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Impact of Human Mobility on Social Networks
Dashun Wang and Chaoming Song

Abstract: Mobile phone carriers face challenges from three syner-
gistic dimensions: Wireless, social, and mobile. Despite significant
advances that have been made about social networks and human
mobility, respectively, our knowledge about the interplay between
two layers remains largely limited, partly due to the difficulty in
obtaining large-scale datasets that could offer at the same time so-
cial and mobile information across a substantial population over
an extended period of time. In this paper, we take advantage of
a massive, longitudinal mobile phone dataset that consists of hu-
man mobility and social network information simultaneously, al-
lowing us to explore the impact of human mobility patterns on the
underlying social network. We find that human mobility plays an
important role in shaping both local and global structural prop-
erties of social network. In contrast to the lack of scale in social
networks and human movements, we discovered a characteristic
distance in physical space between 10 and 20 km that impacts both
local clustering and modular structure in social network. We also
find a surprising distinction in trajectory overlap that segments so-
cial ties into two categories. Our results are of fundamental rele-
vance to quantitative studies of human behavior, and could serve
as the basis of anchoring potential theoretical models of human be-
havior and building and developing new applications using social
and mobile technologies.

Index Terms: Clustering, heterogeneous network, human mobility,
mobile phones, percolation, scale-free network, social network.

I. INTRODUCTION

SOCIAL networks have attracted significant interest across
multiple disciplines in recent years, largely due to their crit-

ical role in a wide range of applications [1]–[7]. Despite recent
explosion of research on social networks, the bulk of work has
primarily focused on the social space, leaving its interplay with
the physical space largely underexplored. Yet, in an accelerating
number of settings, we are witnessing emerging convergence in
social and mobile technologies, fueling rapid advances in areas
as broad as marketing, security and communications. For exam-
ple, location-based social networking services offer information
sharing that enables new ways in marketing, connecting with
friends, and recommending services [8], [9]. Mobile phone car-
riers face challenges from three synergistic dimensions: wire-
less, social, and mobility [10]–[12]. Together these dimensions
are imperative to determine their key service safety, operabil-
ity and profitability, from data transmission efficiency and ser-
vice reliability to vulnerability and security. Therefore, as our
society becomes globally interconnected, the social and phys-
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ical space—social connections between individuals and their
mobility—no longer exist in isolation. Rather they increasingly
interact with and depend on each other. To truly harness and un-
leash the potential of social and mobile technologies, we need
to develop a quantitative framework of the interplay between so-
cial networks and human mobility patterns.

Our knowledge about the interplay between social networks
and human mobility patterns is limited, partly due to the diffi-
culty in obtaining large-scale dataset that could offer at the same
time social and mobile information across a substantial popula-
tion over an extended period of time. This situation is changing
drastically, however, thanks to the ever-increasing availability
of detailed traces of human behavior [13], [14], from mobile-
phone records to global-positioning-system (GPS) data to loca-
tion based social networking services. Take mobile phones as an
example: On one hand, mobile phones are carried by individu-
als during their daily routines, acting as an excellent proxy to
capture individual human trajectories; On the other hand, with
almost 100% mobile-phone penetration in industrial countries,
mobile communications offer us a comprehensive picture of so-
cial interactions within a society [10], [11], [15]–[24]. There-
fore, these large-scale datasets, capturing time resolved loca-
tions of individuals and their interactions, are not only fuel-
ing rapid advances in our understanding of individual mobility
patterns, from empirical analyses to modeling tools and frame-
works, but also offer unique opportunities to jointly explore in-
dividual trajectories and social communications [8], [20], [25],
[26]. Indeed, there has been growing evidence examining phys-
ical space as a determinant of social ties. By assuming that in-
dividuals have a fixed time-independent location in space, like
their home or work addresses, previous research examined the
probability of a social tie between them given the distance be-
tween their locations, finding a robust power law decay in such
probabilities across different contexts [27]–[30]. In the dynamic
dimension of physical space, researcher discovered that, not
only are individual trajectory overlaps predictive for the forma-
tion of social ties [9], [20], [31] location information of social
neighbors is also revealing about individuals’ whereabouts [8].
While these new results focused on dyadic, if microscopic, so-
cial interactions, they document first few connections between
human mobility and social networks, portending to a quantita-
tive framework between these two areas.

Here, we take advantage of a massive, longitudinal mobile
phone dataset and ask the question: to what degree do our mo-
bility patterns impact the dynamical and structural properties of
our social networks? On both areas of social networks and hu-
man mobility, we establish a quantitative framework by carrying
out a series of analyses that attend to both static and dynamic
patterns. Through these analyses, we offer new evidence and in-
sights of how social networks and human mobility correlate and
interplay with each other in multiple levels of granularity. We
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Fig. 1. Three-month trajectory of one mobile phone users.

find that human mobility plays an important role in shaping both
local and global structural properties of social network. We find
the emergence of spatial segmentation that reveals higher order
regularities behind previously well-established results by study-
ing social space alone, affecting both structural and dynamical
properties of social network. Our results offer new and signifi-
cant empirical evidence in connecting social networks and hu-
man mobility.

The remainder of this paper is organized as follows.
Section II provides detailed description of the mobile phone
dataset. In Section III we explore the basic characteris-
tics of social networks and human mobility pattern, respec-
tively. Section IV studies the co-locations between trajectories
of pair of friends. Section V exams the proximity between hu-
man mobility and social networks in orders of increasing sophis-
tication, from lower to higher order connections (a social tie to
a local clustering). Sections VI investigates how human mobil-
ity impact underlying social network, for static and dynamical
properties respectively. Section VII concludes this paper.

II. DATA DESCRIPTION

In the past few years, a collaboration with an European mo-
bile communication company grants us access to anonymized
country wide mobile phone dataset, containing call records of
their customers and collected for billing purposes. Being mobile
communication records, the dataset naturally offers information
on wireless social communications through phone calls and text
messages between individuals. At the same time, whenever a

mobile communication was initiated, the dataset also records the
information of the mobile tower that routed the phone call or text
message, whose geographic coordinates allow us to pinpoint the
location of the individual at the time when s/he initiated the
communication. Hence, this data allows us to reconstruct the
daily trajectory of each mobile phone user for an extended pe-
riod of time. The dataset is massive and of excellent Longitu-
dinality: It covers activities of 10 million customers for more
than five years. In this study, we used data from two consecutive
years. The database offers detailed empirical observation of hu-
man mobility. For example, in Fig. 1 we show the three month
trajectory of one users in our database, illustrating the nature
of the mobility patterns that can be extracted from the dataset.
The different cell phone towers are denoted as grey dots, and
the Voronoi cell in grey marks the approximate reception area
of each tower. Note that the trajectories are time resolved. That
is, each time a user makes a call, the closest tower that routes
the call is recorded, serving as a proxy of the user’s appropriate
location at the moment.

There are two caveats about the dataset that are particularly
worth mentioning: (a) The user location is subject to the spa-
tial resolution of the mobile phone towers, which on average
results in uncertainties around 1-3 km. (b) User’s location is
only recorded when the user uses the phone, hence we have no
knowledge of the user’s whereabouts between these active ses-
sions. To cope with such caveats, improve temporal resolution
of location sampling, and ensure our results are not affected by
them, we constructed a second dataset that contains 50,000 in-
dividuals, chosen from the 10 million mobile phone users based
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Fig. 2. Degree distribution of social network, where degree k measures the
number of contacts of each individual has.
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Fig. 3. Weight distribution of social network, where weight w measures the
frequency of contacts between two individuals.

on their activity levels. We followed the same criteria as in [19],
[20] and focus our analysis on this sample of individuals.

III. BASIC CHARACTERISTICS OF SOCIAL NETWORKS
AND HUMAN MOBILITY

The dataset offers simultaneously individuals’ communica-
tion patterns and their trajectories. In the following we describe
basic characteristics in these two folds.

A. Social Network Characteristics

Fig. 2 shows the degree distribution P (k) of the underlying
social network where degree k measures the number of contacts
of each individual has. We found that the degree distribution
follows a power law tail

P (k) ∼ k−γ . (1)

Similarly, the weight w that counts the frequency of contacts
between two individuals (a social tie) is also broadly distributed
(Fig. 3), following

P (w) ∼ w−β . (2)

These two quantities indicate the scale-free nature of the so-
cial graph [2], [5], [32].
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Fig. 4. Distance distribution between social ties, where distance d measures the
geographic separation between two individuals’ most likely locations.

B. Human Mobility Characteristics

To characterize spatial aspects of mobile users, we define in-
dividual’s “home” as his/her most frequent location during the
three-month records. For each social tie observed in the dataset
we measured the distance d separated the corresponding pair.
Fig. 4 plots the distance distribution P (d), showing that

P (d) ∼ d−α (3)

indicating that it is more likely to form a wireless communica-
tion in a local region compared to a distant one, e.g., social ties
are not uniformly distributed on the space [27]–[30].

IV. CO-LOCATION OF MOBILE PHONE USERS

The trajectories of two pairs of friends are shown in Fig. 5.
We choose a pair of friends whose whereabouts are mostly in
the same city. Their weeklong trajectories are shown in Fig. 5(a)
in red and green, respectively. Although they communicate with
each other frequently on the phone, their paths seldom intersect,
indicating that they never, (if ever) have face-to-face interac-
tions. However, a different pair of friends (Fig. 5(b)) displays
widely different mobility patterns from the one in Fig. 5(a). De-
spite of some unique places visited by each user, their paths
share a large number of towers in common. Furthermore, among
the commonly visited locations, the percentage of time each user
spent in the vicinity of those particular towers is uneven. These
examples indicate that for pairs of individuals, being connected
in the social network, their trajectories may share dramatically
different degrees of overlap, corresponding to different extent of
face-to-face interactions. In order to capture the degree of face-
to-face interactions imposed by two individuals’ trajectories, we
define the co-location Rate, C, as the probability for two users
to appear at the same location during the same hour [20]. A
co-location rate of 0 indicates two individuals move in different
neighborhoods and probably never meet (Fig. 5(a)). The two tra-
jectories shown in Fig. 5(b) have a co-location rate of 0.44, cap-
turing the concurrent movements of the two individuals around
the same neighborhood.

This raises an important question: What is the distribution
of C for all the social ties across the society? In Fig. 6 we



WANG AND SONG: IMPACT OF HUMAN MOBILITY ON SOCIAL NETWORKS 103

Fig. 5. Trajectories of two pairs of friends with co-location rate: (a) C = 0 and (b) C ≈ 0.44 during three-months time period. The grey dots correspond to
mobile phone towers and the grey lines represent the reception areas of towers. The color dots represent locations visited by the users and the lines correspond
to users’ trajectories.
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Fig. 6. The complementary cumulative distribution P>(C) of the co-location
rate C for friend (blue) and random pairs (purple). Inset: The co-location
rate distribution P (C) for friend pairs in log-log plot.

plot the complimentary cumulative distribution, P>(C), which
measures the probability of finding a social tie of co-location
rate greater than C. We find, first of all, 15% of links have a
co-location rate of 0, corresponding to social ties where two
friends’ whereabouts do not overlap. Despite a relatively small
fraction of the existence of these social ties, we check our dataset
to confirm that they are not artificial (e.g., customer service or
salesperson). Second, for the ties that share some degree of over-

lap in their trajectories, such similarities in two individuals’ mo-
bility patterns are rather heterogeneous across the population.
Indeed, as shown in the inset of Fig. 6, the probability distri-
bution, P (C), can be well approximated by lognormal, indi-
cating that while most friends’ paths only intersect very little,
there are notable amount of pairs of individuals who move con-
currently during their daily routines. Such pervasive overlap in
individuals’ trajectories raises an interesting question: whether
the co-location phenomenon is merely the privilege of being as
friends? Indeed, people often go about their lives when they
are with friends, including job- and family-imposed restrictions,
which may contribute to the observed co-location rates; yet they
also often appear at massively public places in which they are
members of large crowds, corresponding to potential co-location
with a large number of strangers. To answer this question, we
randomly selected 10M pairs of individuals that are not linked
in the social network, i.e., they never communicate with each
other via mobile phones. We then measure the co-location rate
for these pairs of strangers, the distribution of which is shown
as the purple curve in Fig. 6. We find the vast majority of pairs
(more than 98%) have a co-location rate of 0. For those rare
pairs that co-locate, the rates are mostly very small, correspond-
ing to the rapid decay in probability.

V. SOCIAL AND SPATIAL PROXIMITY

The surprising distinctions in the degree of trajectory over-
lap between two individuals, characterized by pervasive overlap
of friends’ trajectories and barely any intersection for randomly
selected two individuals, prompts us to investigate how social
and spatial proximity interacts, correlations, and reinforces each
other. Here we use two measures for each of both social and
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Fig. 7. The geometrical restricted networks for different cutoff distance d,
showing: (a) How the average size of the isolated clusters 〈s〉 and (b) the
relative GCC size S change with d (red lines), suggesting the overall social
communication develops a percolation phase transition around d ≈ 10−20
km, where each peaks in (a) associated with one jump in (b), corresponding
to emergence of certain size clusters at four different stages.

spatial fronts, attending to two different levels of granularity. To
quantify spatial proximity on the physical space, we not only
measured the aforementioned colocation rate C to capture the
dynamical aspect of trajectory overlap, but also calculated the
geographic distance between the most likely locations for each
pair of friends. To quantify social proximities we measure on the
local level the likelihood of social ties. To further uncover the lo-
cal clustered structure, for each pair of friends i and j we calcu-
lated the topological overlap OT (i, j) = Jn(i, j)/min(ki, kj),
where Jn(i, j) denotes the number of common friends both user
i and j share and min(ki, kj) represents the smaller degree of
them [33], [34]. The topological overlap measures the strength
of clustering between two friends, where OT = 1 implies that
they have same set of friends, whereas a zero value indicates
that i and j do not share any common friends.

A. Geographic Distance Fragments the Structure of Social Net-
work

To understand the effect of distance on social network, we
adopt a measurement framework in percolation theory [35]–[37]
by introducing a cutoff distance d to measure the farthest dis-

tance one can reach his friends to spread information. Vary-
ing d and removing all links with distance less than d results in
a truncated communication network, where the links between
two friends are allowed only if their pair distance is less than
the cutoff d, representing individual passes information to his or
her friends only inside the individual’s vicinity with radius less
than d. As individuals can share information inside the same
connected components, we measure the giant connected com-
ponent (GCC) to quantify the capacity of the global informa-
tion sharing. In Fig. 7, we show the relative GCC size S and
the average size of the isolated clusters 〈s〉 change as a func-
tion of d. When d is small, only the links between two friends
who live closer to distance d are allowed. Hence the resulting
social network consists of small fragments that are separated
from each other, characterized by a small S, and 〈s〉 increases
slowly ad d increases. When d becomes large enough, we re-
cover the whole communication network as all social ties are
preserved. As we vary the parameter d, we observe a very inter-
esting transition occurring around d ≈ 10−20 km, where the so-
cietal wide social communication network undergoes a notably
change from localized fragments to globally connected compo-
nents, suggesting a typical communication distance separating
the local and global phases. Furthermore, there exists several
minor transitions around this typical distance, corresponding to
peaks observed in 〈s〉, indicating several different stages of net-
work formation through which individual clusters are merged
into larger connected components and eventually forming one
single giant component. This result reveals inherent modular
structures inside the social communication system based on dis-
tance, which is rather unexpected, as previous results suggest
distance between social communications lack any characteristic
scale (Fig. 4), raising an important question: Could have this re-
sult emerged due to a random process? To answer this question
we randomize the spatial distance dij and break its correlation
with the underlying social tie between individuals i and j. That
is, we keep the social network structure intact, but assign a new
distance to each social tie drawing from the same distance dis-
tribution. We find that similar to the random scale-free network
the phase transition is absent [38], indicating that an underly-
ing correlation between spatial allocations and social network
structure is responsible for observed localizations (green curves
in Fig. 7). It is also interesting to note that the unusual sharpness
of transition points to a discontinuous 1st-order phase transition
in contrast to the common second order phase transition, which
aligns with recent work on the explosive percolation [38].

B. Geographic Distance Affects Local Clustering

To uncover the local clustered structure, for each pair of
friends i and j we calculated the topological overlap OT (i, j) =
Jn(i, j)/min(ki, kj), measuring the degree to which user i and
j share common friends [33], [34]. Indeed, OT measures the
strength of clustering between two friends, where OT = 1 im-
plies that they have the same set of friends, whereas a zero value
indicates that i and j do not share any friends in common. This
raises an interesting question: how does the topological over-
lap between two friends depend on how far they live from each
other? In Fig. 8, we measure OT (d) as a function of distance
d between two friends. We find that OT deceases with d, im-
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Fig. 8. The topological overlap OT vs. pair distance d, revealing the fact that
high OT correlates with small distance region. The black bar represents the
average OT measured in uncorrelated case.

plying that the closer two users live, more common friends they
share. The black line in Fig. 8 measures what we would have
expected in the random case. That is, when the two quantities
are uncorrelated with each other. Therefore, at the local distance
region (d < 20 km), OT (d) is greater than the random expec-
tation, indicating that a positive correlation between topological
clustering and distance. That is, social ties that are close to each
other on the physical space (small d) tend to have higher local
clustering on the social space. In contrast, when d > 20 km,
OT (d) reveals a negative correlation between topology cluster-
ing and distance. It is also interesting to note the crossover point
(d ≈ 10 ∼ 20 km) is in good agreement with previous finding,
further supporting the existence of a characteristic distance in
wireless communication networks around 10 ∼ 20 km.

C. Trajectory Overlap Correlates with Topological Overlap

Preceding results indicate trajectory overlap highly correlates
with the existence of social ties, raising the question of whether
such correlation also hold for local clustering measured by topo-
logical overlap. We find the answer is yes. To illustrate this, we
perform a snow-ball sampling by randomly selecting a user in a
major city, sampling up to three degrees and extracting all users
within the same city. In the sample studied in this section, we
obtained a sample of 768 users. We computed the co-location
rates (C) for any two users. This results in a 768 by 768 mo-
bility matrix with the elements measuring trajectory overlap in
their mobility patterns. We also computed the social matrix of
topological overlap on the social network for any two individu-
als, serving as the proximity measure in social space. By apply-
ing an average-linkage hierarchical clustering algorithm [33] to
the social matrix, we obtain a dendrogram, where nodes that are
proximate on the social network are placed closely to each other.
The rows and columns of mobility matrix are then reordered
according to the order of leaves in the dendrogram. The mo-
bility matrix after reordering alongside the social dendrogram
is shown in Fig. 9. The non-zero co-location rates form blocks
along the diagonal of the mobility matrix, corresponding to the

Fig. 9. The co-location matrix corresponding to a sample of users within same
city obtained through a snow-ball sampling for illustration purposes. The
dendrogram represents the hierarchical structure based on topological over-
lap on social network.

modular structures of the social network. The off-diagonal ele-
ments, i.e., individuals that are far away in the social space, are
characterized by mostly zero trajectory overlap. Fig. 9 illustrates
strong correlations between patterns of human mobility and the
structures of social network.

VI. IMPACT OF MOBILITY OVERLAP ON WIRELESS
COMMUNICATION NETWORK

Being proximate is thought to encourage chance encounters
and opportunities for interaction, which can lead to the forma-
tion of new relationships and the maintenance of existing ones
[39]. Indeed, a number of studies have shown that the distribu-
tion of geographical distances between friends follows a power
law. That is, people are far more likely to make friends with
individuals who are nearby than those that are far away.

A. Static Properties

To reconcile the interplay between physical propinquity and
similarity in mobility patterns, we group links based on their co-
location rates, and measureP (d|C) ∼ C−α, the conditional dis-
tribution of distances between friends for different values of C,.
Inspired by previous results on the fat-tailed nature of the spatial
distribution, one would anticipate that as well. However, despite
of qualitative agreement with the expectations, Fig.10a raises a
surprising classification based on mobility patterns. That is, the
distributions over different C values are well separated into only
two groups: the C = 0 group (blue circles) with α ≈ 1.5 and
the C > 0 group (red dots) with α ≈ 2.0. Indeed, the curves
collapse for groups of any co-location rates greater than zero
(inset of Fig. 10(a)). That is, the distribution of distances, P (d),
characterized by a power law distribution with a larger expo-
nent, is independent of the degree of overlap in two individuals’



106 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 17, NO. 2, APRIL 2015

Fig. 10. (a) The distance distribution P (d) measuring the probability of find a pair of friends with distance d apart from each other for two different pair groups
(C > 0 and C = 0), respectively. This plot indicates that P (d) ∼ d−α decays as a power law for both cases, with different scaling exponents αC=0 ≈ 1.5
and αC>0 ≈ 2.0. Inset: P (d) for different C groups for C ∈ [0, 0.01), [0.01, 0.1) and [0.1, 1.0), indicating the distance exponents α are independent
of the C values as far as C > 0. Together with the main panel, these plots demonstrate that C = 0 (local) and C > 0 (distant) are two major classes of
human mobility interactions. (b) The P (w) distribution of the strength of tie w for local and distant pairs respectively, showing P (w) ∼ w−β with different
exponents βL ≈ 1.2 and βD ≈ 2.2. (c) The degree distribution P (k) for local and distant friends, showing again different power law exponents 7.0 and 3.5,
respectively. Both lines are guides to the eye with power law decays. Inset: An illustration demonstrates an individual with kL = 3 and kD = 2, where the
solid and dashed lines represent local and distant ties, respectively.

trajectories as long as their trajectories intersect. Even the group
of social ties with very small C, i.e., friends do co-locate with
each other yet very rarely, differentiates remarkably from the
group of friends that do not share any foci along their paths (see
the inset of Fig. 10(a)). These significant deviations offer strong
evidence that the social ties can be in fact categorized into two
types: friends, whose trajectories overlap (C > 0), and those
with C = 0. We therefore refer the first type as local ties, and
the latter type as distant ties hereafter.

The intriguing discovery of two types of social ties raises an
interesting question: how will such categorization of social ties
based on mobility patterns contribute to our current understand-
ing of social networks? When it comes to structural proper-
ties of links, the link weight distribution is probably the most
fundamental one. We therefore plot the link weight distribution,
P (w), separately for distant ties and local ties. As we show in
Fig. 10(b), the tie strength distribution of two groups both follow
a power law distribution yet with radical different exponents.
Indeed, the strength of the local ties exhibits more heterogene-
ity than that of the distant ties. This not only corroborates that
these two types of social ties are fundamentally different, but
also indicates that the local ties are more closely connected than
the distant ties, further proving that spatial co-location induces
proximity on the social space.

Degree is another fundamental quantity in networks. Indeed,
every node is connected with its neighbors through either local
(L-) or distant (D-) ties, depending on its co-location rate with
them. To inspect the impact of these two types of ties on the
degree distribution, we break down the degree of each individ-
ual into his/her local and distant degrees, kL and kD, which are
the total number of local and distant ties s/he has, respectively.
Note, the summation of local and distant degrees equals to the
degree of node, i.e., k = kL + kD. If there is no correlation

between these two types of social ties, the distributions of local
and distant degree should follow

P (kL) =
∑

k≤kL

(

k

kL

)

pkL

L (1 − pL)
k−kLP (k), (4a)

P (kD) =
∑

k≤kD

(

k

kD

)

P k−kD

L (1− pL)
kDP (k) (4b)

where P (k) is the overall degree distribution and pL = 85% is
the ratio of local ties out of all social ties in the network. To-
gether with the fat-tailed degree distribution (1), Eq. (4) above
predicts that bothP (kL) andP (kD) will be fat-tailed with expo-
nents γL = γD = γ, independent of pL. In Fig. 10c, we test this
prediction by empirically measuring the distributions of local
and distant degrees. Different from what was predicted for the
uncorrelated case, the distributions of these two types of degrees
are associated with evidently different exponents (γD ≈ 3.5 and
γL ≈ 7).

B. Temporal Dynamics

The fact that γD is much smaller than γL indicates that the
distant ties, rather than distributed randomly, tend to cluster to-
gether, favoring individuals who have larger kD and therefore
resulting in a more heterogeneous distribution P (kD). In this
section, we further exam how the the underlying correlation and
clustering between similar types of ties evolves dynamically. In-
deed, clustering is crucial for describing the propensity that two
individuals who share common friends often communicate with
each other, characterized by the total number of 3-cliques (or tri-
angles). We therefore classify all the topological triangles based
on the distinction of L− and D−ties. There are overall four
types of triangles: LLL, DDD, LLD and LDD, as illustrated
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Fig. 11. (a) The probability of finding four different triangles (from left to right: LLL, LLD, LDD and DDD) for real-world dataset (solid bars) and randomized
cases (striped bars). (b) The probability ratio R = P/Prand for four triangles observed in (a), quantifying the deviation from the randomized case, indicating
that the probability of finding triangles with similar ties is notably greater than random case. (c) The transition probability ratio for six different triadic closures
(from top to bottom: LL → LLL, LL → LLD, LD → LLD, LD → LDD, DD → LD and DD → DDD), in respective of random case, showing
that LL → LLL, LD → LLD and DD → DDD are three major pathways for triangle creations.

in the bottom of Fig. 11(a). If L− and D−ties were distributed
uniformly, the probability of finding a certain type of triangles
should follow a binomial distribution, indicated by striped bars
in Fig. 11(a). However, as Fig. 11(a) shows, the probability of
finding different types of triangles all deviates dramatically from
predictions (with p-values less than 10−10), indicating remark-
able underlying correlations between different types of ties. To
explore these correlations, in Fig. 11(b), we measure the prob-
ability ratio, R = P/Prand, for these four types of triangles,
quantifying the deviation from the randomized case. A proba-
bility ratio R = 1 means the number of triangles in this type is
just about what you would expect randomly. R > 1 indicates
a more favorable and populated type, and vice versa. Fig. 5(b)

demonstrates that triangles are more probable to be formed by
ties of the same type, i.e., individuals are mainly grouped to-
gether by either all LLL or DDD communications. Instead,
the triangles formed by complementary ties (LLD or LDD) are
underrepresented compared with the random case. These results
raise an important question: How do these different clustered
groups emerge? That is, how do these two types of ties, induced
from mobility patterns, affect triadic closure in the social net-
work? To answer this, we need to look at the creation of trian-
gles under temporal evolution. We first construct networks, G1

and G2, from two consecutive months, respectively. We then fil-
tered triangles where a new link in G2 attaches to an open triplet
in G1 and closes a triangle. (An open triplet is a sub-graph of
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three nodes connected by two links). As illustrated in Fig. 11(c),
there are six possible types of such closures of triads, namely,
LL → LLL, LL → LLD, LD → LLD, LD → LDD,
DD → LDD, DD → DDD. The probability ratio of form-
ing each type of triangles is shown in Fig. 11(c). Interestingly,
we find that L−tie is more likely to close a triangle when there
pre-exists at least one L−tie in the open triplet. This indicates,
although it is widely believed that physical co-presences and so-
cial foci are of fundamental importance in forming social ties,
to the extent co-location affects triadic closure, such hypothe-
sis fails when the other two ties in the triangle are distant ties,
corresponding to the opposing forces between face-to-face in-
teraction and homophily effect.

VII. CONCLUSION

In summary, our knowledge of how individual mobility pat-
terns impact the social network is essential for a deeper under-
standing of the wireless network structure.In this paper, we ana-
lyzed the mobile phone network includes social network topol-
ogy, spatial distribution and individual’s movements, exploring
the underlying correlations between these features.

We find that the social network is spatially clustered, forming
a hierarchical structure based on the spatial separations between
individuals. The strong correlation between social ties and their
spatial distribution results in a geographical localization within
a vicinity with size around 10–20 km. We further find that the
co-location between individuals’ movements significantly con-
tributes to the clustering phenomena in social network as well
as triadic closure. Most important, the social ties can be classi-
fied into two distinct categories based on the co-location rate be-
tween two individuals. When two samples, both following a fat-
tailed distribution with yet different exponents, are mixed and
measured together, the smaller exponent dominates the overall
distribution . Therefore, if one takes a mean-field approach, i.e.,
without taking into account the distinction between local and
distant ties, to measure the distributions of network quantities,
from link weights and degrees to distances between friends, one
type of ties will inevitably be masked from the other type, cor-
responding to overestimating the overall distributions.

As human mobility and social networks is largely relevant to
a wide array of applications, these results based on their mo-
bility correlations are expected to revolutionize our strategies
when leveraging our current understanding of both human be-
havior and social networks, helping improve existing processes
and create new applications including better understandings of
information spreading, improvement of cybersecurity and wire-
less capability, and better designs of routing protocols, etc. For
instance, our findings of social tie localization suggests more re-
alistic spatial wireless network models. It also allows to make a
better prediction of the network dynamics [20], potentially lead-
ing to efficient routing protocols. Furthermore, the social net-
work graph is a key determinant of social influence and how
fast can a worm propagate between social neighbors of a node,
which contributes to its vulnerability. Humans interact with the
social dimension at many levels such as by making mobility de-
cisions and by determining how information is shared on the
social network. Therefore, the observed two classifications of

social ties based on human mobility and their dynamical triadic
closure will lead to new information diffusion models across
wireless complex networks on the geographical space, poten-
tially help our understanding of malware propagation and infor-
mation spreading.
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