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Challenges and Some New Directions
in Channel Coding

Erdal Arıkan, Najeeb ul Hassan, Michael Lentmaier, Guido Montorsi, and Jossy Sayir

Abstract: Three areas of ongoing research in channel coding are
surveyed, and recent developments are presented in each area:
Spatially coupled low-density parity-check (LDPC) codes, non-
binary LDPC codes, and polar coding.

Index Terms: Channel polarization, low-density parity-check
(LDPC) codes, non-binary codes, polar codes, spatial coupling.

I. INTRODUCTION

THE history of channel coding began hand in hand with
Shannon’s information theory [1]. Following on the pio-

neering work of Golay [2] and Hamming [3], the majority of
linear codes developed in the early ages of coding theory were
“error correction” codes in the sense that their aim was to cor-
rect errors made by the channel. The channel was universally
assumed to be a binary symmetric channel (BSC). The study of
error correction codes culminated with the invention of Reed-
Solomon codes [4] in 1960, which are maximum distance sep-
arable (MDS) over non-binary fields and hence are guaranteed
to correct or detect the largest number of errors possible for a
given code length and dimension.

In parallel to the evolution of linear block codes, the invention
of convolutional codes by Elias in 1955 [5] lead to a different
approach and to the invention of trellis-based decoding methods
such as the Viterbi algorithm [6], [7] and the Bahl, Cocke, Je-
linek, and Raviv (BCJR) algorithm [8]. Both of these algorithms
can be easily adapted to any channel and hence generalise the
concept of error correction to general channels for which the
channel output alphabet is not necessarily the same as the input
alphabet. For such channels, it does not make much sense to
talk about “channel errors”. We now speak of “channel coding”
rather than “error correction coding”. Further progress in chan-
nel coding was made by Ungerboeck [9] by linking coding to
modulation for convolutional codes.

In 1993, Berrou and co-authors shocked the coding research
community in [10] by designing a coding system known as
“turbo codes” that achieved a quantum leap in the performance
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of codes over general channels. They obtained very good er-
ror performance within a small margin of the channel capacity,
something that had been thought impossible with practical sys-
tems and moderate complexity by most coding theorists. Yet
Berrou’s approach achieved this in an eminently implementable
system and with linear decoding complexity in terms of code
block length. In the subsequent scramble to explain the theory
behind this puzzling performance, a method originally devel-
oped by Gallager in his Ph.D. dissertation [11], known as low-
density parity-check (LDPC) coding was rediscovered in [12]
and shown to have comparable properties. Both these methods
have become the workhorses of modern communication stan-
dards, with arguments about the technical advantages of one
over the other mostly obscured by business and standardiza-
tion interests of who is arguing. What is clear and undisputed
is that LDPC codes are easier to explain and analyse and hence
should probably take precedence over turbo codes in teaching. It
is nowadays well known that both LDPC codes and turbo codes
can be viewed as sparse codes on graphs. As a consequence
they share a lot of properties, and any construction or analy-
sis method that can be applied to one of them can usually be
replicated for the other.

We could conclude this history of coding here and bury the
topic into dusty textbooks, sending it the same way as classi-
cal Newtonian mechanics1 and other topics made obsolete by
quantum leaps in research. Many coding researchers nowadays
are confronted with the recurrent “coding is dead” motto [13]
of experts claiming that, now that capacity is achieved, there is
nothing further to be researched in the field. In fact, as this pa-
per will contribute to showing, coding is still an ongoing and
very active topic of research with advances and innovations to
address important and practical unsolved problems.

Current hurdles in the applicability of modern coding tech-
niques can be classified in two categories:
Complexity While turbo and LDPC codes have brought
capacity-approaching performance within reach of imple-
mentable systems, implementable does not necessarily mean
practical. The complexity of codes that perform well under prac-
tical constraints such as limited decoding delay and high spec-
tral efficiency is still a major hurdle for low power implemen-
tations in integrated circuits. There is a serious need for new
methods that simplify code design, construction, storage, and
decoder implementation.
New applications Turbo and LDPC codes can be seen to
“solve” the capacity problem for elementary point-to-point
channels. Recent years have seen advances in information the-

1Apologies to mechanics researchers for the seemingly disparaging remark.
In fact, we are aware that classical mechanics is an ongoing and modern research
topic as evidenced by many journals and conferences, just as coding theory is.
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ory for many multi-user channels such as the multiple access,
broadcast, relay and interference channels. As communication
standards become more ambitious in exploiting the available
physical resources such as spectrum and geographical reach,
there is a push to switch from interference limited parallel point-
to-point protocols to true multi-user processing with joint en-
coding and/or decoding. There is a need for coding methods
that can do this efficiently for all of the scenarios described. Fur-
thermore, theory has gone further than pure communications by
expanding to distributed compression and joint source/channel
coding, distributed storage, network coding, and quantum chan-
nels and protocols. All of these new theories come with their
own requirements and constraints for coding, and hence coding
research is far from dead when it comes to these new applica-
tions.

The paper will present three areas of ongoing research in cod-
ing, all of which have some degree of relevance to the two chal-
lenges described.

In Section II, we will address spatially coupled LDPC codes,
which have a structure akin to convolutional codes. For spatially
coupled codes the asymptotic performance of an iterative de-
coder is improved to that of an optimal decoder, which opens
the way for new degrees of freedom in the code design. For ex-
ample, it is possible to achieve capacity universally for a large
class of channels with simple regular spatially coupled-LDPC
(SC-LDPC) codes where irregular LDPC codes would require
careful individual optimizations of their degree profiles. We
will discuss the design of SC-LDPC codes for flexible rates,
efficient window decoding techniques for reduced complexity
and latency, and the robustness of their decoding for mobile ra-
dio channels. In Section III, we will address non-binary LDPC
and related codes. These are codes over higher order alphabets
that can, for example, be mapped directly onto a modulation al-
phabet, making them interesting for applications requiring high
spectral efficiency. While these have been known for a while,
the complexity of decoding has made them unsuited for most
practical applications. In this section, we will discuss research
advances in low-complexity decoding and also present a class
of LDPC codes with an associated novel decoding algorithm
known as analog digital belief propagation (ADBP) whose com-
plexity does not increase with alphabet size and hence consti-
tutes a promising development for very high-spectral efficiency
communications. Finally, in Section IV, we will introduce po-
lar coding, a new technique introduced in [14] based on a phe-
nomenon known as channel polarization, that has the flexibility
and versatility to be an interesting contender for many novel ap-
plication scenarios.

II. SC-LDPC CODES

The roots of LDPC codes [11] trace back to the concept of
random coding. It can be shown that a randomly generated code
decoded with an optimal decoder exhibits very good perfor-
mance with high probability. However, such a decoder is infea-
sible in practice because the complexity will increase exponen-
tially with the code length. The groundbreaking idea of Gallager
was to slightly change the random ensemble in such a way that
the codes can be decoded efficiently by an iterative algorithm,

B = [3, 3]

B0 = B1 = B2 = [1, 1]

v1 v2 v3 v4 v5 v6

mcc = 2

B B0 B1 B2

=⇒

Fig. 1. Illustration of edge spreading: the protograph of a (3,6)-regular block
code represented by a base matrix B is repeated L = 6 times and the edges
are spread over time according to the component base matrices B0, B1,
and B2, resulting in a terminated LDPC code.

now known as belief propagation (BP) decoding. His LDPC
codes were defined by sparse parity-check matrices H that con-
tained a fixed number of K and J non-zero values in every
row and column, respectively, known as regular LDPC codes.
Gallager was able to show that the minimum distance of typi-
cal codes of the ensemble grows linearly with the block length,
which guarantees that very strong codes can be constructed if
large blocks are allowed. The complexity per decoded bit, on
the other hand, is independent of the length if the number of
decoding iterations is fixed.

The asymptotic performance of an iterative decoder can be
analyzed by tracking the probability distributions of messages
that are exchanged between nodes in the Tanner graph (den-
sity evolution) [15]. The worst channel parameter for which the
decoding error probability converges to zero is called the BP
threshold. The BP thresholds of turbo codes are actually bet-
ter than those of the original regular LDPC codes of Gallager
(see Fig. 2 of [15]). A better BP threshold is obtained by al-
lowing the nodes in the Tanner graph to have different degrees
[15]. By optimizing the degrees of the resulting irregular LDPC
code ensembles it is possible to push the BP thresholds towards
capacity. However, this requires a large fraction of low-degree
variable nodes, which leads to higher error floors at large signal-
to-noise ratios (SNRs). As a consequence of the degree opti-
mization, the capacity-achieving sequences of irregular LDPC
codes no longer show a linear growth of the minimum distance.

LDPC convolutional codes were invented by Jiménez Felt-
ström and Zigangirov in [16]. Like LDPC block codes, they are
defined by sparse parity-check matrices, which can be infinite
but have a band-diagonal structure like the generator matrices
of classical convolutional codes. When the parity-check matrix
is composed of individual permutation matrices, the structure
of an LDPC code ensemble can be described by a protograph
[17] (a prototype graph) and its corresponding base matrix B.
The graph of an LDPC convolutional code can be obtained by
starting from a sequence of L independent protographs of an
LDPC block code, which are then interconnected by spread-
ing the edges over blocks of different time instants [18]. The
maximum width of this edge spreading determines the memory,
mcc, of the resulting chain of length L that defines the LDPC
convolutional code ensemble. Since the blocks of the original
protograph codes are coupled together by this procedure, LDPC
convolutional codes are also called SC-LDPC. Fig. 1 shows an
illustration of the edge spreading procedure.
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A BP threshold analysis of LDPC convolutional codes shows
that the performance of the iterative decoder is improved sig-
nificantly by spatial coupling. In fact, the results in [19] show
that asymptotically, as L tends to infinity, the BP threshold is
boosted to that of the optimal maximum a posteriori (MAP) de-
coder. Stimulated by these findings, Kudekar, Richardson, and
Urbanke developed an analytical proof of this threshold satura-
tion phenomenon [20], [21]. More recently, potential functions
have been identified as a powerful tool for characterizing the
connection between MAP thresholds and BP thresholds [22].
All these approaches make use of the area theorem [23] in order
to derive bounds on the MAP threshold and prove threshold sat-
uration for spatially coupled codes. Since the MAP thresholds
of regular LDPC ensembles with increasing node degrees are
known to converge to capacity, it follows that spatial coupling
provides a new way of provably achieving capacity with low-
complexity iterative BP decoding - not only for the BEC but also
for the AWGN channel. Furthermore, the spatially coupled code
ensembles inherit from the uncoupled counterparts, the linearly
increasing minimum distance property [24]. This combination
of capacity achieving thresholds with low complexity decoding
and linearly increasing distance is quite unique and has attracted
a lot of interest in the research community.

The capacity achieving property of regular SC-LDPC codes
raises the question whether irregularity is still needed at all. In
principle, it is possible for any arbitrary rational rate to construct
regular codes that guarantee a vanishing gap to capacity with BP
decoding. On the other hand, for some specific code rates, the
required node degrees and hence the decoding complexity in-
crease drastically. But even if we neglect the complexity, there
exists another problem of practical significance that so far has
not received much attention in the literature: For large node de-
grees J and K , the threshold saturation effect will only occur
for larger values of the coupling parameter mcc, as illustrated
for the BEC in Fig. 2 [25]. We can see that for a given coupling
width w = mcc + 1, the gap to capacity becomes small only for
certain code rates R, and it turns out that these rates correspond
to the ensembles for which the variable node degree J is small.

Motivated by this observation, in [25] some nearly-regular
SC-LDPC code ensembles were introduced, which are built
upon the mixture of two favorable regular codes of same vari-
able node degree. The key is to allow for a slight irregularity
in the code graph to add a degree of freedom that can be used
for supporting arbitrary rational rates as accurately as needed
while keeping the check and variable degrees as low as possible.
These codes exhibit performance close to the Shannon limit for
all rates in the rate interval considered, while having a decoder
complexity as low as for the best regular codes. The exclusion of
variable nodes of degree two in the construction ensures that the
minimum distance of the proposed ensembles increases linearly
with the block length, i.e., the codes are asymptotically good.

A. Efficient Decoding of Spatially Coupled Codes

In order to achieve the MAP threshold, the number L of cou-
pled code blocks should be sufficiently large for reducing the
rate loss due to termination of the chain. But running the BP de-
coder over the complete chain of length L would then result in a
large latency and decoding complexity and hence is not feasible
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Fig. 2. Density evolution thresholds ǫBP for (J,K)-regular SC-LDPC ensem-
bles in comparison with the Shannon limit ǫSh. The coupling width w is
equal to mcc + 1. For a given rate R = 1 − J/K , the smallest pair of
values J and K are chosen under the condition that J ≥ 3. The ensembles
with minimum variable node degree J = 3 are highlighted with squares.

in practical scenarios. However, thanks to the limited width of
the non-zero region around the diagonal, SC-LDPC codes can
be decoded in a continuous fashion using a sliding window de-
coder [26] of size W (W ≪ L). As a result, decoding latency
and decoding complexity become independent of L. Moreover,
the storage requirements for the decoder are reduced by a factor
of L/W compared to a non-windowed decoder. An example of
the window decoder of size W = 4 is given in Fig. 3.

It has been shown in [27] that for equal structural latency, SC-
LDPC codes under window decoding outperform LDPC codes
for short to long latency values and outperform convolutional
codes from medium to long latency values. For applications re-
quiring very short latency, Viterbi decoded convolutional codes
were still found to be the optimal choice [27]–[29]. Note that
only structural latency was considered in all these comparisons
which is defined as the number of bits required before decod-
ing can start. It therefore can be concluded that for low trans-
mission rate applications (in the range of bit/seconds), convolu-
tional codes with moderate constraint length are favorable since
the delay in filling the decoder buffer dominates the overall la-
tency. Whereas, for applications with transmission rates in ex-
cess of several Gb/s., e.g., short range communication, medium
to large structural latency is tolerable and strong codes such as
SC-LDPC codes provide gain in performance compared to the
conventional convolutional codes. Another advantage of using a
window decoder is the flexibility in terms of decoding latency at
the decoder. Since the window size W is a decoder parameter,
it can be varied without changing the code, providing a flexible
trade-off between performance and latency [27].

In BP decoding, messages are passed between the check and
variable nodes according to a parallel (flooding) or serial (on-
demand) rule [30]. In both schedules, all the nodes in the graph
are typically updated at every decoding iteration (uniform sched-
ules). For both LDPC and SC-LDPC, a uniform serial decoding
schedule results in a factor of two in complexity reduction when
applied over the complete length of the code [30]. However, this
gain in complexity reduction reduces to only 20% when uniform
serial schedules are applied within a decoding window [31],
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Fig. 3. Window decoder of size W = 4 at time t. The gray variable nodes
represent decoded blocks and the black variable nodes (yt) are the target
block within the current window. The dashed lines represent the read access
to the mcc previously decoded blocks.

N

Nf Nf

α1 α2

Fig. 4. Illustration of block-fading channel for a codeword of length N and
F = 2.

[32]. In order to reduce the decoding complexity for window
decoding, non-uniform window decoding schedules has been
introduced in [31], [32], which result in 50% reduction in com-
plexity compared to uniform decoding schedules. The reduction
in decoding complexity can be achieved by avoiding unneces-
sary updates of nodes not directly connected to the first position
in the window. Only nodes that show improvement based on
their bit error rate (BER) compared to the previous iteration are
updated in the next iteration.

B. Performance over Mobile Radio Channels

One of the most remarkable features of spatially coupled
codes is their universality property, which means that a single
code construction performs well for a large variety of channel
conditions. For discrete-input memoryless symmetric channels
the universality of SC-LDPC codes has been shown in [21]. In
this section we consider the block-fading channel and demon-
strate that SC-LDPC codes show a remarkable performance on
this class of channels.

The block-fading channel was introduced in [33] to model
the mobile-radio environment. This model is useful because the
channel coherence time in many cases is much longer than one
symbol duration and several symbols are affected by the same
fading coefficient. The coded information is transmitted over a
finite number of fading blocks to provide diversity. An example
where a codeword of length N spreads across F = 2 fading
realizations is shown in Fig. 4. In general, when dealing with
block-fading channels, two strategies can be adopted: Coding
with block interleaving or coding with memory [34]. Spatially-
coupled codes, with their convolutional structure among LDPC
codes, are expected to be a nice example of the second strategy.

The block-fading channel is characterized by an outage prob-
ability, which serves as a lower bound on the word error prob-
ability for any code decoded using a maximum likelihood de-
coder. In terms of density evolution, the density evolution out-
age (DEO) is the event when the bit error probability does not
converge to zero for a fixed value of SNR after a finite or an
infinite number of decoding iterations are performed [35]. The
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Fig. 5. Density evolution outage for SC-LDPC codes with memory 0,1,2, and 3.
The bold lines represent the DEO and dashed lines represent the simulation
results when a code with N = 200, L = 100, is decoded using a window
decoder, F = 2.

probability of density evolution outage, for a fixed value of SNR,
can then be calculated using a Monte Carlo method considering
significant number of fading coefficients.

Since the memory of the code plays an important role to ex-
ploit code diversity, we consider SC-LDPC codes with increas-
ing memory from 0 to 3. The diversity of the code, which is
defined as the slope of the WER curve, is calculated numeri-
cally from the DEO curves presented in Fig. 5. For uncoupled
LDPC codes, the diversity is limited to d = 1.3 (see dotted line
in Fig. 5). This case can be interpreted as an SC-LDPC code
with mcc = 0. If we now increase the coupling parameter to 1,
2, and 3, then the diversity of SC-LDPC codes increases to 3, 6,
and 10, respectively [36]. The figure also shows the simulation
results (dashed lines) for finite length codes when the length of
each individual coupled code block is N = 200. The simulation
results match closely with the calculated DEO bounds.

An alternative approach to codes with memory is taken by
the root-LDPC codes [35] with a special check node structure
called rootcheck. Full diversity (d = F = 1/R) is provided
to the systematic information bits only by connecting only one
information bit to every rootcheck. However, designing root-
LDPC codes with diversity order greater than 2 requires codes
with rate less than R = 1/2. The special structure of the codes
makes it a complicated task to generate good root-LDPC codes
with high diversity (and thus low rate).

Another key feature of SC-LDPC codes is its robustness
against the variation in the channel. In case of root-LDPC codes,
the parity-check matrix has to be designed for the specific chan-
nel parameter F to provide a diversity of d = F to the infor-
mation bits. However for SC-LDPC codes, it can be shown that
the code design for a specific value of F is not required whereas
the diversity order strongly depends on the memory of the code.
This feature makes them very suitable for a wireless mobile en-
vironment.
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III. NON-BINARY CODES AND HIGH
SPECTRAL-EFFICIENCY CODES

As already mentioned, LDPC codes were originally proposed
by Gallager [11] and re-discovered by MacKay & al. [12] in the
years after the invention of turbo codes [10]. LDPC codes have
been adopted in several current standards, e.g., IEEE 802.11n
wi-fi standard, DVB-S2, T2, and C2 digital video broadcast-
ing standards for satellite, terrestrial, and cable channels, 10
GBase-T Ethernet over twisted pairs, G.hn/G.9960 home net-
working over power lines. Together with turbo codes, they are
the modern coding technique of choice when it comes to design-
ing communication systems that approach the theoretical limits
of physical transmission media in terms of data rate, transmis-
sion power, geographical reach and reliability.

All LDPC codes in current standards are binary codes. LDPC
codes over non-binary alphabets were mentioned in [11] and
fully described in [37]. They offer two practical advantages and
one major disadvantage with respect to binary codes:
• Advantage 1: Encoding directly over the q-ary alphabet

corresponding to the signal constellation used for modula-
tion saves the mapping and de-mapping operations needed
to transfer between binary coding alphabet and non-binary
modulation signal space. Furthermore, the de-mapping oper-
ation is costly in terms of complexity and introduces a loss of
sufficient statistic and a resulting performance loss that can
only be partially countered by proper choice of the mapping,
or fully recovered by costly iterations over the de-mapper and
the decoder. With non-binary codes, there is no mapping and
no loss of efficiency through de-mapping as the input mes-
sages to the decoder are a sufficient statistic for the trans-
mitted symbols, making non-binary LDPC codes a tempting
proposition for high spectral-efficiency coding over higher
order constellations.

• Advantage 2: Non-binary LDPC codes tend to exhibit less
of a performance loss when the block length is shortened to
accommodate delay constraints, as compared to binary codes.

• Disadvantage: The decoding complexity of LDPC codes in-
creases with the alphabet size.
The complexity issue has been addressed in a number of re-

finements of the non-binary LDPC iterative decoding algorithm.
The plain description of the decoder requires convolutions of
q-ary distribution-valued messages in every constraint node of
the associated factor graph. A first and appealing improvement
[37] is obtained by switching to the frequency domain where
convolutions become multiplications. While the savings by the
frequency-domain approach are significant, the resulting com-
plexity is still much higher than that of the equivalent binary
decoder. The currently least complex methods known for de-
coding non-binary LDPC codes are various realizations of the
extended min-sum (EMS) [38] algorithm. In this method, con-
volutions are evaluated directly in the time domain but messages
are first truncated to their most significant components, and con-
volutions are evaluated on the truncated alphabets, resulting in
a significant complexity reduction with respect to the q2 oper-
ations needed for a full convolution. Many technical improve-
ments of the EMS can be achieved by hardware-aware imple-
mentation of the convolution operations, e.g., [39], [40].

In this section, we discuss two current research areas related
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Fig. 6. Conceptual scenario for a degree 4 constraint node decoder

to non-binary codes. First, we will look at frequency-domain
methods that operate on truncated messages. The aim here is to
achieve a fairer comparison of complexity between the EMS and
frequency-domain methods, since much of the gain of the EMS
is achieved through message truncation, but in complexity com-
parisons it is evaluated alongside frequency domain decoders
operating on full message sets. In the second part of this sec-
tion, we will look at a novel non-binary code construction op-
erating over rings rather than fields, with a decoding algorithm
known as analog digital belief propagation (APBP) [41]. This
promising new approach has the merit that its complexity does
not increase with the alphabet size, in contrast to regular be-
lief propagation for LDPC codes over q-ary fields, making it an
appealing proposition for communications at very high spectral
efficiencies.

A. Frequency Domain Decoding with Truncated Messages

The ideal constraint node operation of an LDPC decoder op-
erating on a field F implements a Bayesian estimator for the
conceptual scenario illustrated in Fig. 6.

The estimator provides the a-posteriori probability distribu-
tion of code symbol X1 given the observations Y2, Y3, and Y4 of
the code symbols X2, X3, and X4, respectively, where the sum
of X1, X2, X3, and X4 is zero over F . Assuming that the input
to the decoder is provided in terms of a-posteriori probability
distributions PX2|Y2

, PX3|Y3
, and PX4|Y4

, i.e., as distribution-
valued messages, it follows that the distribution PX1|Y2Y3Y4

to
be computed is a type of convolution of the input distributions.
For example, if F = GF(3) , i.e., the field of numbers {0, 1, 2}
using arithmetic modulo 3, then the output probability that X1

be zero given Y2, Y3, and Y4 is the sum of the probabilities all
configurations of X2, X3, and X4 that sum to zero, i.e., 0,0,0
or 0,1,2 or 0,2,1 or 1,0,2 or 1,1,1 or 1,2,0 or 2,0,1 or 2,1,0
or 2,2,2. This case results in a cyclic convolution of the three
distribution-valued input messages. Over the more commonly
used binary extension fields GF(2m), where the sum is defined
as a bitwise sum, the corresponding operation is a component-
wise cyclic convolution in multi-dimensional binary space.

Convolution can be efficiently operated in the frequency do-
main. For a pure cyclic convolution such as the one illustrated
over GF(3), the transform required is the discrete Fourier trans-
form (DFT). The convolution of vectors in the time domain is
equivalent to the componentwise product of the corresponding
vectors in the transform domain. This process is illustrated in
Fig. 7. For the more practically relevant binary extension fields
GF(2m), the same process applies but the transform required is
the Walsh-Hadamard transform (WHT).

Both the DFT and the WHT can be operated efficiently using
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Fig. 7. Frequency domain convolution

a fast butterfly structure as the fast Fourier transform (FFT) or
the fast Hadamard transform (FHT), requiring q log q operations
where q is the alphabet size of the code. In a typical non-binary
LDPC decoder realization, these transforms despite their effi-
cient implementation still use up over 90% of the computing
resources and hence constitute the main hurdle for the practical
implementability of non-binary LDPC when compared to binary
LDPC codes. The approach of the EMS is to revert to time-
domain convolutions but operate them on reduced alphabet sizes
q′ ≪ q by truncating each incoming distribution-valued mes-
sage to its largest components. The resulting algorithm is more
difficult to operate than may at first appear, because in such par-
tial convolutions one needs to retain which output values emerge
from the mappings of the differing truncated alphabets of each
input message, so the implementation needs to perform oper-
ations in F in parallel to the convolution operations over the
probabilities. The complexity comparison becomes a compar-
ison between q′2 and q log q. For example, when operating in
GF(64), the complexity of the frequency-domain based decoder
is on the order of 6×64 = 384 operations per constraint node per
iteration, whereas the EMS with messages truncated to q′ = 8
is in the order of 8× 8 = 64 operations per constraint node per
iteration. An added benefit of performing convolutions in the
time domain is that one can operate in the logarithmic domain,
replacing products by max operations using the well established
approach that also underpins the min-sum method for decoding
binary LDPC codes.

The comparison described above is not completely fair be-
cause it fails to take into account that message truncation may
also be of benefit when operating in the frequency domain.
Specifically, evaluating a FHT for truncated messages can be
made more efficient if we neutralise all operations that apply to
the constant message tail corresponding to the truncated portion
of the message. In [42], the expected number of operations in a
FHT on truncated messages was evaluated both exactly and us-
ing an approximation approach that makes it easier to compute
for large alphabet sizes. The resulting comparison is promising
and shows that much can be gained in operating in the frequency
domain on truncated messages. The study however is limited to
the direct transform and stops short of treating the more diffi-
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Fig. 8. High spectrally efficient systems using binary codes and: (a) Pragmatic
receiver, (b) non-binary codes and non-binary BP, and (c) ADBP.

cult question of how to efficiently evaluate the inverse transform
when one is only interested in its q′ most significant output val-
ues.

B. LDPC Codes over Rings and ADBP

Consider the problem of designing a high-spectral-efficiency
transmission system making use of an encoder of rate rc and a
high order q-pulse amplitude modulation (PAM) constellation,
yielding a spectral efficiency η = rc log2(q) [bits/dimension].

The current state-of the art solution for such systems, adopted
in most standards, is the pragmatic approach of Fig. 8.(A). A
binary encoder is paired to a q-PAM modulation using an inter-
leaver and a proper mapping that produces a sequence of con-
stellation points. At the receiver a detector computes binary log-
likelihood ratios (LLRs) from symbol LLRs and passes them to
the binary iterative decoder through a suitably designed inter-
leaver. The complexity of the LLR computation is linear with q
and consequently exponential with the spectral efficiency η for
a general mapping without any structure that can be exploited
for low-complexity.

The feed-forward receiver scheme described above is associ-
ated to a “pragmatic” capacity that is smaller than that of the
modulation set and can be maximized using Gray mapping. The
feedback structure (dashed line in Fig. 8(a)) can recover this ca-
pacity loss if coupled with a proper binary code design. How-
ever, iterating between detector and decoder increases the re-
ceiver complexity as the conversion from bit to symbol LLRs
and vice versa is included in the loop, so that its complexity is
multiplied by the number of detector iterations.

A straightforward extension of an (N,K) binary encoder is
obtained by substituting the binary quantities at the input of the
encoder with q-ary symbols. Parity-check symbols are obtained
by performing modq sums instead of mod2 sums in the en-
coding procedure. The set of codewords is then defined as fol-
lows

C = {c ∈ Z
N
q : Hc = 0},
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where the matrix elements are constrained to take only value in
{0,±1}. The asymptotic properties of this class of codes were
studied in [43] and [44], where they were named “modulo-q”
or quantized coset (MQC) codes. Both papers showed that they
achieve the random coding exponent and thus are capable of
achieving capacity.

The q-ary output symbols c from the encoder can then
be directly mapped to q-PAM constellations. At the receiver
(Fig. 8(b)) the use of the regular non-binary BP iterative de-
coding algorithm requires computing the log-likelihood ratios
of the transmitted symbols in the form of (q − 1)-ary vectors.
For AWGN the LLRs take the following form

λ(ĉ) = −
Kn

2

[

|y − x(ĉ)|2 − |y − x(c0)|
2
]

, ∀c 6= c0

where Kn = 1/σ2
n is the concentration of the noise.

A straightforward implementation of non-binary BP results in
memory and complexity requirements of the order of O(q) and
O(q2), respectively. In order to reduce the complexity of non-
binary decoding, several decoding schemes have been proposed
in recent years. These were discussed in the previous section
and we summarize them again here.

The first straightforward simplification is obtained at check
nodes by replacing the discrete convolution of messages, hav-
ing complexity O(q2), with the product of the message Fourier
transforms. The use of FFT brings down the complexity to
O(q log q). In [45], the authors introduce a log-domain version
of this approach that has advantages in terms of numerical sta-
bility.

As mentioned before, some further simplifications have been
proposed in [38] with the EMS algorithm, where message vec-
tors are reduced in size by keeping only those elements in the
alphabet with higher reliability. In [39] and [46], the same au-
thors propose a hardware implementation of the EMS decoding
algorithm for non-binary LDPC codes.

In [47], the min-max algorithm is introduced with a reduced
complexity architecture called selective implementation, which
can reduce by a factor 4 the operations required at the check
nodes; however, complexity is still in the order of O(q2).

Several studies on VLSI implementation of non-binary de-
coders based on the previous algorithms have been presented in
literature [48]–[54]. The results of such studies confirm that all
non-binary decoders require complexity growing with the size
of the alphabet.

The ADBP algorithm proposed in [41] represents a break-
through in the reduction of the complexity and memory re-
quirements with respect to previous proposed algorithms, as for
ADBP both complexity and memory requirements are indepen-
dent of the size q of the alphabet. The main simplification of
ADBP is due to the fact that messages are not stored as vector
of size q containing the likelihood of the discrete variables (or
equivalently their LLRs) but rather as the two moments, or re-
lated quantities, of some suitable predefined class of Gaussian-
like distributions. ADBP can be cast into the general class of
expectation-propagation algorithms described by Minka [55].
The main contribution in [41] is the definition of the suitable
class of distributions for the messages relative to wrapped and
discretized variables and the derivation of the updating equa-

tions for the message parameters at the sum and repetition oper-
ations of the Tanner graph.

A receiver system using the ADBP (Fig. 8(c)), takes then as
input messages directly the pair (K, y) of the concentration of
the noise and the received samples. This pair identifies a member
of the predefined class of Gaussian-like likelihoods and ADBP
performs the BP updating by constraining the messages in the
graph to stay in the same distribution class.

The exact ADBP updating equations however are not suit-
able for a straightforward implementation due to the presence of
complex non linear operations. Some simplifications to the up-
dating equations have been presented in [56]. In [57], the prac-
tical feasibility of the ADBP decoding is established by provid-
ing post-synthesis results of a hardware implementation of the
required ADBP processing functions.

The ADBP decoder cannot be applied to all types of linear
codes over GF (q) as multiplication by field elements different
from±1 is not allowed in the graph. This constraint has not been
taken into consideration previously at the code design stage and
requires the construction of new and efficient codes. Although
[43] and [44] show that asymptotically this class of codes can
achieve capacity, in literature there are no examples of good
code constructions with finite size.

The exceptional complexity reduction achieved by using the
ADBP, together with the asymptotic results motivates further re-
search effort in the design of good LDPC encoders within this
class.

IV. POLAR CODES

Since its inception, the major challenge in coding theory has
been to find methods that would achieve Shannon limits using
low-complexity methods for code construction, encoding, and
decoding. A solution to this problem has been proposed in [14]
through a method called “channel polarization”. Rather than at-
tacking the coding problem directly, the polarization approach
follows a purely information-theoretic route whereby N inde-
pendent identical copies of a given binary-input channel W are
manipulated by certain combining and splitting operations to
“manufacture” a second set of binary-input channels {W (i)}Ni=1

that have capacities either near 0 or near 1, except for a fraction
that vanishes as N becomes large. Once such polarized chan-
nels are obtained, “polar coding” consists of transmitting infor-
mation at full rate over W (i) that are near perfect and fixing the
inputs of the remaining channels, say, to zero. In [14], it was
shown that polar codes contructed in this manner could achieve
capacity with encoding and decoding methods of complexity
O(N logN). In subsequent work [58], it was shown that the
probability of frame error for polar codes goes to zero roughly
as e−

√
N for any fixed rate below capacity; this result was later

refined by [59] who determined the explicit form of the depen-
dence of the exponent on the code rate.

The basic binary polar code is a linear code defined for any
block length N = 2n in terms of a generator matrix

GN = F
⊗n, F =

[

1 0
1 1

]

(1)
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where F
⊗m denotes the nth Kronecker power of F . In polar

coding one encodes a data word u = (u1, · · ·,uN) into a code-
word x = (x1, · · ·,xN) through the transformation x = uGN.
For a rate K/N polar code, one fixes N − K of the coordi-
nates of u to zero, effectively reducing GN to a K ×N matrix.
For example, for a (N,K) = (8, 4) polar code, one may fix
u1, u2, u3, u5 to zero and obtain from

G8 =

























1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

























the 4× 8 generator matrix

G4,8 =









1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1









.

The polar code design problem consists in determining which
set of (N − K) coordinates to freeze so as to achieve the best
possible performance under successive-cancellation (SC) de-
coding on a given channel. It turns out that the solution to this
problem depends on the channel at hand, so in general there is no
universal set of coordinates that are guaranteed to work well for
all channels of a given capacity. In [14], only a heuristic method
was given for the polar code design problem. The papers [60]–
[62] provided a full solution with complexity O(N). With this
development, polar codes became the first provably capacity-
achieving class of codes with polynomial-time algorithms for
code construction, encoding, and decoding.

Other important early theoretical contributions came in rapid
succession from [63]–[67]. Polar coding was extended to non-
binary alphabets in [68]–[71]. Polar code designs by using al-
ternative generator matrices with the goal of improving the code
performance were studied in [72]–[76].

As stated above, polar coding is a channel dependent design.
The performance of a polar code under “channel mismatch”
(i.e., using a polar code optimized for one channel on a different
one) has been studied by [77], who showed that there would be
a rate loss. As shown in [78], the non-universality of polar codes
is a property of the suboptimal low-complexity successive can-
cellation decoding algorithm; under ML decoding, polar codes
are universal. More precisely, [78] shows that a polar code opti-
mized for a BSC achieves the capacity of any other binary-input
channel of the same capacity under ML decoding. This result
is very interesting theoretically since it gives a constructive uni-
versal code for all binary-input channels; however, it does this at
the expense of giving up the O(N logN) decoding algorithm. In
more recent work [79] and [80], universal polar coding schemes
have been described, which come at the expense of lengthening
the regular polar code construction.

It was recognized from the beginning that the finite length
performance of polar codes was not competitive with the state-
of-the-art. This was in part due to the suboptimal nature of the

standard SC decoding algorithm, and in part due to the rela-
tively weak minimum distance properties of these codes. An-
other negative point was that the SC decoder made its deci-
sions sequentially, which meant that the decoder latency would
grow at least linearly with the code length, which resulted in a
throughput bottleneck. Despite these shortcomings, interest in
polar codes for potential applications continued. The reason for
this continued interest may be attributed to several factors. First,
polar codes are firmly rooted in sound well-understood theoreti-
cal principles. Second, while the performance of the basic polar
code is not competitive with the state-of-the-art at short to prac-
tical block length, they are still good enough to maintain hope
that with enhancements they can become a viable alternative.
This is not surprising given that polar codes are close cousins
of Reed-Muller (RM) codes, which are still an important family
of codes [81] in many respects, including performance. Third,
polar codes have the unique property that their code rate can
be adjusted from 0 to 1 without changing the encoder and de-
coder. Fourth, polar codes have a recursive structure, based on
Plotkin’s |u|u+ v| construction [82], which makes them highly
suitable for implementation in hardware. For these and other
reasons, there have been a great number of proposals in the last
few years to improve the performance of polar codes while re-
taining their attractive properties. The proposed methods may
be classified essentially into two categories as encoder-side and
decoder-side techniques.

Among the encoder-side techniques, one may count the non-
binary polar codes and binary polar codes starting with a larger
base matrix (kernel); however, these techniques have not yet at-
tracted much attention from a practical viewpoint due to their
complexity. Other encoder side techniques that have been tried
include the usual concatenation schemes with Reed-Solomon
codes [83], and other concatenation schemes [84]–[86].

Two decoder-side techniques that have been tried early on
to improve polar code performance are BP decoding [87] and
trellis-based ML decoding [88]. The BP decoder did not im-
prove the SC decoder performance by any significant amount;
however, it continues to be of interest since the BP decoder has
the potential to achieve higher throughputs compared to SC de-
coding [89].

The most notable improvement in polar coding performance
came by using a list decoder [90] with cyclic redundancy check
(CRC), which achieved near ML performance with complexity
roughly O(LN logN) for a list size L and code length N . The
CRC helps in two ways. First, it increases the code minimum
distance at relatively small cost in terms of coding efficiency,
thus improving code performance especially at high SNR. Sec-
ond, the CRC helps select the correct codeword from the set
of candidate codewords offered by the list decoder. It should be
mentioned that the above list decoding algorithm for polar codes
was an adaptation of an earlier similar algorithm given in [91]
in the context of RM codes. The vast literature on RM codes
continues to be a rich source of ideas in terms of design of ef-
ficient decoding techniques for polar codes. A survey of RM
codes from the perspective of decoders for polar codes has been
given in [92].

We end this survey by giving a performance result for polar
codes. Fig. 9 compares the performance of a (2048, 1008) polar
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Fig. 9. Performance comparison of polar and LDPC codes.

code with the WiMAX (2304,1152) LDPC code. The polar code
is obtained from a (2048, 1024) code by inserting a 16-bit CRC
into the data and is decoded by a list-of-32 decoder. The LDPC
code results are from the database provided by [93]; decoding
is by belief propagation with the maximum number of iterations
limited to 30 and 100 in the results presented. The realization
that polar coding performance can rival the state-of-the-art has
spurred intense research for practical implementations of these
codes. We omit from this survey the implementation-oriented
papers since that is already a very large topic by itself. Whether
polar codes will ever appear as part of the portfolio of solutions
in future systems remains uncertain. The state-of-the-art in error
correction coding is mature, with a firm footprint by turbo and
LDPC codes. Whether polar codes offer significant advantages
to make room for themselves in practical applications depends
in large part on further innovation on the subject.

V. CONCLUSION

We have presented three areas of active research in coding
theory. We discussed spatially coupled LDPC codes for which
the asymptotic performance of the iterative decoder is improved
to that of the optimal decoder. We have discussed non-binary
LDPC codes and have introduced a new decoding algorithm,
ADBP, whose complexity does not increase with the alphabet
size. Finally, we have described polar coding, a novel code con-
struction based on a phenomenon coined channel polarization,
which can be proved theoretically to achieve channel capacity.
We have stated a number of open problems, among them:
• When decoding non-binary LDPC codes in the frequency do-

main, can we design a reduced complexity inverse transform
if we are only interested in the larger components of the re-
sulting distribution-valued message?

• How do we design LDPC codes over rings of integers to op-
timize the performance of the ADBP decoder?

• While the potential of polar codes is already well-established,
how can we improve the performance of these codes either by
encoder or decoder side techniques while retaining their low-
complexity properties? Are there decoding techniques that

approximate ML performance with complexity significantly
lower than the existing list-decoding techniques?

We hope to have shown in this paper that coding theory is an
active area of research with many challenges remaining and a
number of promising innovations on their way to maturing into
technological advances in the coming years.
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