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Mixture Filtering Approaches to Blind Equalization
Based on Estimation of Time-Varying and

Multi-Path Channels
Jaechan Lim

Abstract: In this paper, we propose a number of blind equaliza-
tion approaches for time-varying and multi-path channels. The ap-
proaches employ cost reference particle filter (CRPF) as the sym-
bol estimator, and additionally employ either least mean squares
algorithm, recursive least squares algorithm, or H∞ filter (HF)
as a channel estimator such that they are jointly employed for the
strategy of “Rao-Blackwellization,” or equally called “mixture fil-
tering.” The novel feature of the proposed approaches is that the
blind equalization is performed based on direct channel estimation
with unknown noise statistics of the received signals and channel
state system while the channel is not directly estimated in the con-
ventional method, and the noise information if known in similar
Kalman mixture filtering approach. Simulation results show that
the proposed approaches estimate the transmitted symbols and
time-varying channel very effectively, and outperform the previ-
ously proposed approach which requires the noise information in
its application.

Index Terms: Blind equalization, cost reference particle filter
(CRPF), frequency selective fading, H∞ (H infinity) filter, least
mean squares, mixture filtering, Rayleigh fading, recursive least
squares.

I. INTRODUCTION

GENERALLY, a wireless communication channel is consid-
ered as a time-varying and multi-path channel which dis-

torts the transmitted signal, or incurs fading of it. If a wide-band
signal is employed in a wireless communication system, the
channel is considered as a frequency-selective fading channel
when it is safely assumed that the coherence bandwidth of the
channel is less than the bandwidth of the transmitted signal: un-
der frequency-selective fading, different frequency components
of the signal undergo different gains and phase shifts across the
band, and a tapped-delay line model for the received signal de-
scribes frequency-selective and slow fading channel which also
has significant effect of inter-symbol interference (ISI).

In this paper, we propose approaches that jointly estimate
the time-varying channel impulse response (CIR) and transmit-
ted symbols based on the received signal that had gone though
frequency-selective and Rayleigh fading, without the aid of a
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training sequence; besides, the noise statistics of the received
signal are not known. The main purpose of the blind equaliza-
tion is estimating the transmitted symbols regardless of whether
the channel is estimated or not. Blind equalization is desirable
for some applications, such as multipoint or group communica-
tions. The history of the blind equalization may originate from
[1] where “a stochastic gradient algorithm” was employed. With
the beginning of the work in [1], the blind equalization ap-
proaches may be classified into three main categories as follows
[2].

Approaches in the first category search for the solution by
using the method of “steepest decent,” which is a traditional it-
erative procedure, and has been used to find extremes of non-
linear functions. Due to the difficulty to acquire the correla-
tion of the estimation error and the received signal, usually least
mean squares (LMS) algorithm is employed where a one-point
sample mean of the estimation error and the received signal re-
places the correlation of the error and the received signal. Due
to its disadvantage of the slow convergence property, recursive
least squares (RLS) algorithm is an alternative which minimizes
the “least squares” instead of “mean-square error,” and conse-
quently, no statistical information about the received signal and
the transmitted input data is required. The reference [3] has
been popularly cited in the literature. There are some more pa-
pers that proposed the approaches based on “steepest decent”
algorithm [1], [4], [5]. A notable feature of the proposed ap-
proach in [3] is that any noise statistics are not required to be
known nor assumed to be Gaussian, which might be a big ad-
vantage in practice. Nonetheless, its well known disadvantage is
that the algorithm converges slowly; besides that, it requires a
constraint that all elements of the initial equalizing coefficients
of the reference taps except for one element should be zero, and
the non-zero element must be greater than a threshold that is
determined by the true initial channel impulse response for re-
liable convergence even though the the constraint is a sufficient
condition rather than a necessary condition. The approaches in
the second category are based on the second-order or higher-
order statistics of the received signal. Based on the second-order
statistics (autocorrelation) of the received signal, CIR is esti-
mated by using the cyclostationary property of the received sig-
nal [6], [7]. The channel also can be estimated explicitly from
the forth-order cumulants of the received signal [8], [9]. The tri-
cepstrum equalization algorithm (TEA) based on the forth-order
statistics of the received signal was proposed in [10], where
the trispectrum is the three dimensional discrete fourier trans-
form of the fourth-order cumulant sequence. Finally, methods
in the last category employ the maximum likelihood (ML) ap-
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proaches that are based on the Viterbi algorithm. Contrary to
traditional ML equalizers that require the batch of the received
signal, and cause the delayed estimation, the per-survival pro-
cessing (PSP) method jointly estimates the transmitted symbol
and channel sequentially from the updated received signal [11],
[12]. Among the blind equalization methods in the three cate-
gories, maximum likelihood criterion is optimal although it may
require large computational complexity, especially when the ISI
spans many symbols.

In addition to the methods described above, there are some
more contributions to the development of the blind equalizers;
specifically, the effort was made with less information [13], such
as noise statistics in addition to the blind condition. The pro-
posed methods in [14], [15] are based on unknown statistical in-
formation of the input signal; however, the noise statistics of the
received signal are needed. In [16], the transmitted symbols are
estimated by integrating out the channel parameter and the noise
variance of the received signal with the assumption that the noise
of the received signal is Gaussian, and this method benchmarks
the approach proposed in [17]. Joint channel and transmitted
symbol estimation schemes are proposed to tackle the flat [18]
and frequency-selective fading channels [19] by employing par-
ticle filtering (PF), where a strategy of “Rao-Blackwellization”
[20] or equivalently “mixture filtering” scheme is employed by
combining a couple of different estimators. PF is adopted for
symbol estimation, and the Kalman filtering (KF) or RLS algo-
rithm is applied for channel estimation in [18], [19].

In this paper, we propose a number of mixture filtering ap-
proaches to blind equalization where recently developed cost
reference particle filter (CRPF) [21], [22], [23] and either H∞
filter (HF) [24], [25], LMS algorithm, or RLS algorithm are
jointly employed in order to estimate transmitted symbols and
CIR at the same time without using any known preamble sym-
bols. These coupled schemes are similar to that of “particle fil-
tering” and the “KF” as employed in [19]. However, the most
salient feature of the proposed approaches is that they do not re-
quire the information of the noise statistics of the received sig-
nal, input signal, and time varying channel process noise in their
applications regardless of if the noise is Gaussian or not. We also
directly estimate CIR in this blind equalization where usually in-
verse CIR is employed for an equalizing filter. Based on the esti-
mated CIR, we infer the transmitted symbols in this blind equal-
ization approaches. Furthermore, even though CRPF works in
particle filtering framework, it does not require the intractable
computation of expected posterior density which is often neces-
sary for methods working in Bayesian framework; specifically,
in minimum mean square error criterion. Therefore, CRPF may
have an advantage in terms of computational cost in its appli-
cation compared to standard particle filtering. We model the
time-varying multi-path channel by auto-regressive (AR) rep-
resentation which also reflects Rayleigh fading; especially, the
proposed approaches show significantly better performance un-
der the AR(p) model with p = 1 (where p denotes the order of
AR process) which incurs less computational complexity than
higher-order models. Simulation results show that the mixture
filtering approaches of “CRPF and LMS algorithm” and “CRPF
and RLS algorithm” which do not take advantage of noise infor-
mation outperform the previously proposed approach [19] that

requires the noise information in its application. The mixture
approach of CRPF and HF also outperforms the mixture of PF
and KF even with unknown noise statistics when the employed
number of particles is small and signal to noise ratio (SNR) is
low.

The rest of this paper is organized as follows. In Section II, the
system model is described where the multi-path time-varying
channel is modeled by AR representation which also reflects
Rayleigh fading. Next, we introduce HF and CRPF algorithms
in addition to the rest of all individual methods that are em-
ployed for the mixture filtering approaches in Section III. The
proposed mixture filtering approaches are described in detail in
Section IV, and then the results of simulations are following
where the performance of the proposed approaches are assessed.
Finally, we make concluding remarks in the last section.

II. SYSTEM MODEL

A widely employed power spectrum density (PSD) model
for a mobile radio channel is “Jakes’ model” [26]. The PSD
can be obtained by: computing the autocorrelation function of
the transfer function of time-varying multi-path channel, and
then taking the Fourier transform of the autocorrelation func-
tion. Then, the PSD is expressed as follows.

S(f) =

{ 1

πfm

√

1−( f
fm

)2
, |f | ≤ fm

0, |f | > fm
(1)

where fm is the maximum Doppler frequency shift that is deter-
mined by the mobile terminal speed and the carrier frequency. In
reverse, this PSD can be modeled by an AR process [27] which
can be driven by an input of white random process through an
all-pole model of an infinite impulse response (IIR) filter. There-
fore, The dynamic state equation of CIR is expressed by (2)
when we assume (L + 1) multi-paths of the received signals.
In (2)
k : Sampling time index
η : Coefficient of the denominator of IIR filter
p : Order of AR(p) process
I : (L+ 1)×(L+ 1) identity matrix

0A : (L+ 1)×(L+ 1) zero matrix
0ν : (L+ 1)×1 zero vector
D : Coefficient of the numerator of IIR filter
hk : The state vector [hk hk−1 · · · hk−p+1]

⊤ where ⊤ de-
notes the transpose.

hk : The channel impulse response vector at time k and is
equal to [hk,0 hk,1 · · · hk,L]

⊤ where each element is a
complex value.

vk : White noise vector, [vk,0 vk,1 · · · vk,L]
⊤ where each ele-

ment is a complex value, and real and imaginary part have
the same variance.

And, the dimension of the matrices are: [hk] = p · (L+ 1)× 1;
[A] = p · (L + 1)× p · (L + 1); [νk] = [hk]; and η and D are
determined according to fm. Then, we obtain the corresponding
transfer function with the input vk and the output hk as follows.

H(z) =
D

1− η1z−1 − η2z−2 · · · − ηpz−p
(3)
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Then, |H(f)|2 will approximate PSD (1) [12]. If each element
of the input vk is complex Gaussian distributed with the same
variance, the output envelope will be Rayleigh distributed. The
time-varying and multi-path channel has been modeled as a
frequency-selective fading channel, and the mobile radio chan-
nel also reflects Rayleigh fading. We assume that the signaling
time and the sampling period have the same value, and they are
synchronized as well. Then, the received signal at the receiver
after filtering through an ideal low pass filter is expressed as fol-
lows:

yk = b⊤k hk + wk (4)

where transmitted symbols bk = [bk bk−1 · · · bk−L 0b · · · 0b]
⊤

whose dimension is p · (L + 1) × 1; [0b] = 1 × (L + 1); and
wk is additive noise. The variance of wk is unknown, and fur-
thermore, it does not have to be Gaussian for equalization by the
proposed approaches in this paper. Note that the measurement
(4) is independent of the IIR filter order p, but only depends on
the channel length (L+ 1).

III. FILTERING METHODS

In this paper, LMS and RLS algorithms, the KF, HF, PF,
and CRPF are employed for a number of mixture filtering ap-
proaches. In this section, we explain about CRPF and HF that
are not well-known to researchers, before we propose the mix-
ture filtering approaches in the next section; and details of the
relatively well-known algorithms of LMS, RLS, KF, and PF are
not described in this paper. The methods are explained based
on the previously described system model related to the equal-
ization problem under investigation. LMS algorithm, RLS algo-
rithm, the KF, and HF are used for CIR estimation while PF and
CRPF are employed for symbol estimation.

A. H∞ Filtering

HF is employed for CIR estimation, and estimated symbol
b̂ is provided by CRPF in the mixture filtering algorithm that
will be introduced in the following section. Proposed discrete
time HF in this paper is originally designed and proposed based
on game theory approach (specifically, zero-sum game) in sev-
eral papers, such as [28] and [24], etc. Therefore, the approach
is basically more like game theory approach rather than conven-
tional HF that is originally employed in control theory area. The
original HF has not been popularly employed due to its level of
mathematical understanding and the necessity of a good model-
ing of the system. The discrete time HF designed in [24], [28]
was motivated by continuous time HF that has been designed in
[29], [30], etc. These game theory-based HFs are well-designed

for the estimation of parameters that are modeled by the dis-
crete time dynamic state system that includes the state process
noise of the dynamic state system. The “cost function” in terms
of “game theory,” or in other words, “H∞ norm” in terms of HF
is defined, and minimized in game theory-based discrete time
HF. In the zero-sum game, the cost function is designed on the
basis of the strategy that the probability of maximum expected
point-loss is minimized regardless of the strategy of the oppo-
nent; therefore, in the game of HF, the filter is a player prepared
for the worst strategy that the other player (the nature) can pro-
vide, and the goal is providing an uniformly small estimation
error for any processes and measurement noises and any initial
states. Consequently, we do not have to know the noise statis-
tics of the “dynamic state system” and “measurement” noises
for the filtering process. The filtering scheme of HF is similar to
that of the KF. However, HF does not require the statistics of the
state and measurement noises regardless of if it is Gaussian or
not. Moreover, whereas the mean square error is minimized in
the KF, the worst case error (or maximized error) is minimized
in HF. This is why the KF may also be referred to as H2 filter.
More specifically, the norm or the cost function is defined in HF,
and the maximum norm, which is specifically called H∞ norm,
is minimized. Related to the system equations (2) and (4), HF
estimates hk with uniformly small errors given arbitrary wk,
νk, and h0. This idea is very similar to the case of the zero-sum
game where maximum benefit-loss is minimized. Therefore, the
cost function related to the zero-sum game is defined as follows
[24] based on the system equations (2) and (4).

J =

∑N−1
k=0 ‖ hk − ĥk ‖2χk

‖ h0 − ĥ0 ‖2
P

−1
0

+
∑N−1

k=0

(

‖ νk ‖2
W

−1
k

+ ‖ wk ‖2
V

−1
k

)

(5)
where χk, P 0, W k, and V k are the weight parameters
that are positive definite matrices; and ‖ νk ‖2

W
−1
k

denotes

νk
⊤W−1

k νk. If interested in estimating the second element of
hk, then χk(2, 2) should be large relatively to other elements
of χk. If it is known that the second element of w(k) is small,
then V k(2, 2) is chosen to be small relatively to other elements.
Direct minimization of J is not tractable; therefore, the perfor-
mance bound γ is introduced, and it satisfies J < γ−1. Then, J ′

is defined in (6) And, the problem becomes a matter of solving
the following minimax problem.

min
ĥk

(

max
wk,νk,h0

J ′

)

(7)

HF reduces to the KF when: γ = ∞; and the true covariance
matrices of the parameters are selected for χk, P 0, W k, and
V k; therefore, the KF does not guarantee any bound for the
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J ′ = −γ−1 ‖ h0 − ĥ0 ‖2
P

−1
0

+

N−1∑

k=0

[

‖ hk − ĥk ‖2χk
−γ−1

(

‖ νk ‖2
W

−1
k

+ ‖ wk ‖2
V

−1
k

)]

(6)

cost function from the HF point of view. When the bound γ is
selected, it has to satisfy the condition γχk < P−1

k +b̂kV
−1
k b̂

H

k

to maintain P k > 0.

B. Cost Reference Particle Filtering

In this paper, CRPF takes on a crucial role for a number of
proposed mixture filtering approaches. CRPF plays a role of es-
timating transmitted symbols while a number of the other al-
gorithms are jointly estimating the channel impulse response.
We introduce CRPF algorithm with its theoretical background,
specifically, for symbol estimation based on the system model
of (2) and (4).

CRPF has a couple of notable advantageous features: its com-
putational cost is not as expensive as that of PF because the
computation of the “expected posterior function” is not required
as opposed to the cases of approaches which work in Bayesian
framework including standard PF; more specifically, in mini-
mum mean square error criterion. In addition, the noise infor-
mation is not needed in its application [21]. The cost function
in CRPF, which is recursive and additive structure, is defined as

C(b
(i)
0:k|y1:k, λ) = λC(b

(i)
0:k−1|y1:k−1, λ) + ∆C(b

(i)
k |yk). (8)

Equation (8) is equivalently expressed in a simple form as
C
(i)
k = λC

(i)
k−1 + ∆C

(i)
k where i indicates the particle index, λ

is the forgetting factor 1 (0 ≤ λ ≤ 1) which makes it possible
to adaptively change the amount of contributions of past parti-
cles in evaluating cost function, and ∆C is the “incremental cost
function” which indicates the accuracy of the particle b

(i)
k for

given yk; the cost increment can be computed by

∆C
(i)
k = ‖ yk −

[

b
(i)
k

]H

h
(i)
k ‖q (9)

where q > 0, H denotes the Hermitian transpose, and h
(i)
k is as-

sumed to be given by another algorithm in the manner of mixture
filtering. The cost function is a measure of “estimate quality”
like the weight as in PF. Similarly to PF, the cost-based random
measure is represented by a set of particles and associated costs

as given by Ξk =
{

b
(i)
k , C

(i)
k

}M

i=1
where M is the total num-

ber of used particles. In addition to the cost function, the “risk
function” is defined in CRPF as

R(b
(i)
k |yk) = ∆C

(

E
[

h
(i)
k

]

|yk
)

= ∆C
(

Ah
(i)
k−1|yk

)

. (10)

A good choice of the risk function is given by

R(b
(i)
k |yk) = ‖ yk −

[

b
(i)
k

]H

· [Ah
(i)
k−1] ‖

q (11)

where q > 0, and ‖ · ‖ denotes the norm of the vector. The
risk function measures the adequacy of the particle b(i)k (equiva-
lently corresponding h

(i)
k−1) given the observation yk. Also, the

1At the same time, λ avoids attributing an excessive weight to old observations
when a long series of data are available [21].

risk function is a prediction of the cost increment ∆C(b
(i)
k |yk).

Then the “predictive cost function” which includes the risk term
is defined as R(i)

k = λC
(i)
k−1+R(b

(i)
k |yk). Based on above defini-

tions, the sequential algorithm proceeds by recursively repeating
the steps of “risk evaluation,” “resampling,” “particle propaga-
tion,” and “updating the cost” with time. CRPF has almost the
same computational complexity as PF even though CRPF has a
few more steps than PF in each iteration; therefore, CRPF has
considered to have O (M ) complexity. More details of CRPF
and its applications can be referred to [21], [22], and [31].

Each algorithm has different requirement for information of
noise and equation parameters in its application. In this paper,
the measurement equation (4) can be specified once the chan-
nel length (L + 1) is determined; nonetheless, the measure-
ment noise information can not be determined without assum-
ing it to be known. Even though the parameters of the dynamic
state equation (2) is determined according to the order of AR(p)
model and Doppler shift, a method such as LMS algorithm does
not require the parameters such as A, η, and D; moreover, LMS
algorithm is not concerned about if the state noise or input noise
v is Gaussian or not, and its algorithm is the simplest among
the considered approaches. Similar requirement regarding the
noise and parameter information is needed for RLS algorithm
although it has more steps than LMS algorithm. CRPF and HF
are another approaches that do not require the noise information
although they need the state equation parameters such as A, η,
and D; CRPF does not need D. Both LMS and RLS algorithms
do not need any of the required information described above for
CRPF and HF that is because CRPF and HF are designed for
the problems which are described by the dynamic state system,
and usually the parameters of the state equation are assumed to
be known in their applications. On the contrary, PF and the KF
need all information of the state equation parameters and noise
information; moreover, in the application of the KF, we need to
assume that the noises of the state equation and observation to
be the Gaussian distributions. In the following section, we pro-
pose a number of mixture blind equalization approaches, and
describe the details about them.

IV. MIXTURE FILTERING APPROACHES

In this section, we describe a number of newly proposed mix-
ture filtering approaches. PF and the KF are jointly employed
in [19], and we abbreviate the name of this approach as “PF-
KF” from here on. Whereas much more information of the state
equation parameters and the noise information (furthermore, it
has to be Gaussian) is needed in the application of PF-KF, much
less information is needed in applications of the proposed ap-
proaches in this paper. Three approaches proposed here are enu-
merated as “CRPF and LMS algorithm (CRPF-LMS),” “CRPF
and RLS algorithm (CRPF-RLS),” and “CRPF and HF (CRPF-
HF),” respectively. They jointly estimate the transmitted sym-
bols and time-varying multi-path channel in the manner of mix-
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ture filtering scheme [20]. The contributions of this paper is
proposing these joint estimation approaches to blind equaliza-
tion with less-information provided. These equalizers have se-
vere depth of blindness in their applications.

A. Mixture Algorithm of CRPF and LMS

CRPF and LMS jointly estimate the transmitted symbols and
CIR, respectively, in the algorithm. Among the considered mix-
ture approaches, CRPF-LMS has the lowest computational com-
plexity since LMS algorithm requires the minimum number of
steps. As long as the performance of the approach is satisfied,
this approach might be the most efficient in terms of computa-
tional complexity. A value between 0 and 2 is usually selected
as the step size ǫ of LMS algorithm. It may improve the perfor-
mance of the method if an appropriate value of ǫ is carefully cho-
sen in the application. Along with the mixture of CRPF-RLS,
this approach requires the least information of the problem, and
almost none is required for its application once the Doppler shift
is provided. We describe the detailed steps of the algorithm as
follows:

I) Initialization: (for i = 1, · · ·,M ) Assign the initial cost
C
(i)
0 = 0, initialize the initial state h

(i)
0 , and select the step

size ǫ for LMS algorithm.

II) Recursive update: for k = 1, · · ·,K (the total time steps
or symbols)

1. Generate (for i = 1, · · ·,M ) b
(i)
k from uniformly

distributed symbols.
2. Compute (for i = 1, · · ·,M )

a) The predictive cost R(i)
k =

λC
(i)
k−1+ ‖ yk −

[

b
(i)
k

]H

· [A ·h
(i)
k−1] ‖

q for q > 0.

b) Probability mass function (PMF), π̃
(i)
k ∝

µ1(R
(i)
k ) = 1

(

R
(i)
k

−min
{

R
(i)
k

}M

i=1
+κ

)β , where

κ, β > 0: small value of κ is to ensure the de-
nominator is not zero.

3. Take the selection step, or resampling

Ξ̌k−1 =
{

ȟ
(i)

k−1, Č
(i)
k−1, b̌

(i)

k

}M

i=1
according to π̃

(i)
k

where “ˇ” denotes the resampled version.
4. Update (for i = 1, · · ·,M ) h(i)

k from ȟ
(i)

k−1 by LMS
algorithm.

a) e(i)k = yk −
[

b̌
(i)

k

]⊤

ȟ
(i)

k−1. b) h(i)
k = ȟ

(i)

k−1 +

ǫe
(i)
k

[

b̌
(i)

k

]∗

where ∗ denotes complex conjugate.
5. Compute the cost (for i = 1, · · ·,M ),

C
(i)
k = λČ

(i)
k−1+ ‖ yk −

[

b̃
(i)

k

]H

h
(i)
k ‖q,

and normalized PMF,
π
(i)
k ∼ µ2

(

C
(i)
k

)

= 1
(

C
(i)
k

−min
{

C
(i)
k

}M

i=1
+κ

)β .

6. Compute the MAP estimate of the symbols and
MMSE of CIR.

a) Estimation of b1:k =
b̂1:k = argmaxb1:k

[
∑M

i=1 δ
(

b1:k − b̃
(i)

1:k

)

π
(i)
k

]

where,
δ(·) denotes the Kronecker-delta function

b) Estimation of hk = ĥk = hmean
k =

∑M
i=1 π

(i)
k h

(i)
k .

At the step of II)-4, usually new particles are generated by us-
ing the Gaussian propagation density with the current particle
as the mean and a properly selected variance; and usually es-
timated parameter of interest is in the “state” rather than in the
measurement equation. The generated particle is the transmitted
symbol in this paper; nonetheless, each symbol particle is asso-
ciated with a specific CIR particle. Therefore, CRPF does not
require the initialization and computation of the variance for the
particle propagation density in this paper. The initialization of
the variance is crucial part in the original application of CRPF
for satisfactory performance of the algorithm.

B. Mixture Algorithm of CRPF and RLS

In the mixture algorithm of CRPF and RLS method, RLS
method replaces the role of LMS method in CRPF-LMS. RLS
algorithm is computationally more complex than LMS algo-
rithm while it is less complex than the KF and HF. The feature
of CRPF-RLS is very similar to that of CRPF-LMS except the
first has slightly higher computational complexity than the sec-
ond; therefore, if both approaches have similar performances,
then it might be more efficient to employ CRPF-LMS rather
than CRPF-RLS in terms of computational complexity. Addi-
tionally, CRPF-RLS is less tractable than CRPF-LMS because
we have to select another coefficient while CRPF-LMS requires
the decision of only one coefficient in the algorithm. A value
between 0 and 1 is selected for the forgetting factor Λ, and ∆
is a small positive value. These two coefficients may need to be
chosen carefully if better performance is required. The details
of the algorithm are described as follows:

I) Initialization: (for i = 1, · · ·,M ) Assign the initial cost
C
(i)
0 = 0, select the forgetting factor Λ and the value ∆ to

initialize P(i)
k , then compute P(i)

0 = ∆−1I where I is the
p(L+1)×p(L+1) identity matrix, and initialize the initial
state h(i)

0 .

II) Recursive update: for k = 1, · · ·,K (the total time steps
or symbols)

1. – 3. Identical with the steps as in CRPF-LMS.
4. Update (for i = 1, · · ·,M ) h(i)

k from ȟ
(i)

k−1 by RLS
algorithm.

a) z
(i)
k = P

(i)
k−1

[

b̌
(i)

k

]∗

b) g
(i)
k = z

(i)
k /

(

Λ +
[

b̌
(i)

k

]H

z
(i)
k

)

c) α
(i)
k = yk −

[

b̌
(i)

k

]H

ȟ
(i)

k−1

d) h
(i)
k = ȟ

(i)

k−1 + α
(i)
k g

(i)
k .

e) P
(i)
k = Λ−1

{

P
(i)
k−1 − g

(i)
k

[

z
(i)
k

]H
}

5. – 6. Identical with the steps as in CRPF-LMS.
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C. Mixture Algorithm of PF and the Kalman Filter

The KF is used for CIR estimation when it is jointly employed
with PF for equalization [19]. As opposed to the cases of LMS
and RLS, the KF requires much more information such as A,
D, the covariance of the state noise ν, and the variance of the
measurement noise w. Besides, the KF assumes both noises
are Gaussian for satisfactory performance. The feature of PF is
simulation-based approximation technique, and consequently, it
works very well for the problems that are modeled by nonlinear
functions of the state, and moreover, the noise does not need to
be Gaussian; nonetheless, the information of noises ν and w in
(2) and (4) has to be known in its application. The generic PF
with two kinds of proposal densities (optimal density and prior
density) were employed in [19]; the generic PF with prior pro-
posal density is identical with sequential importance resampling
(SIR) PF if the resampling process is performed every time step.
We consider SIR PF in this paper, and the details of the algo-
rithm can be referred to [19]. This approach requires the most
amount of information in its application; furthermore, the noises
of the equations are assumed to be Gaussian distributed due to
the application of the Kalman algorithm. The algorithm also has
the highest computational complexity; therefore, significant per-
formance superiority might be required for this algorithm at the
expense of high computational complexity.

D. Mixture Algorithm of CRPF and H∞ Filter

Both CRPF and HF do not need the noise information of the
state and the measurement equations; and, both algorithms do
need the parameter information of the state equation. Therefore,
this mixture seems to be very similar to PF-KF approach except
that it does not need the noise information regardless of if it is
Gaussian or not. Detailed steps of the proposed mixture filtering
approach are described as follows:

I) Initialization: (for i = 1, · · ·,M ) Initialize the bound
γ and weighting parameters for HF, assign the initial cost
C
(i)
0 = 0, and nitialize the initial state h

(i)
0 .

II) Recursive time update: for k = 1, · · ·,K
1. – 3. Identical with the steps as in CRPF-LMS.
4. Compute a bank (M ) of HF steps,

a) S
(i)
k =

{

I − γχkP
(i)
k−1 +

[

b̃
(i)

k

]H

V −1
k b̃

(i)

k P
(i)
k−1

}−1

b) H
(i)
k = AP

(i)
k−1S

(i)
k

[

b̃
(i)

k

]⊤

V −1
k .

c) h
(i)
k = Ah̃

(i)

k−1 +H
(i)
k

[

yk −
[

b̃
(i)

k

]⊤

h̃
(i)

k−1

]

.

d) P
(i)
k = AP

(i)
k−1S

(i)
k AH

k +W k.
5. – 6. Identical with the steps as in CRPF-LMS.

V. SIMULATIONS

In this section, we assess the performance of the proposed
mixture filtering approaches via computer simulations. In sim-
ulations, we vary the channel length and/or the order of AR
model to investigate the performance of the approaches under
various scenarios; besides, we also look into the effectiveness

to the performance when we employ various numbers of parti-
cles. Bit error rate (BER) performance is evaluated by using the
differential quadrature phase shift keying (DQPSK) modulation
scheme. More specifications of the simulation parameters are
summarized in Table 1. We consider the order of AR model p
up to 3; then the parameters in the state equation (2) changes
according to p. If p = 1, η1 = 0.9850, and D = 0.015. If
p = 2, η1 = −0.5017, η2 = −0.9944, and D = 2.4961.
If p = 3, η1 = 0.4833, η2 = −0.5002, η3 = 0.9795, and
D = −0.0374, respectively. The coefficientµ of LMS algorithm
in CRPF-LMS is selected carefully depending on channel mod-
els. The coefficients Λ and ∆ of RLS algorithm in CRPF-RLS
has to be carefully selected as well. We tried to run the simula-
tions with various coefficients of LMS and RLS algorithms for
each channel model, and selected the one which generated the
best performance. On the other hand, once the parameters of HF
and CRPF are properly selected for a channel model, it gener-
ally works well for the rest of channel models as well; therefore,
we apply the same set of parameters for HF and CRPF regard-
less of the channel model. The coefficients of the LMS and RLS
algorithms in their mixture filtering approaches are selected as
follows:

• When L = 1 and p = 1: µ = 0.6 for LMS; Λ = 0.8 and
∆ = 0.8 for RLS.

• When L = 2 and p = 1: µ = 0.4 for LMS; Λ = 0.8 and
∆ = 0.8 for RLS.

• When L = 3 and p = 1: µ = 0.1 for LMS; Λ = 1 and
∆ = 0.8 for RLS.

• When L = 4 and p = 1: µ = 0.1 for LMS; Λ = 1 and
∆ = 0.8 for RLS.

It is noted that ∆ of RLS is consistent regardless of the chan-
nel model. We have simulated for higher-order AR models.
The simulation results showed that CRPF-LMS and CRPF-RLS
failed to track time-varying CIR, and consequently failed to de-
tect the transmitted symbols properly. This is because LMS and
RLS algorithms do not require the parameters information of the
state equation while the KF and HF need and use them. Even
for CRPF-HF and PF-KF, their performance is clearly degraded
in accordance with the complexity of the channel model and the
results may not show satisfactory performance with increased
order p.

The total number of sampled received signal is 1000. The
number of employed particles is selected within the range
{10, 20, 50, 100, 200} one by one. The initial true CIR h0 is
generated from complex Gaussian of “CN (0, 1)” for each sig-
nal ray depending on the value L. The initial, given estimate of
CIR ĥ0 is generated randomly in the same manner as the true
initial value is generated (the identical initial particles are gen-
erated as h(i)

0 = ĥ0, i = 1, · · · ,M ). The noise variance of wk

is selected according to the predetermined SNR of the measure-
ment at every sampling instant. The parameters for CRPF are:
q = 1; λ = 0.95; κ = 0.1; and β = 2. The parameters for HF
are: γ = 0.001; V = 1; P 0 = 0.5I; W k = W = I; χk = I .
The performance is assessed over 20,000 simulated runs. Then
the simulation results are following.

Although we can obtain considerably improved BER perfor-
mance by employing forward error correction (FEC) and inter-
leaving scheme in the algorithms, we focus on the performance
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Table 1. Simulation scenario.

Channel model Auto-regressive model
Modulation scheme Differential quadrature phase shift keying
Speed of receiver terminal 100 km/h (about 62 miles/h)
Symbol rate 218 kBd
Carrier frequency 5.82 GHz
fD (Doppler shift) 539 Hz

of considered algorithms in terms of estimation accuracy rather
than error correcting scheme by channel coding.

A. Simulation Results

The BER performance results are compared in Figs. 1−12
when p = 1 and L = 1, · · ·, 4.

CRPF-HF shows similar performance to that of PF-KF under
the specific condition that the employed number of particles is
small with low SNR as shown in Figs. 2, 4, 6, and 8; nonethe-
less, CRPF-HF is outperformed by PF-KF if SNR is increased
in that situation. Therefore, CRPF-HF is more robust against
the unfavorable situation that the employed number of particles
is small and SNR is low even with unknown noise information.
However, this is not true anymore under the situation that the
channel is modeled by a higher order AR representation, and
PF-KF outperforms CRPF-HF even when the number of parti-
cles is small and SNR is low although we did not included the
result of it due to limited space.

For channel models with p = 1, PF-KF shows high perfor-
mance with a significantly increased number of particles and
low SNR. The performance margin of CRPF-HF with an in-
creased number of particles is not significant compared to that
of PF-KF with an increased number of particles when SNR is
low. The performance margin of CRPF-LMS and CRPF-RLS
with an increased number of particles is similarly not significant
when SNR is low compared to that of PF-KF; nonetheless, it
shows different story when SNR is higher, and CRPF-LMS and
CRPF-RLS outperform PF-KF with high SNR and large num-
ber of employed particles as shown in Fig. 1, Fig. 3, Fig. 5, and
Fig. 7.

In the results of Figs. 1−8, we find that CRPF-LMS filtering
shows the worst performance with low SNR regardless of the
number of particles employed; the performance of CRPF-RLS
is slightly better than that of CRPF-LMS, but still worse than the
other two appraoches when SNR is low as shown in from Fig. 1
to Fig. 8. With a large number of employed particles and high
SNR, CRPF-LMS and CRPF-RLS outperforms the other meth-
ods, and the performance of CRPF-LMS is slightly better than
that of CRPF-RLS; nonetheless, if SNR keeps on increasing,
the degree of performance improvement of these two methods
are gradually mitigated and somewhat converging whereas the
performance of PF-KF keeps on improving.

In Figs. 9−12, it shows BER performance of each approach
for all range of L together. The results show that the perfor-
mance of all methods is degraded with the increased L, which
makes the inter symbols interference more significant; espe-
cially, CRPF-LMS and CRPF-RLS show prominently good per-
formance with L = 1 as shown in Figs. 11−12. CRPF-HF and
PF-KF also show the best performance when L = 1; how-
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Fig. 1. BER comparison of approaches with 200 particles when L = 1 (2 rays)
and p = 1.
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Fig. 2. BER comparison of approaches with 10 particles when L = 1 (2 rays)
and p = 1.

ever, the gap between the performance with L = 1 and that
with L = 2 is not as much as those of CRPF-LMS and CRPF-
RLS. Therefore, it might be a great advantage to employ CRPF-
LMS and CRPF-RLS, especially CRPF-LMS, under the channel
model with L = 1 and p = 1.

In the cases for higher order of AR channel models, PF-KF
outperforms CRPF-HF, and the increased number of particles
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Fig. 3. BER comparison of approaches with 100 particles when L = 2 (3 rays)
and p = 1.
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Fig. 4. BER comparison of approaches with 10 particles when L = 2 (3 rays)
and p = 1.

does not make significant differences for CRPF-HF approach
whereas the performance is improved for PF-KF with increased
number of particles. The other two approaches, i.e., CRPF-LMS
and CRPF-RLS do not show considerably good performance be-
cause LMS and RLS algorithms are not able to track the channel
variations in the mixture filtering algorithms due to the lack of
the information of the state equation parameters.

In summary, it is inspiring that CRPF-HF shows outperform-
ing result with small number of employed particles and low
SNR, and CRPF-LMS and CRPF-RLS show outperforming re-
sults, especially CRPF-LMS shows the best performance with
large number of particles and SNR above 15 dB under the AR
channel representation with the order p = 1 regardless of the
number of rays. The proposed approaches in addition to the pre-
viously proposed Kalman mixture are summarized in Table 2.
The computational complexity (CC) of mixture filtering ap-

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

L=3, P=1, 200 part icles

SNR (dB)

B
it
e
rr
o
r
ra
te
(B
E
R
)

 

 

CRPF−HF 200

PF−KF 200

CRPF−LMS 200

CRPF−RLS 200

Fig. 5. BER comparison of approaches with 200 particles when L = 3 (4 rays)
and p = 1.
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Fig. 6. BER comparison of approaches with 10 particles when L = 3 (4 rays)
and p = 1.

proaches where a particle filtering is employed can be approxi-
mated by big O notation, i.e. “O(M)” where “M” is the number
of particles. Therefore all the proposed approaches and the pre-
viously proposed Kalman mixture approach has approximately
O(M) because all of them employ particle filtering approach
in the algorithms. The disadvantage of the particle filtering ap-
proaches is its relatively high computational complexity. Partic-
ularly, the mixture filtering approaches have approximately m
times higher CC than that of conventional maximum likelihood
equalization approaches.

We showed the result as a function of the maximum Doppler
shift when p = 1 with two-ray channels as shown in Fig. 13.
Furthermore, the BER result with the block coding as the func-
tion of the maximum Doppler shift was provided in Fig. 14
where the code word length is seven adn the message length
is three, respectively.
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Table 2. Blind equalization methods where CC stands for computational complexity.

Noise statistics Property Common property
CR-RLS Unknown Suboptimal with p = 1 With channel estimation
CR-LMS Unknown Optimal with p = 1 Without training symbols
CR-HF Unknown Optimal with low SNR and small numbers of particles CC, O(M)

PF-KF Known Suboptimal with p = 1
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Fig. 7. BER comparison of approaches with 200 particles when L = 4 (5 rays)
and p = 1.
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Fig. 8. BER comparison of approaches with 10 particles when L = 4 (5 rays)
and p = 1.

VI. SUMMARY AND CONCLUSIONS

The lower the channel length and the order of AR model are,
the better the performance of the proposed approaches is; lower
computational complexity is required for lower L and p as well.
CRPF-LMS and CRPF-RLS fail to track the time-varying CIR,
and consequently also fail to detect the transmitted symbols for
the AR channel model with 2 or higher although they outper-
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Fig. 9. BER of CRPF-HF filtering with 100 particles when p = 1 with various
L.
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Fig. 10. BER of CRPF-KF filtering with 100 particles when p = 1 with vari-
ous L.

form the other approaches for the AR (1) model, and CRPF-RLS
showed the best performance therein. This is because CRPF-
LMS and CRPF-RLS do not require the parameters information
of the state equation that are mainly determined by AR process
order and the maximum Doppler shift whereas CRPF-HF and
PF-KF require the state parameter information. Another notable
result is that CRPF-HF outperforms the other approaches when
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Fig. 11. BER of CRPF-LMS filtering with 100 particles when p = 1 with
various L.
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Fig. 12. BER of CRPF-RLS filtering with 100 particles when p = 1 with
various L.

the employed number of particles is small and SNR is low; es-
pecially, it outperforms PF-KF due to the reason that CRPF does
not approximate the posterior density by particles. More num-
ber of particles may be able to approximate the posterior density
more closely for standard PF, but this is not the case for CRPF.
Consequently, the effect of increasing the number of particles
is weaker in CRPF than that of PF, and also a small number of
employed particles does not necessarily mean that most of par-
ticles have low quality in CRPF. Although we can obtain signif-
icantly improved BER performance by employing forward error
correction (FEC, i.e., channel coding) and interleaving in the
algorithms, we focused on the performance of considered algo-
rithms in terms of estimation accuracy rather than error correct-
ing scheme. We leave this work as near future work by which we
can obtain significantly improved equalizing performance under
more practical scenarios (e.g., under low SNR).
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Fig. 13. BER of approaches when p = 1, two rays, with 300 particles as the
function of maximum Doppler shift (fD). The corresponding speeds are
approximately 37 m/s, 74 m/s, 111 m/s, and 148 m/s, respectively, for 0
Hz, 200 Hz, 400 Hz, 600 Hz, and 800 Hz. The signal to noise ratio was
maintained as 40 dB in this 3000 simulations.
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Fig. 14. BER of approaches with block coding when p = 1, two rays, with
300 particles as the function of maximum Doppler shift (fD). The corre-
sponding speeds are approximately 37 m/s, 74 m/s, 111 m/s, and 148 m/s,
respectively, for 0 Hz, 200 Hz, 400 Hz, 600 Hz, and 800 Hz. Cyclic block
codes were employed where the code word length is 7 and the message
length is 3, respectively. The signal to noise ratio was maintained as 40 dB
in this 3000 simulations.
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[17] J. Míguez, M. F. Bugallo, and P. M. Djuríc, “Blind equalization of
frequency-selective channels by sequential importance sampling,” IEEE
Trans. Signal Process., vol. 52, no. 10, pp. 2738–2748, Oct. 2004.

[18] J. H. Kotecha and P. M. Djuríc, “Blind sequential detection for Rayleigh
fading channels using hybrid Monte Carlo-rscursive identification algo-
rithms,” Signal Process., vol. 84, no. 5, pp. 825–832, May 2004.

[19] T. Ghirmai, J. H. Kotecha, and P. M. Djuríc, “Blind equalization for time-
varying channels and multiple samples processing using particle filtering,”
Digit. Signal Process., vol. 14, no. 4, pp. 312–331, July 2004.

[20] G. Casella, C. P. Robert, et al., “Biometrics unit technical reports: Number
bu-1252-m: Rao-blackwellization of sampling schemes,” Biometrics Unit
Technical Reports, 1994.
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