk ≥

λBR
irk , due to the min operation, the rate obtained in direct-link

mode will always be higher than that in relay mode. In the fol-

lowing, we will show that if λBM
ijk ≤ λBR

irk , then the inequality

between λBM
ijk and λBR

irk αij/(1 + αij) is equivalent to the in-

equality between λBM
ijk and λRM

rjm. In fact, with the definition of

αij ,

αij

1 + αij
λBR
irk =

λBR
irk λ

RM
rjm

λBR
irk − λBM

ijk + λRM
rjm

.

Then by (36) we have

λBR
irk λ

RM
rjm

λBR
irk − λBM

ijk + λRM
rjm

≥ λBM
ijk .

Furthermore, we can obtain

λBR
irk (λ

RM
rjm − λBM

ijk ) ≥ λBM
ijk (λRM

rjm − λBM
ijk ).

Clearly, the above analysis shows that

λBM
ijk ≤ λBR

irk αij/(1 + αij) ⇐⇒ λBM
ijk ≤ λRM

rjk . (37)

This means that when λBM
ijk ≤ λBR

irk , the selection of working in

direct or relay mode may be based on either comparison in (37)

because they are equivalent. In short, to work in relay mode,

subcarrier pair SP (k,m) should fulfil the following two condi-
tions simultaneously: λBR

irk ≥ λBM
ijk and λRM

rjk ≥ λBM
ijk .
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