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Adaptive Cross-Layer Resource Optimization in
Heterogeneous Wireless Networks with

Multi-Homing User Equipments
Weihua Wu, Qinghai Yang, Bingbing Li, and Kyung Sup Kwak

Abstract: In this paper, we investigate the resource allocation prob-

lem in time-varying heterogeneous wireless networks (HetNet) with

multi-homing user equipments (UE). The stochastic optimization

model is employed to maximize the network utility, which is defined

as the difference between the HetNet’s throughput and the total en-

ergy consumption cost. In harmony with the hierarchical architec-

ture of HetNet, the problem of stochastic optimization of resource

allocation is decomposed into two subproblems by the Lyapunov

optimization theory, associated with the flow control in transport

layer and the power allocation in physical (PHY) layer, respec-

tively. For avoiding the signaling overhead, outdated dynamic in-

formation, and scalability issues, the distributed resource alloca-

tion method is developed for solving the two subproblems based on

the primal-dual decomposition theory. After that, the adaptive re-

source allocation algorithm is developed to accommodate the time-

varying wireless network only according to the current network

state information, i.e. the queue state information (QSI) at radio

access networks (RAN) and the channel state information (CSI) of

RANs-UE links. The tradeoff between network utility and delay is

derived, where the increase of delay is approximately linear in V
and the increase of network utility is at the speed of 1/V with a

control parameter V . Extensive simulations are presented to show

the effectiveness of our proposed scheme.

Index Terms: Cross-layer optimization, Lyapunov optimization

theory, multi-homing resource allocation.

I. INTRODUCTION

THE wireless industry is preparing for an astounding 1,000-

fold increase in media applications generated by smart-

phones, tablets and machine-type communication devices in the
next decades [1]. Supporting these media applications while

maximizing the wireless network’s resource (e.g., power, band-

width) utilization is a significantly challenging task [2], [3].

Multi-homing service [4], [5] has been recognized as a promis-

ing technology to meet the balance between stringent quality-
of-service (QoS) requirements for media transmission and ef-
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ficient resource utilization. Multi-homing transmission enables

user equipment (UE) to maintain multiple simultaneous network
paths between the media content server and the UE by employ-

ing different radio access networks (RAN) in the heterogeneous

wireless network (HetNet). Moreover, the media content server

can schedule the traffic and balance the congestion across mul-

tiple paths in order to increase the QoS of media applications
[6].

Despite the potential benefits of HetNet with multi-homing

services, many research challenges remain to be addressed for

the resource allocation, which plays an important role in tradi-

tional wireless networks [7]–[9]. Firstly, due to the fact that each

UE can get its service from multiple RANs, a deliberate flow
control scheme should be jointly designed with the physical re-

source allocation scheme to split the media traffic into multiple

flows on the corresponding RANs. Secondly, practical network

control decisions must be made under time varying channel con-
ditions and stochastic media traffic arrival rates [10], hence a

stochastic programming problem will be caused by these dy-

namics. Besides that, in traditional wireless networks [7]–[9], a

system-level monitor serves as the centralized optimizer, which

estimates the resource availability and environmental dynamics,
optimizes the resource allocation strategy. Although, such ap-

proaches can determine the global optimal resource allocation

strategy, it is often hard to collect the globally information on a

large-scale system and solve the problem in a centralized way

[11]. Accordingly, it makes much sense to design a distributed
resource allocation scheme in the HetNet. Based on the analysis

above, the mentioned factors present big challenges to solve the

resource allocation problem in HetNet with multi-homing UEs.

Motivated by above considerations, we shall investigate the

distributed resource allocation in time-varying HetNet with

multi-homing UEs. To this end, we employ the stochastic op-
timization model to maximize the network utility, which is de-

fined as the difference between the HetNet’s throughput and the

total energy consumption cost. In harmony with the hierarchi-

cal architecture of the HetNet, we decompose the problem of

stochastic optimization of resource allocation by the Lyapunov
optimization theory into two subproblems, which are associ-

ated with flow control in transport layer and power allocation

in physical (PHY) layer. For allocating the wireless resource

in HetNet, we solve the subproblems of flow control and power

allocation.

The main contributions of this paper are outlined as follows:

• For solving the two subproblems, we develop the distributed

resource allocation method based on the primal-dual decom-

position technique [12]. More specifically, the distributed re-
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source allocation method does not need the exchange of chan-
nel state information (CSI) and queue state information (QSI)

between different RANs.

• We design an adaptive cross-layer resource allocation algo-

rithm to accommodate the dynamic wireless networks solely

based on the current QSI and CSI but without requiring their
prior knowledge.

• The tradeoff between network utility and delay is derived,

where the increase of delay is approximately linear in V and

the increase of network utility is at the speed of 1/V with the

control parameter V .

The rest of the paper is organized as follows. Section II
presents the related works. The system model and problem for-

mulation are given in Section III. In Section IV, we give the

cross-layer control strategy. The tradeoff between network util-

ity and delay is analyzed in Section V. Section VI presents the

simulation results to evaluate the proposed scheme. The conclu-
sions are drawn in Section VII.

II. RELATED WORKS

There exists a large body of works conducted in resource al-

location for the HetNet. For example, a stackelberg game was
employed in [13] for the problems of resource allocation and in-

terference management in heterogeneous networks. A limited-

feedback two-phase resource allocation scheme was proposed

in [14] to maximize the weighted sum of instantaneous rates

of all users. The mobile associations and resource allocation
scheme in [15] optimized the quality of experience (QoE)-aware

energy efficiency and QoE-aware spectral efficiency in a Het-

Net. The proposed power control algorithm in [16] used the gra-

dient ascent method to control the transmit power of microcell

base stations for obtaining an upper bound of the maximum en-
ergy efficiency problem. A joint space-frequency resource al-

location scheme was developed in [17], [18] for minimizing

the total number of backlogged packets in each transmission

instant. However, these resource allocation designs [13]–[18]

cannot be directly used in the HetNet with multi-homing UEs,
where a deliberate flow control scheme should be designed to

split the media traffic into multiple flows on the correspond-

ing RANs. With multi-homing UEs, a traffic splitting strategy

was developed in [19] to guarantee a balance between energy

consumption and rate based on the application service require-
ments. An energy management sub-system was proposed in [20]

for UEs to support a sustainable multi-homing video transmis-

sion in a heterogeneous wireless access medium. The multi-

homing media transmission scheme in [21] minimized the video

distortion through congestion window adaption, flow rate al-
location and data retransmission. The tradeoff between energy

efficiency and spectral-efficiency was achieved in [22] by con-

trolling the traffic splitting probability of a multi-homing me-

dia transmission process. A low complexity distributed user as-

sociation algorithm is developed in [23] for fair user associa-
tion while considering the QoS-provision for users. However,

the aforementioned literatures are typically based on snapshot

models and neglect the fact that practical resource allocation

decisions must be made under time varying channel conditions

and stochastic media content arrival rates. Considering the time-

Fig. 1. System model of HetNet with multi-homing UEs.

varying network conditions, a dynamic optimization algorithm

was proposed in [24] for maximizing the average throughput

of each UE. The dynamic power allocation algorithm in [25]

achieved the maximum energy efficiency. Nevertheless, these
strategies are operated in a centralized manner, which cannot be

easily implemented in a HetNet without system-level monitor.

III. SYSTEM MODEL

In this section, we first introduce the model of HetNet with
multi-homing UEs. Next, we formulate the problem of resource

allocation.

A. Network Model

We consider a HetNet integrating multiple RANs and UEs,
as shown in Fig. 1. The RANs are connected to a flow con-

troller by the backhaul links. The UE is equipped with multi-

ple radio interfaces and multi-homing capable. As a result, the

UE can establish communication with multiple RANs simulta-

neously. The end-to-end connection can be constructed by bind-
ing a pair of IP addresses from the media content server and the

UE, respectively. For multi-homing transmission, a desired me-

dia content stream can be split into multiple flows by the flow

controller. Let N = {1, 2, 3, · · ·} denote the set of RANs and

M = {1, 2, 3, · · ·} denote the set of UEs. With the multi-homing
capability, each UE m (RAN n) can simultaneously connect to

the set of Nm RANs (Mn UEs) from the available RANs set N
(UEs set M ).

The HetNet is assumed to be operated in slotted time, with

time-slots normalized to integer values t ∈ {0, 1, 2, · · ·}. Let
gn,m(t) be the channel gain between RAN n ∈ N and UE m ∈
M at time-slot t. We assume that g(t) = [gn,m(t)]n∈N,m∈Mn

is independently and identically distributed (i.i.d.) over differ-

ent time-slots and that g(t) takes values in a finite state space

G. Let the stochastic process Am(t) denote the amount of data
arrival at the flow controller for UE m at timeslot t. We assume

that A(t) = [Am(t)]m∈M is i.i.d over different time-slots in a

finite state place Λ and that A(t) has the average arrival rate

λ = [λm]m∈M , i.e., E[Am(t)] = λm, ∀m ∈ M , where E[·] is

the expectation operator. In addition, we assume that both g(t)
and A(t) remain constant for the duration of a time-slot, but po-

tentially change between slots. In multi-homing networks, dif-

ferent RANs operate in different bandwidths (e.g., 2.4 GHz for

WiFi, 1.8–2.3 GHz for high speed packet access (HSPA)) [5].

Thus the inter-RANs interference does not exist in multi-homing



786 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 18, NO. 5, OCTOBER 2016

networks. Without loss of generality, and under the framework
of the Shannon formula, the theoretical transmission rate be-

tween RAN n ∈ N and UE m ∈ M can be approximately

represented as (unit: nats)

rn,m(t) = εnBn log2

(

1 + Γ
|gn,m(t)|2pn,m(t)

BnN0

)

, (1)

where pn,m(t) is the transmit power, εn is the network efficiency

depending on the decoder efficiency of RAN, Bn is the band-

width spacing in RAN n, Γ is the capacity gap from the Shan-

non channel capacity, and N0 is the power spectral density of

additive white Gaussian noise.
In the HetNet with multi-homing UEs, each media traffic is

split and dispatched by the flow controller onto multiple RANs,

the flow rate delivered through RAN n for UE m during time-

slot t is defined as γn,m(t). Then, we give the following con-

straint to ensure that the rate-aggregation of the flows should not
be higher than that of arrivals

∑

n∈Nm

γn,m(t) ≤ Am(t), ∀m ∈ M, ∀t > 0. (2)

We assume that RAN n provides an infinite buffer1 for backlog-
ging the media content data and that the backlog in the infinite

buffer at time-slot t is denoted by Qn,m(t). It should be noted

that only the traffic data currently in the buffer of RANs at the

beginning of time-slot t can be transmitted during that time-slot.

Hence, the slot-to-slot dynamics of the queue backlog Qn,m(t)
(∀t > 0, n ∈ N,m ∈ Mn) are formulated as

Qn,m(t+ 1) = max{Qn,m(t)−rn,m(t), 0}+γn,m(t). (3)

The first term in (3) corresponds to the departure process and the

second term corresponds to the arrival process. Due to the time-

varying g(t) and the stochastic A(t), both the departure and
arrival processes of the queues are stochastic, hence the queue

backlogs are varying over time. Therefore, it is imperative to

develop a general definition of queuing stability.

Definition 1: A queue is defined as strongly stable [26] if

lim
T→∞

1

T

T−1
∑

t=0

E[Qn,m(t)] < ∞. (4)

Therefore, if the queue has a bounded time average backlog,

we call it strongly stable. Then, a network is called strongly sta-

ble if all individual queues of the network are strongly stable. In

the following discussions, we will use the term “stable” to refer

to strongly stable.
Remark 1: Note that the average delay is proportional to the

time averaged queue length from Little’s Theorem [27]. Thus,

we can depict the average delay by the time averaged queue

length and further by network stability. Therefore, making the

network stability is an important prerequisite for the resource
allocation in HetNet.

B. Problem Formulation

1This assumption is based on the reality that the RAN always has large cache
space.

It is reported that RANs consume the highest proportion of
energy in HetNet [28]. It is noteworthy that more than 80% of

the input energy in a typical wireless network is dissipated as

heat. Generally, the useful output power is only around 5% to

20% of the input power [29]. Therefore, with respect to both fi-

nancial and environmental aspects, excessive energy consump-
tion has become a serious problem for the resource allocation in

HetNet. Motivated from [10], [30], in this paper, we consider an

energy-aware utility function for the HetNet, which is defined

as the difference between the weighted throughput of RANs and

the total energy consumption cost

U(t)= (5)
∑

n∈N

βn

∑

m∈Mn

wn,m log(γn,m(t)+e)− c
∑

n∈N

∑

m∈Mn

pn,m(t),

where c is the cost price of per unit power resource of all RANs,

βn is the income price of RAN n, ωn,m is a positive weight
for UE m to select RAN n. In (5), the first term is the total

amount income earned by RANs, the second term is the total

power consumption. This utility function not only presents the

income and cost of the RANs but also achieves energy efficient

wireless networks.
For maximizing the long-term utility of the whole network,

the resource allocation problem in the HetNet with multi-

homing UEs is formulated as

max U = lim
T→∞

1

T

T−1
∑

t=0

E[U(t)] (6)

s.t. lim
T→∞

1

T

T−1
∑

t=0

E[Qn,m(t)] < ∞, ∀n ∈ N,m ∈ Mn, (C1)

∑

n∈Nm

γn,m(t) ≤ Am(t), ∀m ∈ M, (C2)

∑

m∈Mn

pn,m(t) ≤ Pmax
n , ∀n ∈ N, (C3)

pn,m(t) ≥ 0, γn,m(t) ≥ 0, ∀n ∈ N,m ∈ Mn, (C4)

where (C1) is the network stability constraint for guaranteeing

a finite queue length for each queue, (C2) is the flow constraint

to ensure that the rate-aggregation of multiple flows received at

the UE cannot be more than that of arrivals, (C3) is the trans-
mit power constraint of each RAN and Pmax

n is the maximum

allowed transmit power of RAN n, (C4) shows the nonnegative

transmit power and flow rate.

Problem (6) can be viewed as a stochastic program. A so-

lution is the algorithm for choosing flow rate variable γ(t) =
[γn,m(t)]n∈N,m∈Mn

and transmit power variable p(t) =
[pn,m(t)]n∈N,m∈Mn

over time in reaction to the dynamic net-

work state, such that all of the constraints are satisfied and the

utility is maximized as large as possible. By jointly considering

flow control and power allocation, problem (6) involves multi-
ple layers in the protocol stack to optimize the utility and thus, it

is a typical approach of cross-layer design. In the following sec-

tion, we will develop practical dynamic flow control and power

allocation strategy, which pushes the average network utility to

the optimal solution of problem (6).
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IV. ALGORITHM DESIGN FOR HETNET RESOURCE
ALLOCATION

To solve optimization problem (6), we propose a dynamic
optimization method to decompose the problem into two sub-

problems, which are associated with a flow control subproblem

at the transport layer and a power allocation subproblem at the

PHY layer, respectively. By solving the two subproblems, the

adaptive resource allocation algorithm is developed to accom-
modate the dynamic wireless networks only according to the

current QSI and CSI, which makes the algorithm easily imple-

mented in practice.

A. Cross-Layer Control Scheme

The challenge behind optimization problem (6) is that we

should find a resource allocation decision for stabilizing the
queues while maximizing the network utility. Inspired by the re-

cently developed Lyapunov drift-plus-penalty method [31], we

solve the resource allocation problem starting from the analysis

of queues. By controlling the arrival and departure process of

the queues appropriately, the resource allocation decisions can
stabilize the queues, whilst maximizing the network utility.

Let Q(t) denote the matrix containing the transmission

queues {Qn,m(t)|∀n ∈ N,m ∈ Mn}. We define the quadratic

Lyapunov function as L(Q(t)) = Q(t)HQ(t)/2, where Q(t)H

is the conjugation-transpose of Q(t). The conditional expected
Lyapunov drift at time-slot t is defined by

∆(Q(t)) :, E[L(Q(t+ 1))|Q(t)]− E[L(Q(t))], (7)

where the expectation is taken over the randomness of departure

and arrival processes of the queues.
Following from the Lyapunov optimization framework, we

add the penalty term −V E[U(t)|Q(t)] to (7) for obtaining the

following drift-plus-penalty term

∆V (Q(t)) = ∆(Q(t))− V E[U(t)|Q(t)]. (8)

Here V > 0 is a control parameter and its practical understand-

ing will be given in Section V.

Then, we have the following lemma regarding the drift-plus-

penalty term.
Lemma 1: For any feasible resource allocation decision that

can be implemented at time-slot t, we have

∆V (Q(t)) ≤ B − V E[U(t)|Q(t)] (9)

+ E[(γ(t)−r(t))HQ(t)|Q(t)],

where r(t) denotes the matrix {rn,m(t)|∀n ∈ N,m ∈ Mn} and

B is an upper bound on the term [r(t)Hr(t) + γ(t)Hγ(t)]/2,

which holds under the fact that both the wireless transmission

rates and the flow rates satisfy the properties of boundness.
Proof: See Appendix A. ✷

Our dynamic resource allocation policy is designed to ob-

serve the current CSI g(t) and QSI Q(t), and as well to make

the resource allocation decisions γ(t) and p(t) for minimizing

the right-hand-side (RHS) of (9) at the current time. The non-
constant part of the RHS of (9) can be written as

V U(t)− γ(t)HQ(t) + r(t)HQ(t) (10)

=
∑

m∈M

∑

n∈Nm

βnwn,m log(γn,m(t)+e)−
∑

m∈M

∑

n∈Nm

Qn,m(t)γn,m(t)

+
∑

n∈N

∑

m∈Nm

Qn,m(t)rn,m(t)− V c
∑

n∈N

∑

m∈Nm

pn,m(t).

From (10), we observe that the second term is merely affected
by the flow rate γ(t) and the third term is only affected by the

transmit power p(t). Thus maximizing (10) can be decomposed

into two subproblems, both of which have a clear operational

meaning, and will be referred to as flow control subproblem and

power allocation subproblem. The handling of each subproblem
is described in the following subsections.

B. Flow Control

Considering the second term in (10) and the flow constraint

(C2), there is no coupling in the term
∑

m∈M , which shows that
flow control subproblems of different UEs are independent of

each other. Thus, the flow control subproblem corresponding to

UE m ∈ M is represented as

max V
∑

n∈Nm

βnwn,m log(γn,m(t) + e)−
∑

n∈Nm

Qn,m(t)γn,m(t)

s.t.
∑

n∈Nm

γn,m(t) ≤ Am(t), γn,m(t) ≥ 0. (11)

Flow control subproblem (11) has a strictly concave objective

function, and the flow rates are coupled by the linear constraint
∑

n∈Nm
γn,m(t) ≤ Am(t). Therefore, the flow control sub-

problem can be decomposed by the dual decomposition method

[12]. Relaxing the constraint by introducing Lagrangian mul-
tiplier µm(t) associated with

∑

n∈Nm
γn,m(t) ≤ Am(t), it

makes sense to form the Lagrangian as

L(γm(t);µm(t)) = (12)






V
∑

n∈Nm

βnwn,m log(γn,m(t) + e)−
∑

n∈Nm

Qn,m(t)γn,m(t)

−µm(t)(
∑

n∈Nm

γn,m(t)−Am(t))







,

where γm(t) = [γn,m(t)]n∈Nm
.

The dual function is given by

hm(µm(t)) = max
γn,m(t)≥0,∀n∈Nm

L(γ(t);µm(t)), (13)

and the dual problem of (11) is

min
µm(t)≥0

hm(µm(t)). (14)

The maximization problem of (13) can be written as

hm (µm(t)) =
∑

n∈Nm

max
γn,m(t)≥0,∀n∈Nm

(15)

{

V βnwn,m log(γn,m(t) + e)−Qn,m(t)γn,m(t)

−µm(t)γn,m(t) + µm(t)Am(t)
|Nm|

}

.

Thus, the optimal flow control for each RAN is obtained by solv-

ing

max
γn,m(t)≥0

{

V βnwn,m log(γn,m(t) + e)−Qn,m(t)γn,m(t)

−µm(t)γn,m(t) + µm(t)Am(t)
|Nm|

}

. (16)
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For a given µm(t), the flow rate γn,m(t) can be calculated for
each RAN by applying the Karush-Kuhn-Tucker (KKT) [32]

conditions on (16), which results in

γn,m(t) =

[

V βnwn,m

(Qn,m(t) + µm(t))
− e

]+

, (17)

where [x]+ = max{0, x}.

The optimal value of µm(t) is determined by solving the dual

problem of (14). A subgradient method can be used to calculate

the optimal value of µm(t), which is given by

µk+1
m (t) =

[

µk
m(t) + δ

(

∑

n∈Nm

γk
n,m(t)−Am(t)

)]+

, (18)

where δ is a positive scale stepsize and k is the iteration index.

If the step size δ is sufficiently small, the dual variable µk
m(t)

will converge to the dual optimal µ∗
m(t) as k → ∞ and, since

the duality gap for flow control subproblem (11) is zero and the

solution to (17) is unique, the primal variable γn,m(t) will also

converge to the primal optimal variable γ∗
n,m(t) [12], [33].

C. Power Allocation

Similar to the analysis of flow control subproblem, the power

allocation subproblems of different RANs are independent of

each other. Thus, the power allocation subproblem correspond-

ing to RAN n ∈ N is represented as

max











∑

m∈Mn

Qn,m(t)εnBn log2

(

1+Γ
|gn,m(t)|2pn,m(t)

BnN0

)

−cV
∑

m∈Mn

pn,m(t)











s.t.
∑

m∈Mn

pn,m(t) ≤ Pmax
n , pn,m(t) ≥ 0. (19)

Relaxing the constraint by introducing Lagrangian multiplier

νn(t) associated with
∑

m∈Mn
pn,m(t) ≤ Pmax

n at time-slot t,
it makes sense to form the Lagrangian as

L(pn(t); νn(t)) = (20)










∑

m∈Mn

Qn,m(t)εnBn log2

(

1+Γ
|gn,m(t)|2pn,m(t)

BnN0

)

−cV
∑

m∈Mn

pn,m(t)−νn(t)(
∑

m∈Mn

pn,m(t)−Pmax
n )











,

where pn(t) = [pn,m(t)]m∈Mn
.

The dual function is given by

h(νn(t)) = max
pn,m(t)≥0,∀m∈Mn

L(pn(t); νn(t)), (21)

and the dual problem of (19) is

min
νn(t)≥0

h(νn(t)). (22)

The maximization problem of (21) can be written as

h(νn(t))=
∑

m∈Mn

max
pn,m(t)≥0,∀m∈Mn

(23)







Qn,m(t)εnBn log2

(

1+Γ
|gn,m(t)|2pn,m(t)

BnN0

)

−cVpn,m(t)−νn(t)pn,m(t)+
νn(t)P

max

n

|Mn|
)







.

Fig. 2. Illustration of the control signaling in Algorithm 1.

Thus, the optimal power allocation for each UE is obtained by

solving

max
pn,m(t)≥0







Qn,m(t)εnBn log2

(

1+Γ
|gn,m(t)|2pn,m(t)

BnN0

)

−cV pn,m(t)−νn(t)pn,m(t)+
νn(t)P

max

n

|Mn|
)







. (24)

For a given νn(t), the transmit power pn,m(t) can be cal-

culated for each UE by applying the KKT conditions on (24),

which results in

pn,m(t) =

[

Qn,m(t)εnBn

(cV + νn(t)) ln 2
−

BnN0

Γ|gn,m(t)|2

]+

. (25)

The optimal value of νn(t) is determined by solving the dual

problem of (22). A subgradient method can be used to calculate

the optimal value of νn(t), which is given by

νk+1
n (t) =

[

νkn(t)− κ

(

∑

m∈Mn

pkn,m(t)− Pmax
n

)]+

, (26)

where κ is a positive scale stepsize. The convergence analysis of

the power allocation subproblem is the same as the flow control

subproblem.

Based on the analysis above, the adaptive cross-layer resource
allocation algorithm is given as Algorithm 1.

Our proposed ACRA algorithm has a distributed architecture,

as illustrated in Fig. 2. At the transport layer, the flow controller

updates the Lagrangian multiplier µ and sends it to the RANs for

calculating the flow rates. The RAN computes γ(t) using local
QSI information and sends it to the flow controller for updating

the Lagrangian multiplier µ. In this way, there is no need to

exchange QSI information between flow controller and RANs,

which will reduce the signaling overhead. At the PHY layer, the
signaling overhead includes the Lagrangian multiplier ν from

RANs to UEs, and the transmit power p returning from UEs to

RANs.

V. TRADEOFF PERFORMANCE BETWEEN NETWORK

UTILITY AND DELAY

In this section, we analyze the performance of ACRA algo-

rithm. That is how the performance of the average network util-

ity U will be and whether the network is stable under the pro-

posed algorithm. Similar performance analysis can be found in
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Algorithm 1 Adaptive cross-layer resource allocation (ACRA)

Step 1: At time-slot t, RANs observe Q(t), g(t) and run the

following steps.
Step 2: Flow control in transport layer

Initialization: µm(t) > 0, k = 1, j = 0.

while j = 0 do

for each RAN n ∈ Nm do

γk+1
n,m (t) =

[

V βnwn,m

(Qn,m(t)+µk
m(t))

− e
]+

;

end for

if ||γk+1
m (t)− γk

m(t)|| > ǫ then

Flow controller

µk+1
m (t)=

[

µk
m(t)+δ

(

∑

n∈Nm

γk
n,m(t)−Am(t)

)]+

;

k = k + 1;

else

j = 1;
end if

end while

Step 3: Power allocation in PHY layer

Initialization: k = 1, j = 0.

while j = 0 do

for each UE m ∈ Mn do

pk+1
n,m(t) =

[

Qn,m(t)εnBn

(cV+νk
n(t)) ln 2

− BnN0

Γ|gn,m(t)|2

]+

;

end for

if ||pk+1
n (t)− pk

n(t)|| > ǫ then

RAN n ∈ N

νk+1
n (t)=

[

νkn(t)−κ

(

∑

m∈Mn

pkn,m(t)−Pmax
n

)]+

;

k = k + 1;

else

j = 1;

end if

end while

Step 4: Update Qn,m(t) according to (3) based on γn,m(t)
and pn,m(t) obtained from Step 2 and Step 3.

[24], [25], [34], they show that the average network utility and

network stability are achieved by a certain i.i.d algorithm. How-

ever, the relationship between the i.i.d algorithm and their pro-
posed algorithms is unclear. In this paper, we proposed a novel

method for demonstrating the performance of the ACRA algo-

rithm, which can be widely used in other Lyapunov drift-plus-

penalty-based network optimization scenarios.

In the following analysis, some bound assumptions and con-

cepts are given first, followed by performance discussion.

Let s(t) = (A(t),g(t)) ∈ S and α(t) = (γ(t),p(t)) ∈
Ω denote the network state and resource allocation decision at
timeslot t, respectively, where S is the network sate space and

Ω is the set of feasible resource allocation decisions. Because

the transmit power p(t) satisfies the property of boundness, the

upper bound of E[r(t)(α(t), s(t))] can be depicted as:

E[r(t)(α(t), s(t))] ≤ δ, (27)

where δ is a finite constant.

Based on (5), it comes the bound

Umin ≤ E[U(α(t), s(t))] ≤ Umax, (28)

where Umin and Umax are some finite constants.

These assumptions are based on the fact that all physical
quantities are bounded from above and below in realistic sys-

tems and the assumptions will be useful for proving Theorem 1

in the following discussion.

Under the assumption that the network state space S is finite

state space, s(t) is a stationary process and that s(t) is i.i.d over
different timeslots, there exists a stationary policy that chooses

action α̃(t) independently every time-slot as a stationary and

possibly randomized function of the current state s(t) only (not

include the QSI Q(t)) for maximizing the current network util-

ity U(α̃(t), s(t)) under the constraints (C2)–(C4). Such policy
is called s-only policy. Because s(t) has the stationary distri-

bution for all time-slots, the expectation of the flow rates and

wireless link rates under s-only policy are the same for all time-

slots.

To further reveal how the ACRA algorithm performs, we
need the following lemmas, which will be used in proving

Theorem 1.

Lemma 2: Suppose that λ is strictly interior to the capacity

region Λ2, and that λ+ ς is still in Λ for a positive ς , there exists

an s-only policy that

E [r̃n,m(t)(α̃(t), s(t))] − E [γ̃n,m(t)(α̃(t), s(t))] ≥ ς, (29)

where r̃n,m(t) and γ̃n,m(t) are the resulting values underω-only

policy.
Proof: The proof is based on the definition of capacity re-

gion that there at least exists a resource allocation policy that

stabilizes the HetNet under the average traffic arrival rate λ. The

detailed proof can be found in [31]. ✷

Now define the flow control function Φ(α(t)) and the power
allocation function Ψ(α(t)) as follows:

Φ(α(t)) :,E

[

V
∑

n∈Nm
βnwn,m log(γn,m(t) + e)

−
∑

n∈Nm
Qn,m(t)γn,m(t)

]

,

Ψ(α(t)) :,E

[

∑

m∈Mn

Qn,m(t)rn,m(t)−cV
∑

m∈Mn

pn,m(t)

]

.

Lemma 3: The resource allocation decision α̂(t) obtained
by the ACRA algorithm has better performance in maximizing

Φ(α(t)) and Ψ(α(t)) than the s-only policy, i.e.,

Φ(α̂(t)) = E

[

V
∑

n∈Nm
βnwn,m log(γ̂n,m(t) + e)

−
∑

n∈Nm
Qn,m(t)γ̂n,m(t)

]

≥ E

[

V
∑

n∈Nm
βnwn,m log(γ̃n,m(t) + e)

−
∑

n∈Nm
Qn,m(t)γ̃n,m(t)

]

= Φ(α̃(t));

Ψ(α̂(t)) = E

[

∑

m∈Mn

Qn,m(t)r̂n,m(t)−cV
∑

m∈Mn

p̂n,m(t)

]

2The capacity region Λ is defined as all of the average traffic arrival rates λ

that can be stably supported by the HetNet, considering all possible resource
allocation policies. If the arrival rate λ is outside of the capacity region Λ, we
cannot find any resource allocation policies for stabilizing the HetNet.
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≥ E

[

∑

m∈Mn

Qn,m(t)r̃n,m(t)−cV
∑

m∈Mn

p̃n,m(t)

]

= Ψ(α̃(t));
Proof: The first inequality follows because the flow control

subproblem in (11) maximizes Φ(α(t)) over all valid flow con-

trol decisions, including the particular s-only policy α̃(t), and
the same reason is for the second inequality. ✷

Based on Lemma 2 and Lemma 3, we obtain that the ACRA

algorithm has the following performance.

Theorem 1: Suppose that λ + ς is strictly in the capacity
region Λ of the HetNet and E[L(Q(0))] < ∞, then for any

control parameter V > 0, the proposed ACRA algorithm has

the following properties:

(a) U has a lower bound that

U ≥ U
opt

−
B

V
. (30)

(b) The time averaged queue length is bounded by

lim
T→∞

1

T

T−1
∑

t=0

∑

n,m

E[Qn,m(t)] ≤
B + V (Umax − U

opt
)

ς
. (31)

where
∑

n,m is the abbreviation of
∑

n∈N

∑

m∈Mn
and U

opt
is

the optimal utility of problem (6).
Proof: The proof is given in Appendix B ✷

Due to the fact that the average transmission delay of the me-

dia content is proportional to the average queue length from

Little’s Theorem [27], we can depict the average delay by the

average queue length. From Theorem 1 (a), we observe that
the value of V can be chosen so that B/V is arbitrarily small,

resulting in that U is arbitrarily close to U
opt

. Moveover, the

increase of U is at the speed of 1/V with the control parameter

V . Meanwhile, the corresponding average delay (time average
queues) increases linearly in V . As a result, the tradeoff be-

tween transmission delay and U is derived that we can balance

the delay-U performance with the control parameter V .

VI. SIMULATION RESULTS

In this section, we present the simulation results to illus-

trate the performance of our proposed ACRA algorithm. Firstly,

we illustrate the dynamic processes of the resource alloca-
tion decisions under the ACRA algorithm. Secondly, we ver-

ify the tradeoff between the time averaged queue length and

the time averaged network utility by changing the control pa-

rameter V . Finally, we show the effectiveness of our proposed

ACRA algorithm compared with the other schemes. In partic-
ular, there is no “standard” commonly accepted resource allo-

cation scheme for the multi-homing service in HetNet. We then

compare the performance of the proposed ACRA algorithm to

the non multi-homing with max signal to noise ratio UE as-

sociation (maxSNR-UA) algorithm and the multi-homing with
uniform allocation (MHUA) algorithm, both of which are il-

lustrated in [23] and [24], respectively. It should be noted that

this is not the comparisons between our proposed ACRA al-

gorithm and the whole schemes in [23] and [24]. Instead, it

mainly focuses on showing the effectiveness of multi-homing
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Fig. 3. Illustration of the queue processes, flow rates and wireless transmission
rates under ACRA algorithm: (a) Wireless transmission rate, (b) flow rate,
and (c) queue length.

service compared with the mentioned UE association schemes

in [23], [24]. Specifically, in maxSNR-UA algorithm, the UE

only accesses the RAN with the max signal to noise ratio, while
in MHUA algorithm, the UE traffic is uniformly distributed

among the connected RANs. Moreover, both the power alloca-

tions in maxSNR-UA and MHUA are executed as Step 3 in Al-

gorithm 1. By comparison with MHUA and maxSNR-UA, we

will know the effectiveness of our proposed scheme.
For simplicity of simulations, we consider a normalized band-

width spacing, i.e., Bn = 1. We model the channel process

hn,m(t) = Γ|gn,m(t)|2/N0 as Gaussian random variables in the

interval [10,15] and be i.i.d over different timeslots [32]. The

instantaneous transmit power is upper bounded by 10 W, i.e.,
Pmax
n = 10 W. The arrival rate Am(t) of the media content is

randomly distributed within a range of 10–12 nats/slot/Hz. The

selection of step sizes has great effects on the convergence of

flow control and power allocation algorithms. A relatively large

step size will result in the vibration of the iteration algorithm
around the optimal solution. Therefore, it is difficult for the algo-

rithm to satisfy the break condition, i.e., ||γk+1
m (t)−γk

m(t)|| > ǫ
or ||pk+1

n (t)−pk
n(t)|| > ǫ, in Algorithm 1. However, too small

step size would take a long time of iterations for the algorithm

to satisfy the break condition. By making a lot of experiments
and taking the above consideration into account, we found that

κ = 0.01 and υ = 0.05 are good choices for the convergence of

flow control and power allocation algorithms, respectively. The

convergence condition is set as ǫ = 0.01. There are maximum

500 rounds during each timeslot.
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Fig. 4. Time averaged network utility versus control parameter V .
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Fig. 5. Time averaged queue length versus control parameter V .

A. Dynamic Processes of Resource Allocation Decisions

Fig. 3 illustrates some dynamic processes for the resource al-

location decisions under the ACRA algorithm. In this experi-

ment, we use the HetNet having three RANs and five UEs. Due
to the page limitation, we only plot the dynamic processes of

RAN 1 over all time slots, the other RANs enjoy similar pro-

cesses and they are omitted here. We first exhibit the dynam-

ics of wireless transmission rates and flow rates in Fig. 3. It in-
dicates that the transmit power and flow control decisions are

made dynamically from slot to slot. By controlling the wire-

less transmission rates and flow rates appropriately, the resource

allocation decisions can stabilize the queues, whilst maximiz-

ing the network utility. From the figure, we also observe that
the backlogs of the transmission queues for RAN 1 are strictly

bounded (always below 9 nats/Hz for instance), which implies

strong stability for the transmission queues of RAN 1 and no

network congestion occurred on the RAN.

B. Tradeoff Between Queue Length and Network Utility

Fig. 4 depicts that the time averaged network utility versus
the control parameter V under the ACRA algorithm. We find

that the time averaged network utility increases as V increases

and that it increases to the optimum at the speed of 1/V as V in-

creases. This consolidates the theoretical analysis in Theorem 1

(a). Fig. 5 shows the time averaged queue length versus the con-
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Fig. 6. Average network utility versus the number of UEs.
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Fig. 7. Average network utility versus the number of UEs.

trol parameter V . Based on the solution that the time averaged

queue length can be used to depict the average transmission de-
lay [27], we obtain the conclusion that the average transmission

delay under proposed algorithm increases as V increases. More-

over, the increase of average delay is approximately linear in

V . Hence the result in Theorem 1 (b) is verified. By contrast

with Fig. 4, the proposed algorithm achieves a tradeoff between
time averaged network utility and average delay. Based on the

observation of simulation results, we obtain a significant rule for

engineering design to flexibly balance the network utility-delay

performance. We only need to adjust appropriate control param-

eter V to let the network in a predefined state.

Figs. 6 and 7 plot the time averaged utility and queue length

under the ACRA algorithm versus the number of UEs, respec-

tively. In this experiment, we assume that the RANs have the
same maximum allowed transmit power, i.e., Pmax

n = P, ∀n ∈
N . Fig. 6 shows that the time averaged utility increases with the

increase of UE number. When the maximum allowed transmit

power is small, the HetNet does not have enough resource for

maximizing the network utility, hence it brings a smaller time
averaged utility than others. When the maximum allowed trans-

mit power is larger than 10 W, there will be no more time av-

eraged utility gain by increasing the maximum allowed transmit

power. That is because the optimization objective is an energy-

aware utility function. The proposed algorithm finds the opti-
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Fig. 9. Time averaged queue length versus media content arrival rate.

mal maximum allowed transmit power for the HetNet, which is

probably around 10 W. Therefore, the time averaged utility is no

longer improving by increasing the maximum allowed transmit
power. Fig. 7 illustrates the time averaged queue length versus

the number of UEs. The figure shows that the time averaged

queue lengths increase with the increase of UE number. How-

ever, when the maximum allowed transmit power is lower than

10 W, the time averaged queue length increases sharply, i,e,
the HetNet becomes instable. That is because the total transmit

powers at RANs are upper bounded by Pmax
n . When Pmax

n is

smaller than 10 W, the HetNet cannot go on allocating the trans-

mit power to support the UEs and hence, the system becomes

instable.

C. Performance Comparison under Different Media Content

Arrival Rate

In Figs. 8 and 9, we compare the performance of the ACRA

algorithm with MHUA algorithm and maxSNR-UA algorithm.

We observe from the figures that the time averaged network util-

ities under all of the algorithms increase with the increase of
media content arrival rate. When the media content arrival rate

is small, the proposed ACRA outperforms the other two algo-

rithms. That is because the objective function of optimization

problem (6) is an energy-aware utility function. From the Shan-

non formula, we know that the data rate is a logarithm function

of the transmit power, hence the power consumption increases
exponentially with the data rate. In maxSNR-UA algorithm, the

UEs can only connect with one RAN, hence a lot of power will

be consumed by the RAN. However, with multi-homing service,

the UE’s data requirement is split into different RANs. Each par-

allel flow is allocated with a proper rate, so that the power con-
sumption can be effectively reduced. Although the data require-

ment is allocated among the RANs in MHUA algorithm, it still

achieves a smaller utility than the ACRA algorithm due to its in-

efficient uniform allocation of the UE’s data requirement. When

the media content arrival rate is large enough, both MHUA and
maxSNR-UA achieve larger utilities than our proposed ACRA

algorithm. However, we observe from Fig. 9 that both MHUA

and maxSNR-UA lead to terrible time averaged queue lengths.

That is because they greedily maximize the network utility and

neglect the network stability, hence result in extremely long time
averaged queue lengths. On the contrary, our proposed ACRA

is designed to maximize the network utility, whilst stabilizing

the network. Therefore, it brings comprehensive excellent net-

work performance. To sum up, both ACRA and MUHA achieve
better performance on network utility and average delay than

maxSNR-UA, hence demonstrating the effectiveness of multi-

homing service in HetNet.

VII. CONCLUSIONS

In this paper, we designed an adaptive cross-layer resource

allocation algorithm in the HetNet with multi-homing UEs. The

long-term network utility maximization was characterized by a
stochastic optimization model subject to the network stability

constraint. In harmony with the hierarchical architecture of Het-

Net, the problem of stochastic optimization was decomposed

into two subproblems, associated with the flow control in trans-

port layer and the power control in PHY layer, respectively. We
developed the distributed resource allocation method to solve

the two subproblems for avoiding the signaling overhead, out-

dated dynamics information, and scalability issues. Then, the

adaptive resource allocation algorithm was developed to accom-

modate the time-varying wireless network merely based on the
current QSI and CSI. Further, we showed that the proposed al-

gorithm yielded the network utility-delay tradeoff as (V, 1/V )
with the control parameter V from the theoretical analysis.

APPENDICES

I. PROOF OF LEMMA 1

Proof: Following from (8), we have

L(Q(t+ 1))− L(Q(t))

=
1

2
(Q(t+ 1))HQ(t+ 1)−

1

2
(Q(t))HQ(t)

=
1

2
(max[Q(t)−r(t), 0]+γ(t))H(max[Q(t)−r(t), 0]+γ(t))

−
1

2
(Q(t))HQ(t)

where we have used the queue evolution (3).
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Noticing that for any non-negative scalar quantities Q, γ, and
r the inequality

(max{Q− r, 0}+ γ)2 ≤ Q2 + r2 + γ2 + 2Q(γ − r),

holds, we have

L(Q (t+ 1))− L(Q(t)) (32)

≤
1

2
r(t)Hr(t) +

1

2
γ(t)Hγ(t) + (γ(t) − r(t))HQ(t)

≤ B + (γ(t)− r(t))HQ(t),

where B is an upper bound on the term [r(t)Hr(t) +
γ(t)Hγ(t)]/2, which holds under the fact that both the flow
rates and the wireless link transmission rates satisfy the prop-

erties of boundness.

Adding −V E[U(t)|Q(t)] to both sides of (32) and taking an

expectation, yields

∆(Q(t))−V E[U(t)|Q(t)] (33)

≤B−V E[U(t)|Q(t)]+E[(γ(t)−r(t))HQ(t)|Q(t)].

This completes the proof of Lemma 1. ✷

II. PROOF OF THEOREM 1

Proof: The ACRA algorithm is designed to minimize the
RHS of (9), then we obtain

∆(Q(t))−V E[U(t)|Q(t)]≤B

−V E[U(α̂(t), ω(t))|Q(t)]

+E[(γ(t)(α̂(t), ω(t))− r(t)(α̂(t), ω(t)))HQ(t)|Q(t)].

Lemma 3 shows that Φ(α̂(t)) + Ψ(α̂(t)) ≥ Φ(α̃(t)) +
Ψ(α̃(t)), then we obtain

V E[U(α̂(t), ω(t))|Q(t)]

−E[(γ(t)(α̂(t), ω(t))− r(t)(α̂(t), ω(t)))HQ(t)|Q(t)]

≥V E[U(α̃(t), ω(t))|Q(t)]

−E[(γ(t)(α̃(t), ω(t))− r(t)(α̃(t), ω(t)))HQ(t)|Q(t)].

Applying Lemma 2 in the equation above, we have

∆(Q(t))−V E[U(t)|Q(t)]≤ B−V E[U(α̃(t), ω(t))]

−ς
∑

n,m

E[Qn,m(t)],

where
∑

n,m is the simplification of
∑

n∈N

∑

m∈Mn
.

We assume that there exists a ω-only policy that obtains the

optimal utility U
opt

of problem (6). Then, we obtain

∆(Q(t))−V E[U(t)|Q(t)]≤ B−V U
opt

(34)

−ς
∑

n,m

E[Qn,m(t)].

(a) The proof for time averaged utility.

By virtue of the fact that ς
∑

n,m E[Qn,m(t)] is positive, thus
it can be omitted at the right-hand-side of (34). We obtain

∆(Q(t))−V E[U(t)|Q(t)] ≤ B − V U
opt

Then, summing over t ∈ {0, 1, · · · , T − 1} for the equation
above, we get

E[L(Q(T − 1))]−E[L(Q(0))] −V

T−1
∑

t=0

E[U(t)|Q(t)]

≤BT−VTU
opt
.

Dividing by TV and using the fact that E[L(Q(T − 1))] is pos-

itive, we get

−
E[L(Q(0))]

TV
+ U

opt
≤

B

V
+

1

T

T−1
∑

t=0

E[U(t)|Q(t)].

Taking limit as T → ∞, we have

lim
T→∞

1

T

T−1
∑

t=0

E[U(t)|Q(t)] ≥ U
opt

−
B

V
.

There comes the solution that

U ≥ U
opt

−
B

V
.

(b) The proof for time average queues.

Summing (34) over t ∈ {0, 1, · · · , T − 1}, we get

E[L(Q(T − 1))]−E[L(Q(0))]− V

T−1
∑

t=0

E[U(t)|Q(t)]

≤ BT − V TU
opt

− ς

T−1
∑

t=0

∑

n,m

E[Qn,m(t)].

Dividing by T and using the fact E[L(Q(T − 1))] > 0, we

get

−
E[L(Q(0))]

T
−V

1

T

T−1
∑

t=0

E[U(t)|Q(t)]

≤ B − V U
opt

− ς
1

T

T−1
∑

t=0

∑

n,m

E[Qn,m(t)].

Rearranging the above equation and taking the limit as T → ∞,

we have

ς lim
T→∞

1

T

T−1
∑

t=0

∑

n,m

E[Qn,m(t)] ≤ B

+V lim
T→∞

1

T

T−1
∑

t=0

E[U(t)|Q(t)]− V U
opt
.

Using the bound assumption in (28) and dividing by ς , we have

lim
T→∞

1

T

T−1
∑

t=0

∑

n,m

E[Qn,m(t)]≤
B+V (Umax−U

opt
)

ς
.

Thus the theorem for time averaged queues is proved. ✷
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