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Performance of ZF Precoder in Downlink Massive
MIMO with Non-Uniform User Distribution

Chuili Kong, Caijun Zhong, and Zhaoyang Zhang

Abstract: In this paper, we investigate the achievable sum rate

and energy efficiency of downlink massive multiple-input multiple-

output antenna systems with zero-forcing precoding, by taking into

account the randomness of user locations. Specifically, we pro-

pose two types of non-uniform user distributions, namely, center-

intensive user distribution and edge-intensive user distribution.

Based on these user distributions, we derive novel tight lower and

upper bounds on the average sum rate. In addition, the impact of

user distributions on the optimal number of users maximizing the

sum rate is characterized. Moreover, by adopting a realistic power

consumption model which accounts for the transmit power, circuit

power and signal processing power, the energy efficiency of the sys-

tem is studied. In particular, closed-form solutions for the key sys-

tem parameters, such as the number of antennas and the optimal

transmit signal-to-noise ratio maximizing the energy efficiency, are

obtained. The findings of the paper suggest that user distribution

has a significant impact on the system performance: for instance,

the highest average sum rate is achieved with the center-intensive

user distribution, while the lowest average sum rate is obtained

with the edge-intensive user distribution. Also, more users can be

served with the center-intensive user distribution.

Index Terms: Energy efficiency, massive MIMO systems, non-

uniform user distribution, sum rate.

I. INTRODUCTION

TO meet the explosive increase in the demands for high

speed and high quality wireless services in next decade,

novel spectral efficient wireless technologies are required. One

of the promising candidates is the massive multiple-input

multiple-output (MIMO) technology, which deploys a very large
number of antennas at the base-station (BS) while serving tens

of users. By doing so, it was shown in the pioneering work of

Marzetta [1], that the detrimental effects in conventional cel-

lular networks, such as small-scale fading, co-channel inter-

ference and white noise, vanish asymptotically even adopting
the most simple linear processing technique. As such, unprece-
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dented spectral and energy efficiencies can be obtained.
The huge potential of massive MIMO technology has cap-

tured the attention of both industry and academia, and triggered

enormous research activities striving to understand the funda-

mental limits of massive MIMO systems in various propagation

environments [2]–[13]. Assuming Rayleigh fading channels, [2]
studied the spectral efficiency and energy efficiency of an up-

link massive MIMO system. Later in [4], a comprehensive com-

parison between conjugate and zero-forcing (ZF) beamforming

was presented. Later in [5], [14], the analysis was extended to

the more general Rician fading channels. Taking into account
the circuit power consumption, the energy efficiency of massive

MIMO systems was examined in [6], where it was shown that

the energy efficiency is strictly quasi-concave with respect to the

transmit power.

In the above mentioned papers, the distances between the
users and BS are assumed to be deterministic. As such, the ran-

domness of the user location is not taken into consideration dur-

ing the analysis. On the other hand, tackling the issue of random

user distribution is also very important, since it is required in
the evaluation of some key performance metrics such as the area

spectral efficiency. Thus far, in the context of massive MIMO,

there are mainly two approaches in the literature to model the

random user distribution, i.e., the stochastic geometry model

(see [15] and references therein), where the users are modeled
by the poisson point process (PPP) and the probability density

function (PDF) model [16], where the distance between the user

and BS is modeled by a specific probability distribution. Com-

pared to the PDF model, the PPP model embodies an additional

randomness of user number, hence is more difficult to handle
analytically.

Thus far, most of existing works addressing the random user

distribution consider the uniform user distribution [15], [16].

However, in practice, the user location is determined by the

physical topography of the land, i.e., hills and rivers, and the
distribution of man made infrastructure, such as malls, build-

ings and parks. Therefore, the users within the cellular network

are more likely to be clustered, which, in general, does not lead

to a uniform user distribution [17]. Few works have examined

the impact of non-uniform user distribution on the system per-
formance. In [18], the authors applied the thinning procedure

to the PPP to obtain a non-uniform distribution. However, the

ensuing analysis is purely based on numerical simulations due

to analytical intractability. In contrast, [19], [20] adopted the

PDF approach, and proposed different probability distributions
to model the non-uniform user behavior. However, the proposed

distributions lack sufficient flexibility, since they are not capa-

ble of controlling how strongly the users cluster towards the cell

center or edge.
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Motivated by this, in the current paper, we propose two types
of non-uniform user distributions, namely, center-intensive user

distribution and edge-intensive user distribution, which are quite

flexible, and can be applied in a wide range of different prop-

agation scenarios by properly setting the system parameters.

Considering the ZF precoding scheme, novel closed-form tight
bounds for the ergodic sum rate are presented. Based on which,

we characterize the optimal number of users maximizing the

sum rate, and prove that, among the center-intensive, uniform,

and edge-intensive user distributions, the optimal number of

users in the center-intensive user distribution case is the largest,
while that in the edge-intensive user distribution case is the

smallest. In addition, we examine the energy efficiency of the

system by taking into account the transmit power, circuit power

and signal processing power consumption. We show that there

exist unique operating points where the maximum energy effi-
ciency can be achieved.

The remainder of this paper is organized as follows: Section II

introduces the system model. The average sum rate of the sys-

tem is analyzed in Section III. Section IV studies the energy
efficiency of the system. Numerical results and discussions are

provided in Section V. Finally, Section VI concludes the paper

and summarizes the key findings.

II. SYSTEM MODEL

We consider a single cell downlink system as illustrated in

Fig. 1, where the BS is equipped withM antennas, and servesK
(K ≤M ) single antenna users. Since the main focus of the work
is to investigate the impact of non-uniform user distribution, we

adopt the perfect CSI assumption as in many prior works [2],

[21] to facilitate the theoretical analysis.

Taking into account the location of different users, the ef-

fective channel from the BS to the kth user is given by gk =√
βkhk, where βk = d−α

k ςk, with dk being the distance be-

tween the BS and the kth user, α ≥ 2 being the path loss ex-

ponent, and ςk denoting the shadowing effect which follows the

log-normal distribution, i.e., 10log10ςk ∼ N
(
0, σ2

sh

)
. More-

over, H =
[
hT
1 , · · · ,hT

K

]T ∈ CK×M is the fast fading channel

matrix, where (·)T denotes the transpose operation. As we only

consider correlation amongst transmit antenna elements and as-

sume a separable correlation model, the channel matrix can be

written as H = H̃R
1/2
t , where the elements of H̃ are indepen-

dent and identically distributed complex Gaussian variables with
zero mean and unit variance, which are constant for T channel

uses, and Rt ∈ CM×M denotes the transmit correlation matrix.

A. Non-Uniform User Distributions

In this subsection, we propose the two types of non-uniform

distributions, namely, center-intensive user distribution and

edge-intensive user distribution, which are not only analytically

simple, but also can model practical scenarios. For instance,
the center-intensive user distribution is particularly suitable for

urban scenarios with populated buildings (e.g., shopping malls,

stations), while the edge-intensive user distribution is suitable

for rural mountainous propagation scenarios.

For center-intensive user distribution, the PDF of the distance

Fig. 1. Illustration of the multi-user MIMO system under consideration.

dk is given by

fdk
(r) =

ac(R− r)
2
+ 2r

R2 − r02
bc, r0 ≤ r ≤ R, (1)

where R is the cell radius, r0 denotes the guard interval which

specifies the nearest distance between the users and BS. The

scaling factor ac controls how strongly the users cluster towards

the BS, and bc is given by bc =
3(R+r0)

ac(R−r0)
2+3(R+r0)

.

For the edge-intensive user distribution, the PDF of the dis-

tance dk is given by

fdk
(r) =

aer
2 + 2r

R2 − r02
be, r0 ≤ r ≤ R, (2)

where ae controls how strongly the users cluster towards the cell

edge and be is be =
3(R+r0)

ae(R2+Rr0+r20)+3(R+r0)
.

For the special case ac = ae = 0, both distributions reduce to

the conventional uniform distribution. Fig. 2 gives an illustrative
example of the proposed non-uniform distributions.

B. Achievable Sum Rate

The received signal at user k can be expressed as

yk =
√

βkhkx+ nk, (3)

where nk is the additive white Gaussian noise satisfying nk ∼
CN

(
0, σ2

)
, and x =

∑K
k=1

√
pkwksk is the BS transmit vec-

tor, where pk is the transmit power, wk is the beamforming vec-

tor, and sk is the modulation symbol taken from Gaussian dis-
tribution.

In this paper, we focus on ZF precoding. Hence, we have

wk = vk/||vk||, where vk is the kth column vector of the matrix

V = H†
(
HH†

)−1
, with (·)† denoting the conjugate transpose

operator and (·)−1 denoting the matrix inverse. Moreover, || · ||
represents the Euclidean 2-norm. As in [16], we adopt the equal

power allocation scheme, i.e., pk = p = PT/K , where PT is the

total transmit power. To this end, the instantaneous achievable

rate of user k can be computed as

Rdl
k = log2

(

1 +
PTβkγk
Kσ2

)

, (4)

where the superscript dl in Rdl
k is used to denote the downlink

achievable rate, and γk = 1/
[(
HH†

)−1
]

kk
. Moreover, [X]ij

gives the (i, j)th entry of X.
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(a)

(b)

Fig. 2. Users’ locations within a cell. In this example, there are 1000 users
(i.e., blue points), ac = ae = 1, R = 600 m, and r0 = 50 m: (a) Center-
intensive user distribution and (b) edge-intensive user distribution.

As such, the average sum rate (measurable in bits/channel

use) of the system is given by

Rdl = E

{
K∑

k=1

Rdl
k

}

= E

{
K∑

k=1

log2

(

1 +
PTβkγk
Kσ2

)}

, (5)

where the notation E{·} denotes the statistical expectation oper-

ator, and the expectation is taken over large-scale fading βk and

small-scale fading H.

III. AVERAGE SUM RATE ANALYSIS

In this section, we analyze the average sum rate of the sys-

tem, and investigate the impact of key system parameters. Since

characterizing the exact average sum rate is intractable, in the

following, we derive tight bounds on the average sum rate.

A. Correlated MIMO Channels

Proposition 1: For Rt 6= IM , i.e., correlated MIMO chan-

nels, the average sum rate of the system is lower bounded by

Rdl ≥ Rdl
corr,l (6)

= Klog2

(

1 +
ρ

K
exp

(

ψ (K) +
det (XM−K+1)
∏M

i<j (λj − λi)

))

,

where ψ(x) is Euler’s digamma function [22, Eq. (8.360.1)],

ρ = PTβ/σ
2 with β being (7) (at the top of the next page) for

the center-intensive user distribution, or (8) (at the top of the

next page) for the edge-intensive user distribution; moreover,

λi, i = 1, 2, · · ·,M are the real, positive eigenvalues of Rt, and

Xk is a M ×M matrix with entries

{XM−K+1}i,j =
{

λj−1
i , j 6=M −K + 1;

λj−1
i lnλi, j =M −K + 1.

(9)

Proof: See Appendix A. ✷

Due to the fact that the function log2(1+ae
x) is almost linear

under very large a, the lower bound given in (11) converges to

the exact result in the high SNR regime. However, because of

the complex expression in Proposition 1, it is difficult to see the

impact of correlation on the average sum rate of the system. As

such, we now look into the asymptotic large antenna regime, and
we have the following key result.

Proposition 2: In the asymptotic large antenna regime, i.e.,

M → ∞, the average sum rate of correlated MIMO channels

converges to that of uncorrelated MIMO channels.

Proof: From (5), we see that, the difference between the
correlated and uncorrelated channels lies in γk = 1

[(HH†)−1]
kk

.

For uncorrelated channels, using the law of large numbers [2],

lim
M→∞

H̃H̃
†

M

a.s.−−→ IK , we have lim
M→∞

γk
a.s.−−→ M .

For correlated channels, capitalizing on the result presented

in [3, Lemma 4] and using the fact that tr {Rt} = M ,

we have lim
M→∞

1
M h̃iRth̃

†
i

a.s.−−→ 1
M tr {Rt} = 1, and

lim
M→∞

1
M h̃iRth̃

†
j

a.s.−−→ 0, where h̃i denotes the ith row

vector of H̃, and i 6= j. Then, we can easily show that

lim
M→∞

H̃RtH̃
†

M

a.s.−−→ IK . Therefore, lim
M→∞

γk
a.s.−−→ M , which

completes the proof. ✷

In general, increasing the number of BS antennas would re-

sult in higher correlation, which reduces the average sum rate.
On the other hand, the average sum rate improves with more an-

tennas due to the higher array gain. In this regard, Proposition 2

reveals an interesting result that the sum rate loss due to correla-

tion could be effectively compensated by increasing the number

of antennas, and with sufficiently large number of antennas, the
effect of spatial correlation vanishes completely.1

B. Uncorrelated MIMO Channels

Proposition 1 is quite general and applicable to any num-
ber of users and antennas, as well as, arbitrary transmit corre-

lated MIMO channels. However, due to the complex structure

1Note that if the correlation channel matrix Rt is rank deficient, then this
observation is no longer valid.
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β = exp

( −αbc
R2 − r20

[
ac
3

(

R3

(

lnR− 11

6

))

+R2

(

lnR− 1

2

)])

(7)

× exp

( −αbc
R2 − r20

[
ac
3

(

−3R2r0 (ln r0 − 1) + 3Rr20

(

ln r0 −
1

2

)

− r30

(

ln r0 −
1

3

))

− r20

(

ln r0 −
1

2

)])

β = exp

( −αbe
R2 − r20

[
ae
3

(

R3

(

lnR− 1

3

)

− r30

(

ln r0 −
1

3

))

+R2

(

lnR− 1

2

)

− r20

(

ln r0 −
1

2

)])

(8)

of
det(XM−K+1)
∏

M
i<j(λj−λi)

, extracting physical insights appears to be diffi-

cult. As such, we now consider the special case of uncorrelated

MIMO channels, namely, Rt = IM , and we have the following
simplified expression.

Proposition 3: For Rt = IM , i.e., uncorrelated MIMO

channels, the average sum rate of the system is lower bounded

by

Rdl ≥ Rdl
uncorr,l = Klog2

(

1 +
ρ

K
exp (ψ(M −K + 1))

)

,

(10)

where ρ is given in Proposition 1.

Proof: The sum rate can be lower bounded by

Rdl ≥ Rdl
uncorr,l =

K∑

k=1

log2

(

1 +
PT

Kσ2
eE{ln βk}+E{lnγk}

)

,

where γk = 1/

[(

H̃H̃†
)−1

]

kk

is a Gamma random variable

with parameters (M−K+1, 1). Then, using the integral identity

[22, Eq. (4.352.1)], we obtain E {ln (γk)} = ψ (M −K + 1).
To this end, invoking the result of E {lnβk} given in Appendix A
yields the desired result. ✷

Since ψ(x) is an increasing function with respect to x, it can

be easily inferred from Proposition 3 that the average sum rate

increases when the number of BS antennas M becomes larger.

In addition, we validate the intuitive result that the average sum
rate is a decreasing function with respect to the path loss expo-

nent and cell radius R.

Proposition 4: For Rt = IM , i.e., uncorrelated MIMO

channels, the average sum rate of the system is upper bounded

by

Rdl ≤ Rdl
uncorr,u (11)

= Klog2e

[

β1 + ψ (M −K + 1) + ln

(
PT

Kσ2
+

β2
M −K

)]

,

where β1 = lnβ with β given by Proposition 1, and β2 =

β̂ exp
(

1
2

(
ln 10
10 σsh

)2
)

with β̂ being (12) (at the top of the next

page) for the center-intensive user distribution, or

β̂ =
be

R2 − r20

[

ae
(
Rα+3 − rα+3

0

)

α+ 3
+

2
(
Rα+2 − rα+2

0

)

α+ 2

]

for the edge-intensive user distribution.

Proof: See Appendix B. ✷

The proposed lower and upper bounds are in general quite

tight as will be demonstrated later through numerical simula-

tions. In addition, the two bounds converge to each other at high

SNRs as shown in the following corollary.

Corollary 1: For asymptotically high SNRs, i.e., PT/σ
2 is

large, both the lower and upper bounds, i.e., Rdl
uncorr,l and

Rdl
uncorr,u become exact and equal to

R∞ =
K

ln 2

(

ln

(
PT

Kσ2

)

+ β1 + ψ (M −K + 1)

)

. (13)

Proof: The result can be obtained with some simple alge-

braic manipulations based on (10) and (11). ✷

When uniform distribution is assumed, a different lower

bound has been proposed in [16, Eq. (17)]. Since our distribu-
tion encompass uniform user distribution, it is of great interest

to compare the tightness of the lower bound Rdl
uncorr,l with the

lower bound R̂dl
l proposed in [16].

Corollary 2: For uniform user distribution, the proposed
lower bound is strictly tighter than the one proposed in [16],

i.e.,

Rdl
uncorr,l > R̂dl

l . (14)

Proof: See Appendix C. ✷

Now, we are interested in finding out the impact of the num-
ber of users on the average sum rate. Due to the presence of

the digamma function, analytical characterization of the opti-

mal K maximizing the average sum rate appears to be difficult.

To this end, recall that in a massive MIMO system, the num-

ber of BS antennas M tends to be much larger than the number
of users K; hence, M − K + 1 is in general a large number.

As such, exploiting the asymptotic property of digamma func-

tion [23, Eq. (6.3.18)], ψ(x) ≈ lnx as x → ∞, the following

approximation can be obtained:

Rdl
uncorr,l ≈ R̃dl

uncorr,l = Klog2

(

1 +
ρ

K
(M −K + 1)

)

. (15)

Corollary 3: When bothM andK become large with a fixed

ratio c, i.e., M = cK with c ≥ 1, the average achievable rate of

each user converges to

R̃dl
uncorr,l

K
→ log2

(
1 + ρ (c− 1)

)
. (16)
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β̂ =
bc

R2 − r20

[

ac

(
2Rα+3

(α+ 1) (α+ 2) (α+ 3)
− R2rα+1

0

α+ 1
− rα+3

0

α+ 3
+

2Rrα+2
0

α+ 1

)

+
2
(
Rα+2 − rα+2

0

)

α+ 2

]

(12)

It is interesting to note from Corollary 3 that in the asymptotic

regime, the average achievable rate of each user depends only on

the scaling factor c and the SNR ρ.

Proposition 5: The optimal number of user K maximizing

the approximate average sum rate in (15) is ⌊Kopt⌋ or ⌈Kopt⌉,

where Kopt is given by

Kopt =
ρ (M + 1)W

(
ρ−1
e

)

(ρ− 1)
(
W
(
ρ−1
e

)
+ 1
) , (17)

with W (x) being the Lambert W function [24]. Also, ⌊x⌋ de-
notes the nearest integer that is smaller than x while ⌈x⌉ denotes

the nearest integer that is larger than x.

Proof: It is easy to verify that R̃dl
uncorr,l is a strictly con-

cave function with respect to K . Hence, there exists a unique

K maximizing the average sum rate, which can be obtained by

solving ∂R̃dl
uncorr,l/∂K = 0. To this end, the desired result can

be obtained after some algebraic manipulations. ✷

Proposition 5 provides an important design guideline on how

many users should be scheduled simultaneously to maximize the

average sum rate with specific cell size and number of BS an-

tennas. In addition, we can observe that, the optimal number

of user K depends only on the number of antennas M and the
SNR ρ. Moreover, it can be easily seen that when the BS em-

ploys more antennas, the cell can serve more users to maximize

the average sum rate.

Finally, we look into the impact of user distribution on the

optimal number of users to serve, and we have the following

key result.

Corollary 4: For different user distribution models, the op-

timal number of users Kopt satisfies (Kopt)
center-intensive ≥

(Kopt)
uniform ≥ (Kopt)

edge-intensive
, where the equality is met

when ae = ac = 0.

Proof: See Appendix D. ✷

In general, when the number of userK increases, the individ-
ual user rate decreases as shown in Proposition 3 and 4. Corol-

lary 4 suggests that, in terms of maximizing the sum rate, the

optimal number of users in the center-intensive user distribution

is the largest compared to the other two distributions, indicating

that more users can be accommodated in the center-intensive
user distribution case. This is an expected result, since the av-

erage path loss tends to be significantly reduced for the center-

intensive user distribution, such that the sum rate gain of having

an additional user is larger than that of the other two distribu-

tions. As such, more users can be accommodated before the loss
due to inter-user interference dominates the extra rate gain of

having more users.

C. Impact of Random Number of Users

In practice, the number of users actively contending for chan-

nel access fluctuates across time. Hence, it is also of great in-

terest to study the impact of random number of users on the

sum rate performance. When the cell contains a large number of

users and each user is active with a small probability, the distri-

bution of the number of users q can be best approximated by the

Poisson distribution [25]. As such, we assume that the probabil-

ity mass function of q is given by P(q = k) = e−µµk/k!, where
µ = E {q} = λπ

(
R2 − r20

)
is the average number of users.

Therefore, the average sum rate taking into account of the

randomness induced by the number of users can be expressed as

Rpoisson = Eq

{

R̃dl
uncorr,1

}

= Eq

{

qlog2

(

1 +
ρ

q
(M − q + 1)

)}

.

To make a fair comparison, it is assume that the average num-

ber of active users is the same, i.e., µ = E {q} = K . In gen-

eral, exact evaluation of the expectation is mathematically in-

tractable. However, in the asymptotic large system regime, sim-

ple analytical expressions can be obtained.
Corollary 5: When bothM andK grow large while keeping

a finite and fixed ratio c, i.e., M = cK with c ≥ 1, we have

Rpoisson → R̃dl
uncorr,1 → K log2 (1 + ρ (c− 1)) . (18)

Proof: Substituting M = cK into (15) yields

R̃dl
uncorr,1 → R̄dl

uncorr,1 = K log2 (1 + ρ (c− 1)) . (19)

Then, we have

Rpoisson → E

{
R̄dl

uncorr,1

}
(20)

=

∞∑

k=0

e−KKk

k!
klog2 (1 + ρ (c− 1)) (21)

(a)
= Klog2 (1 + ρ (c− 1)) , (22)

where in (a), we have used the Taylor series expansion for eµ.

✷

Corollary 5 indicates that, in the asymptotic large system

regime, the randomness of user number does not affect the
achievable sum rate. However, as shown in the following Propo-

sition, this observation does not hold in the finite regime.

Proposition 6: The achievable average sum rate of the sce-

nario with Poisson distributed number of users is inferior to that

of the scenario with fixed number of users, i.e.,

Rpoisson ≤ R̃dl
uncorr,1. (23)

Proof: Noticing that R̃dl
uncorr,1 is a concave function with

respect to K , applying the Jensen’s inequality yields

E

{

qlog2

(

1 +
ρ

q
(M − q + 1)

)}

(24)

≤ E {q} log2
(

1 +
ρ

E {q} (M − E {q}+ 1)

)

. (25)

Substituting E {q} = K into (24) arrives at the desired result.

✷
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Proposition 6 suggests that, the randomness due to uncertain
number of users results in a loss of sum rate compared to the

case with deterministic number of users.

IV. ENERGY EFFICIENCY ANALYSIS

The energy efficiency, defined as the ratio of the spectral effi-

ciency (average sum rate in bits/channel use) to the total power

expended (in Joule/channel use), has become an important per-

formance metric in the design of wireless networks. In this sec-

tion, we consider a realistic energy consumption model and in-
vestigate how the three key parameters (the number of users K ,

the number of antennas M and the total transmit SNR ρ) affect

the energy efficiency (ηE). In addition, the trade-off between ηE

and average sum rate is characterized.

A. Power Consumption Model

Unlike most prior works, which only consider the transmit

power, we adopt a more realistic energy consumption model as

in [26] by considering three parts: The power consumption of
the power amplifier (PA) PPA, static circuit power PC, and sig-

nal processing power PSP. Hence, the total consumption of the

system in one channel use is Ptotal = PPA + PC + PSP.

In the following, we give a more detailed discussion on each

power component.

1) Power consumption of PA: The power consumption of PA

is proportional to the transmit power of the BS, and can be

computed as PPA = PT/η, where 0 < η ≤ 1 denotes the

efficiency of the PA.

2) Circuit power: The circuit power consumption is computed
by PC =MPBS +(K+1)Psyn +KPUE +P0, where PBS de-

notes the power consumption of the collection of components

attached to each BS antenna, including the digital to analog

converter, the mixer and the filter, and PUE is the power con-
sumption of one user, which includes the low-noise amplifier,

the intermediate frequency amplifier, the filter and the ana-

log to digital converter. Finally, Psyn is the power consumed

by the frequency synthesizer, and P0 is the fixed power con-

sumption which includes active cooling system.
3) Signal processing power: The total power consumption

due to signal processing can be expressed as PSP =

K (Pcod + Pdec) +
2K2M + 2KM

LT
+

2K3

3LT
︸ ︷︷ ︸

Part 1

+
MK

L
︸ ︷︷ ︸

Part 2

, where

Pcod denotes the power consumption due to channel coding

and modulation at the BS, where Pdec accounts for the power

required for decoding symbols at one user. Part 1 comes from

the computation of the ZF precoding matrix using the LU-
based matrix inversion, where L denotes the computational

efficiency, i.e., L operations per Joule. Part 2 is due to the

multiplication of the precoding matrix with the vector of in-

formation symbols.

B. Maximum Energy Efficiency

Given the above energy consumption model, the ηE

(bits/Joule) can be approximately expressed as (26), shown on

the top of the next page.

The main objective is to obtain the optimal values for the key
parameters M , ρ, and K , maximizing the ηE. We start with ρ.

Proposition 7: For fixed K and M , the optimal operating

SNR ρ maximizing ηE is given by

ρ∗ =
eW(βη

σ2
(M−K+1)

K
(PC+PSP)−

1
e )+1 − 1

M−K+1
K

. (27)

Proof: The result can be obtained by using the same

technique presented in [26]. Hence, is omitted due to space

limitation. ✷

Since the Lambert W function W (x) is an increasing func-
tion with regard to x, Proposition 7 indicates that the optimal

operating SNR is an increasing function of the circuit power PC

and the signal processing power PSP. Therefore, reducing the

circuit power consumption and enhancing the signal processing

efficiency are important directions to pursue in order to make
future wireless systems more energy efficient.

Proposition 8: For fixedK and ρ, the optimal number of BS

antennas is ⌊M∗⌋ or ⌈M∗⌉, where M∗ is given by (28), shown

on the top of the next page.

Proof: The desired result can be obtained by following sim-

ilar lines as in the proof of Proposition 7. ✷

Let Px = ρσ2/(βη) + (K + 1)Psyn +KPUE + P0 +
K (Pcod + Pdec)+ 2K3/(3LT ), which can be interpreted as the
portion of total energy consumption that is independent of the

antenna numberM and Py = PBS+(2K2 + 2K)/(LT )+K/L
which can be interpreted as the energy consumption per BS an-

tenna. It is easy to observe that M∗ is an increasing function of

Px and decreasing function of Py . This is intuitive, since if the
cost of deploying an additional antenna is too high, i.e., Py is

large, less number of antennas should be used.

C. Energy Efficiency and Average Sum Rate Trade-off

We now present the relationship between energy efficiency

and average sum rate. Capitalizing on the simplified sum rate
approximation given in (15), we have

ρ =

(

2R̃
dl
uncorr,l/K − 1

)

K

M −K + 1
. (29)

Then, substituting (29) into (26), we get

ηE ≈
R̃dl

uncorr,l

σ2K
βη(M−K+1)

(

2R̃
dl
uncorr,l/K − 1

)

+ PC + PSP

. (30)

As expected in (30), increasing the average sum rate is associ-
ated with increasing the SNR ρ, which has an unclear impact on

the energy efficiency. Therefore, we need to know more about

this relationship.

Proposition 9: The optimal average sum rate maximizing

the energy efficiency is given by

(R̃dl
uncorr,l)

∗ (31)

=
K

ln 2

(

W

(
βη (M −K + 1) (PC + PSP)

σ2Ke
− 1

e

)

+ 1

)

.
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ηE ≈ Klog2
(
1 + ρ

K (M −K + 1)
)

ρσ2

βη +MPBS + (K + 1)Psyn +KPUE + P0 +K (Pcod + Pdec) +
2K2M+2KM

LT + 2K3

3LT + MK
L

(26)

M∗ =
e
W





ρ
eK

(

ρσ2

βη
+(K+1)Psyn+KPUE+P0+K(Pcod+Pdec)+

2K3

3LT

)

(

PBS+
2K2+2K

LT
+K

L

) − 1
e (1−

(K−1)ρ
K )



+1

+ (K−1)ρ
K − 1

ρ
K

(28)

Table 1. Parameters used in the simulations.

Parameter Value

Cell size: r0, R, path loss α 50 m, 600 m, 3.7

Symbol time S 1
9×106 (s/channel use)

Noise variance σ2 −90 dB

Shadow fading σsh 8 dB

Coherence bandwidthB 180 kHz

Coherence time T 10 ms · B · channel use
Operations/Joule L 12.8× 109

Efficiency of PA η 0.3

PBS, PUE, Psyn 1W·S, 0.3W·S, 2W·S
P0, Pcod, Pdec 2W·S, 4W·S, 0.5W·S

Proof: The desired result can be obtained by following sim-

ilar lines as in the proof of Proposition 5. ✷

From Proposition 9, there indeed exists a unique globally op-

timal (R̃dl
uncorr,l)

∗ maximizing ηE. We observe that, the optimal
average sum rate is an increasing function with respect to the

number of antennasM . However, caution should be taken when

interpreting the result. With larger M , the optimal average sum

rate increases. Nevertheless, the energy efficiency achieved with
the optimal average sum rate may decrease. This indicates that

employing a very large number of antennas is not always benefi-

cial from an energy efficiency perspective, which conforms with

the corresponding results in [26].

V. NUMERICAL RESULTS

In this section, we provide numerical simulation results to val-

idate the analytical expressions derived in the previous sections.

Unless otherwise specified, the following set of parameters are

used in simulations (see Table 1). These parameters follow the

3GPP propagation specification, and have been adopted in prior
works such as [26]. As for the transmit channel correlation ma-

trix Rt, we use the exponential correlation model [27] with a

single parameter µ measuring the correlation level.

Fig. 3 compares the simulated average sum rate of correlated

and uncorrelated channels. As can be seen when the number

of antenna M is in the order of a few hundreds, there exists a
constant sum rate gap between the two correlated curves and

the uncorrelated curves at all SNRs. Moreover, the sum rate gap

shrinks with an increase in the number of antennas. For instance,

with M = 1024, the sum rate of correlated channels with µ =
0.9 is almost identical to that of the uncorrelated channels. This

Fig. 3. Average sum rate of correlated and uncorrelated channels: K = 8.

observation is consistent with Proposition 2.

Fig. 4 depicts the effect of transmit correlation on the sum rate
of the system. As readily observed, the proposed lower bound in

Proposition 1 is sufficiently tight across the entire SNR range,

and becomes almost exact in the high SNR regime. This is due

to the fact that the function log2(1 + aex) is almost linear un-

der very large a, which results in the Jensen’s inequality used
in (32) being almost an equality. In addition, we notice that,

the stronger the correlation effect (i.e., larger µ), the lower the

average sum rate. However, as the number of transmit antenna

becomes larger, the sum rate gap diminishes gradually, which

indicates that deploying more transmit antennas is an effective
approach to compensate for the sum rate loss due to correlation.

Fig. 5 examines the tightness of the proposed analytical

bounds of (10) and (11), and compares the proposed lower

bound against the lower bound proposed in [16] for differentM .

As can be readily observed, when the transmit power increases,
the tightness of the proposed lower and upper bounds improves,

and eventually both bounds converge to the exact results, which

is agreement with Corollary 1. We also observe that the pro-

posed upper bound becomes more accurate when the number

of antennas is large. In addition, we see that the proposed lower
bound is significantly tighter than the previously reported bound

in [16] at all SNRs.

Fig. 6 first investigates the impact of user distribution on the

average sum rate of the system when the number of users is

fixed. For the non-uniform user distributions, we choose ac =
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Fig. 4. Average sum rate with transmit antenna correlation: K = 8.

Fig. 5. Average sum rate of the system with uniform user distribution: K = 16.

Fig. 6. Average sum rate against the number of antennas M for different user
distributions: PT = 43 dBm and K = 16.

ae = 10. We see that the center-intensive user distribution sce-

nario achieves the highest sum rate, while the edge-intensive

user distribution scenario attains the lowest sum rate. This is

rather intuitive, since the communication distance between the

user and the BS is in general shorter in the center-intensive dis-
tribution scenario. Given the same BS transmit power, shorter

distances result in a higher sum rate. Also, intuitively, increas-

ing the number of antennas improves the sum rate of the system

in all three scenarios. Finally, we observe that the average sum

rate of the scenario with Poisson distributed number of users is
slightly lower than that of the scenario with deterministic num-

ber of users, conforming the analysis given in Proposition 6.

Fig. 7 shows the impact of the number of users K on the av-

erage sum rate for different user distributions. We observe that

there exists an optimal K maximizing the average sum rate,

which is in line with Proposition 5. Furthermore, the optimal

number of users Kopt is, in general, different for different user
distributions, i.e., the center-intensive user distribution can ac-

commodate the highest number of users as analytically shown

in Corollary 4. In addition, the gap in the supported number of

users between the center-intensive distribution and the other two
distributions appears to be significant, while the gap between

uniform user distribution and edge-intensive user distribution is

relatively small.

Fig. 8 examines the impact of user distributions on the en-

ergy efficiency. As we can clearly observe, the center-intensive

user distribution scenario attains the highest energy efficiency.

Moreover, there exists an optimal K∗ maximizing the energy
efficiency, as expected. Interestingly, it is shown that, when K
is small, i.e., K ≤ 100, increasing M actually reduces the en-

ergy efficiency. This could be explained by the fact that the sum

rate increase due to a large M is not significant to offset the ad-

ditional power dissipation of the additional antennas since the
inter-user interference is not so strong for small K . We also ob-

serve that the maximum achievable energy efficiency associated

with the case M = 256 is higher than the cases with M = 128
and M = 512, which again indicates that a large M is not al-

ways beneficial in terms of energy efficiency, as predicted by
Proposition 8. Please note, similar observations have also been

reported in prior works such as [26].

Fig. 9 examines the impact of the total transmit SNR on the

energy efficiency of the system with different M and K for the

uniform user distribution. As expected, we see that there ex-

ists an optimal operating SNR indicated by the star marker for

each pair of M and K , and the optimal SNRs obtained from
simulations are in perfect agreement with the analytical values

predicted by Proposition 7. Also, when the number of users K
becomes larger, i.e., from 16 to 64, the optimal SNR ρ also in-

creases. This can be explained as follows: When the number of

usersK increases, the circuit power and signal processing power
consumption become larger; hence, it is imperative to increase

the transmit power to improve the energy efficiency.

Fig. 10 illustrates the tradeoff between the energy efficiency

and average sum rate for the uniform user distribution scenario

with different K and M . Interestingly, we see that for fixed M
and K , there exists an optimal average sum rate achieving the

maximum energy efficiency. Moreover, for a fixed K , the op-
timal average sum rate increases when the number of antennas

changes from 32 to 256 as shown in Proposition 9. Similarly, for

a fixedM , the optimal average sum rate increases along with the

number of users. Finally, it can be observed that the highest en-

ergy efficiency is achieved with K = 32 and M = 128 among
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Fig. 7. Average sum rate against the number of users K for different user
distributions: PT = 43 dBm and M = 300.

Fig. 8. Energy efficiency for different user distributions: PT = 43 dBm.

eight different combinations, which agrees with the conclusion

drawn in [26] that an energy efficient system should employ a

large number of antennas to serve a relatively large number of

users.

VI. CONCLUSION

The impact of user distribution on the performance of down-

link massive MIMO systems was investigated. Specifically,

based on the proposed center-intensive and edge-intensive user

distributions, novel tight lower and upper bounds on the achiev-

able sum rate were presented, and the optimal number of users
K that maximizes the average sum rate was characterized. In ad-

dition, the energy efficiency of the system was analyzed. Specif-

ically, considering a general power consumption model, which

includes the transmit power, circuit power and signal process-

ing power, exact closed-form expressions were obtained for the
key system parameters such as M and ρ maximizing the energy

efficiency. Finally, the trade-off between energy efficiency and

average sum rate was established. The main outcome of the pa-

per suggests that user distributions have significant impact on

the system performance, as well as, on the choice of the optimal

Fig. 9. Energy efficiency against the SNR ρ with different M and K for the
uniform user distribution.

Fig. 10. Energy efficiency versus sum rate tradeoff.

operating point.

APPENDICES

I. Proof of Proposition 1

Starting from (5), and using the fact that the function f(x) =
ln(1 + exp(x)) is convex with respect to x, we obtain the fol-

lowing lower bound on the sum rate

Rdl ≥ Rdl
corr,l =

K∑

k=1

log2

(

1 +
PT

Kσ2
eE{ln βk}+E{ln γk}

)

. (32)

Let W = HH†. Then, we have γk = 1
[W−1]kk

=
det(W)

det(Wkk)
, where Wkk is the minor of

[
W−1

]

kk
. Then,

invoking the results of [28], we get E {ln (det (W))} =

K∑

k=1

ψ (k) +

M
∑

m=M−K+1

det(Xm)

∏

M
i<j(λj−λi)

, and E {ln (det (Wkk))} =

K−1∑

k=1

ψ (k) +

M
∑

m=M−K+2

det(Xm)

∏

M
i<j(λj−λi)

.
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After some basic algebraic manipulations, we can explicitly
compute E {ln γk} as

E {ln γk} = ψ (K) +
det (XM−K+1)
∏M

i<j (λj − λi)
. (33)

The next task is to evaluate E {lnβk}, which is computed via

E {lnβk} = −αE {ln dk}+ E {ln ςk} . (34)

Now, sinceE {ln dk} =
∫ R

r0
ln (r) fdk

(r)dr, using the identity

E {ln ςk} = 0, the desired result can be obtained after some

algebraic manipulations.

II. Proof of Proposition 4

Using the fact that

E {log2 (1 + ax)} ≤ log2e

(

E {lnx}+ ln

(

a+ E

{
1

x

}))

,

(5) can be upper bounded by

Rdl ≤ Rdl
uncorr,u =

K∑

k=1

log2e (35)

(

E {lnβk}+ E {ln γk}+ ln

(
PT

Kσ2
+ E

{
1

βk

}

E

{
1

γk

}))

.

Since both E {lnβk} and E {ln (γk)} have been evaluated

in closed-form, the remaining task is to compute E {1/βk}
and E {1/γk}. Exploiting the fact that user locations and

shadow fading are mutually independent, we have E {1/βk} =
E {dαk } E

{
ζ−1
}

. It is easy to show that

E

{
ζ−1
}
= exp

(

1

2

(
ln 10

10
σsh

)2
)

, (36)

and

E {dαk} =

∫ R

r0

rαfdk
(r)dr. (37)

Substituting (1) or (2) into (37), the desired result can be ob-

tained after some algebraic manipulations.

III. Proof of Corollary 2

To compare Rdl
uncorr,l with R̂dl

l , the following parameters are

chosen, r0 = 0 and ac = ae = 0. As such, the lower bound

Rdl
uncorr,l reduces to

Rdl
uncorr,l = Klog2 (38)
(

1 +
PT

Kσ2
exp

(

−α
(

lnR− 1

2

))

exp
(
ψ(M −K + 1)

)
)

.

Using the fact that ψ(M −K + 1) > ln(M −K), we have

Rdl
uncorr,l > Klog2

(

1 +
PT

σ2Rα
exp

(α

2

)(M

K
− 1

))

. (39)

Now consider function f(x) = exp(x) − x − 1. It is easy
to show that f(x) is a monotonically increasing function. Since

f(0) = 0, hence f(x) > 0 for x > 0, we have exp
(
α
2

)
> α+2

2 .

Therefore,

Rdl
uncorr,l > Klog2

(

1 +
PT(α+ 2)

2σ2Rα

(
M

K
− 1

))

. (40)

Recall that

R̂dl
l = (41)

Klog2

(

1 +
PT

σ2

α+ 2

2Rα
exp

(

−1

2

(
ln 10

10
σsh

)2
)(

M

K
− 1

))

.

Since exp
(

− 1
2

(
ln 10
10 σsh

)2
)

< 1, we have Rdl
uncorr,l > R̂dl

l .

IV. Proof of Corollary 4

Ignoring the constant (M + 1) and let t = (ρ− 1)/e, then

(17) reduces to

f (t) =

(
t+ 1

e

)
W (t)

t (W (t) + 1)
. (42)

Using the derivative property of the Lambert W function [29],

W ′ (t) = W (t)
t(1+W (t)) , the first derivative of f(t) can be computed

as f ′ (t) = W (t)g(t)

t2(1+W (t))3
, where g (t) = t− 2

eW (t) − 1
eW

2 (t).

It is easy to show that g (t) is a convex function since g′′ (t) =
2
e

W 2(t)
t2(1+W (t)) > 0. Now, noticing that g (−1/e) = g(0) = 0, the

t∗ achieving the minimum of g(t) is in the range of (−1/e, 0),
where g(t) < 0. Also, for t ≥ 0, g(t) ≥ 0. To this end, it

is not difficult to show that f ′(t) > 0 in the entire range of

(−1/e,∞). Therefore, f (t) is an increasing function with re-

spect to t, which completes the proof of the first part.

The second part is to show the impact of user distribu-

tion, and consequently ρ = PTβ/σ
2, where β is a user dis-

tribution specific parameter, and is given by (7) for center-
intensive user distribution and (8) for edge-intensive user dis-

tribution. Since r0 is in general very small compared to the

cell radius, which has little impact on the proof, hence, to

simplify the proof, we assume r0 = 0. As such, we have

βcenter-intensive = −αbc [ac/3 · R (R− 11/6) + lnR − 1/2],
with bc = 3/(acR+ 3), βuniform = −α [lnR− 1/2], and

βedge-intensive = −αbe [ae/3 · R (R− 1/3) + lnR− 1/2], with

be = 3/(aeR+ 3). To this end, it is easy to show βcenter-intensive−
βuniform = 4αac/3 (acR+ 3) ≥ 0, and βedge-intensive −βuniform =
−αac/6 (acR+ 3) ≤ 0, which completes the proof.
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