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Mobile Device-to-Device (D2D) Content Delivery
Networking: A Design and Optimization Framework

Hye Joong Kang and Chung Gu Kang

Abstract: We consider a mobile content delivery network (mCDN)
in which special mobile devices designated as caching servers
(caching-server device: CSD) can provide mobile stations with pop-
ular contents on demand via device-to-device (D2D) communica-
tion links. On the assumption that mobile CSD’s are randomly dis-
tributed by a Poisson point process (PPP), an optimization problem
is formulated to determine the probability of storing the individ-
ual content in each server in a manner that minimizes the average
caching failure rate. Further, we present a low-complexity search
algorithm, optimum dual-solution searching algorithm (ODSA),
for solving this optimization problem. We demonstrate that the
proposed ODSA takes fewer iterations, on the order of O(logN)
searches, for caching N contents in the system to find the optimal
solution, as compared to the number of iterations in the conven-
tional subgradient method, with an acceptable accuracy in prac-
tice. Furthermore, we identify the important characteristics of the
optimal caching policies in the mobile environment that would
serve as a useful aid in designing the mCDN.

Index Terms: Caching probability, caching server device, device-to-
device (D2D) communication, mobile contents distributed network
(mCDN), Poisson point process (PPP).

I. INTRODUCTION

Ever-increasing demands for multimedia contents have had a
critical impact on network capacity in serving content to end-
users with high availability and performance. In particular, the
pure client-server model is highly inefficient for content distri-
bution, as it suffers from performance degradation owing to a
bottleneck problem at the single server, while overloading the
network to serve physically remote clients. To deal with the
issues in the client-server model, a content delivery network
(CDN) has been introduced as a distributed system of proxy
servers deployed in multiple data centers across the network. In
CDN, popular content on servers subject to frequent demand for
delivery is stored in proxy servers, placed at multiple locations
close to the end users, so as to offload the network and server.

Recently, a concept of CDN has been extended to mobile net-
works in which wireless access nodes, such as an access point
and a base station, can be used as caching servers for mobile
users at their end [1]. Furthermore, individual mobile devices
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themselves can be caching servers as well, since they are directly
connected to each other by establishing device-to-device (D2D)
communication links [2]. The main advantage of D2D commu-
nication in a cellular system is its spatial reuse capability gained
by enabling multiple direct links between two near-by devices
at the same time. In the current commercial system, however,
D2D communication links would be rarely activated owing to
the fact that most traffic is originated mainly by the client/server
model-based content delivery architecture, i.e., overloading the
access network. If mobile devices themselves serve as content
caching servers, mobile CDN (mCDN) traffic becomes enor-
mous within each cell, making D2D communication essential
for an aggressive spatial reuse gain. Furthermore, a mobile de-
vice as a caching server, designated as a caching-server device
(CSD), would reduce the traffic load of a backbone network as
intended by CDN, without incurring an extra cost of deploying
and maintaining proxy servers.

D2D communication-enabled CSD’s with content-caching
capability differ in several ways from conventional caching
servers in the network. First of all, their service coverage can
be limited by transmission power over a wireless link. Second,
there would be a large number of CSD’s, which are subject to
mobility, implying that the availability of contents would be spa-
tially broad yet random. Third, caching capability is limited by a
physical nature of mobile devices, e.g., a limited storage capac-
ity. Due to these characteristics, content-caching policies must
differ from the conventional ones.

We assume that all CSD’s are capable of storing the contents
that are obtained upon its own request or overhearing what other
devices or serving base station (BS) have transmitted. Whenever
a specific content is requested by a device, it can be provided by
its neighbor CSD with the same content if available. Unless a
device cannot find a neighbor CSD with the specific content in
demand, it is subject to caching failure, implying that the re-
quested content must be provided over the cellular link. In order
to reduce the caching failure rate, CSD’s must cache the contents
as much as possible within its own physical capability. As ev-
ery CSD has a limited storage, however, it would cache only the
relatively popular contents, while ignoring ones in less demand.
For example, suppose that only a single content can be stored
in each CSD due to its physical limit. Then, every CSD would
cache the most popular one, which will be requested most fre-
quently. Is it really necessary for every CSD to cache the same
content all the time in the current scenario? In case that a large
number of mobile CSD’s are randomly distributed in the vicin-
ity, some CSD’s may be allowed to have another popular content
rather than caching the same content in all CSD’s. Since addi-
tional contents are spatially available among the near-by CSD’s,
the caching capability is further improved, thereby reducing a
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caching failure. In fact, all CSD’s are coordinated to determine
which contents are cached by the different CSD’s rather than
caching the most popular yet redundant contents in every CSD.
Therefore, the physical storage can be effectively utilized to
minimize the caching failure rate. However, as CSD’s may be
steadily on move, local CSD coordination is not effective. In-
stead, whether to cache or not must be determined for each con-
tent in an average sense by taking a distribution of CSD’s and
popularity of individual contents into account. Since it would
require too much signaling overhead and processing complexity
to determine whether to cache each content or not in each CSD,
we consider a centralized control approach. It employs a central
server in which information on CSD density and content popu-
larity is used to determine the average caching probabilities of
individual contents. Based up these content caching probabili-
ties (known to all CSD’s as broadcast from a base station), each
CSD builds a list of the contents to be cached. Whenever any
content in the list is available over the cellular link or D2D links,
then it will be cached in the storage.

In this paper, our objective is to provide a design optimization
framework that determines the average caching probabilities of
individual contents in the central server. We first formulate an
optimization problem to determine the optimum caching prob-
abilities by minimizing the average caching failure probability.
Then, we propose a low-complexity solution approach, the op-
timum dual-solution searching algorithm (ODSA) to solve our
optimization problem. Because ODSA converts the continuous
dual solution region into discrete solution regions, it allows a full
search to determine the optimum caching probability. In fact, it
takes fewer iterations, on the order of O(logN) searches, for
caching N contents in the system to find the optimal solution
than the number of iterations in the conventional subgradient
method [4], with an acceptable accuracy in practice. The per-
formance of the proposed policy with the optimal caching prob-
ability is compared with that of other caching policies, one with
an equal caching probability (EP caching policy) and the other
with high-priority-first selection (HPF caching policy). Based
on conclusions from our optimization framework, we provide
a practical design principle that can improve its performance
when the demand statistics are known a priori.

This paper is organized as follows. In Section II, we present
the system model and formulate the optimization problem for
finding the caching probability for each content. In Section III,
we propose ODSA. In Section IV, numerical results are pre-
sented to evaluate the complexity of the proposed algorithm, and
the performance of the different caching policies is evaluated.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We assume that CSD’s are randomly distributed within a disc
area with radius d centered at a reference receiver that requests
a specific content. In particular, we assume a distribution of L
CSD’s by a Poisson point process (PPP) with average intensity
λ (arrivals/m2) [3], i.e., the probability that l CSD’s exist within
a distance of d from the reference content-requesting device is

given as

fL(l; d) =
(πd2λ)

l

l!
e−πd2λ. (1)

Let I denote a set of N contents, one of which is requested
by a device at an arbitrary location. Note that the caching server
device is different from the device in general, as it is capable of
storing the contents (up to M contents) that are obtained upon
its own request or overhearing what other devices or serving BS
have transmitted and providing these contents to any neighbor
device via a direct link upon the request. In fact, both cellu-
lar and D2D communication links are used to share contents
among the CSD’s forming an mCDN. We assume that the CSD
stores the content of index i with a probability of pi, when the
corresponding content was obtained upon its own request or
overheard when other devices or serving BS have transmitted
it. More specifically, we assume that the pre-specified contents
transmitted by one CSD or BS can be overheard by all autho-
rized CSD’s. Furthermore, we assume that {pi} is determined
in a central server with a periodic or event-driven manner, and
broadcasted to all CSD’s. Once {pi} is updated by the central
server, each CSD determines which contents to store by the
given probability of {pi}. More specifically, based up these con-
tent caching probabilities, each CSD builds a list of the contents
to be cached. A design of the specific algorithm for listing up the
content to be cached subject to the given caching probabilities
is beyond the scope of our current work. Whenever any content
in the list is available over the cellular link or D2D links, then it
will be cached in the storage.

Note that CSD’s with content i are distributed by a PPP with
average intensity λpi. Let D be a random variable to denote the
distance between a reference receiver that is requesting content
i and the closest CSD with content i. In other words, as shown
in Fig. 1, this corresponds to the situation in which there ex-
ists no CSD with content i within a disc of radius D centered
at the reference receiver. Then, the cumulative distribution func-
tion (CDF) of D, F (i)

D (d), is given as

F
(i)
D (d) = 1−Pr(D > d) = 1−fL(0; d) = 1−e−πd2λpi . (2)

Let rmax denote the maximum transmission range of the
CSD, which is determined by the system parameters in physi-
cal and medium access control layers. A content caching fail-
ure is defined as an event in which the reference receiver cannot
find any CSD with the requesting content within a fixed distance
rmax. The caching failure rate of each content i for a reference
receiver that is R meters apart from the closest CSD with content
i, denoted as P (i)

f (rmax), is given by the following probability

P
(i)
f (rmax) = 1− F

(i)
D (R) = e−πr2

max
λpi . (3)

Meanwhile, let gi denote the probability that content i is re-
quested by a device. We assume that the content with a smaller
index has a larger probability of requesting the content, i.e.,
gi ≥ gj if i < j. Given the content caching probabilities
p = {p1, p2, · · ·, pN}, the average content caching failure rate is
given by the weighted sum of individual content caching failure
probabilities for all contents, each weighted by the probability
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Fig. 1. Distribution of caching-server devices (CSD’s): Illustration.

of requesting the corresponding content, as follows

f̄(p) =
∑

i∈I

{

1− F
(i)
D (rmax)

}

gi =
∑

i∈I

gie
−πλr2

max
pi . (4)

B. Problem Formulation

We intend to determine the caching probability for each con-
tent, p = {p1, p2, · · ·, pN}, that minimizes the average caching
failure probability in (4) when each device caches content i with
a probability of pi. Note that the average number of contents
cached in CSD is

∑

i∈I pi. Then, let us impose a constraint that
the average number of contents cached in CSD cannot exceed
M, i.e.,

∑

i∈I

pi ≤M. (5)

In other words, M corresponds to the maximum number of con-
tents that can be cached in a CSD on average. The caching prob-
ability for each content is determined in a central server, which
must steadily update the CSD density λ and probability of re-
questing the content, {gi}. Now, our optimization problem can
be formulated as

min
p={p1,p2,···,pN}

∑

i∈I

gie
−πλr2

max
pi (6)

subject to
∑

i∈I

pi −M ≤ 0, (7)

pi − 1 ≤ 0, i = 1, 2, · · ·, N, (8)

−pi ≤ 0, i = 1, 2, · · ·, N. (9)

This is a constrained non-linear convex optimization problem,
which can be solved by a conventional iterative approach, e.g.,
the subgradient method [4]. However, we note that the conver-
gence rate of the subgradient method depends mainly on the step
size in an iteration formula, typically requiring a large number
of iterations to obtain the optimal solution within the given ac-
curacy. In order to circumvent the complexity of an iterative ap-
proach, therefore, we propose a reduced complexity search al-
gorithm, ODSA, in the next section.

Table 1. Notations.

Symbol Description
D A random variable to denote the distance

between a reference content-requesting de-
vice and CSD

rmax The maximum transmission range
N The number of contents
M Storage capacity
I A set of N contents, one of which is re-

quested by a device at an arbitrary location.
λ Intensity of CSD
gi Request probability of content i
pi Caching probability of content i

fL(l; d, λ) The probability density function (PDF) of
the number of CSD’s, L, for the CSD in-
tensity of λ and D = d.

F
(i)
D (d) The cumulative distribution function

(CDF) of D for content i
P

(i)
f (rmax) The average caching failure probability of

content i with the maximum transmission
range of rmax

III. OPTIMUM DUAL-SOLUTION SEARCHING
ALGORITHM

Note that the solution to our optimization problem (6)–(9) is
a vector p = {p1, p2, · · ·, pN} with real elements. This type
of problem can be solved using iterative schemes such as the
subgradient method [4]. The Appendix presents the solution ap-
proach based on the subgradient method. For a convex or quasi-
convex problem, these iterative schemes guarantee an optimal
solution, but may involve enormous computational complexity.
This is because the optimal step size for updating decision vari-
ables is difficult to determine, so the number of iterations needed
to converge varies with other parameters. However, in our op-
timization problem (6)–(9), we find a non-iterative solution ap-
proach with a fixed but low computational complexity. We pro-
pose a method for converting this problem into one of searching
for the optimal dual solution over a finite set. Toward this end,
we consider the Karush-Kuhn-Tucker (KKT) conditions for our
optimization problem (6)–(9) as follows.

The gradient of the Lagrangian with respect to pi vanishes

∂L

∂pi
= −πλr2maxe

−πλr2
max

pigi + µ+ γi − σi = 0 (10)

where

L(·) =
∑

i∈I

gie
−πλr2

max
pi + µ

(

∑

i∈I
pi −M

)

+
N
∑

i=1

γi(pi − 1)−
N
∑

i=1

σipi.

- Primal conditions:
∑

i∈I

pi −M ≤ 0, (11)
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pi − 1 ≤ 0, − pi ≤ 0, i = 1, 2, · · ·, N. (12)
- Dual conditions:

µ ≥ 0, (13)
γi ≥ 0, σi ≥ 0, i = 1, 2, · · ·, N. (14)

- Complementary slackness:

µ

(

∑

i∈I

pi −M

)

= 0, (15)

γi (pi − 1) = 0, i = 1, 2, · · ·, N, (16)
σipi = 0, i = 1, 2, · · ·, N. (17)

Solving (10) for pi,

pi(µ,γ,σ) =
1

πλr2max

log
πλr2maxgi
µ+ γi − σi

=
1

πλr2max

log
πλr2maxgi

ξi

(18)

where ξi = µ + γi − σi, γ = (γ1, γ2, · · ·, γN ), and σ =
(σ1, σ2, · · ·, σN ). As

∑

i∈I pi = M must be satisfied at the op-
timal solution, µ is not necessarily zero in (15). Furthermore,
γi = 0 for pi 6= 1 in (16) and σi = 0 for pi 6= 1 in (17).
Depending on the value of pi, ξi can be given as

ξi =







µ− σi if pi = 0;
µ if 0 < pi < 1;

µ+ γi if pi = 1.
(19)

Lemma 1: For an arbitrary value of µ, σ, and γ are given as

σi = [µ− πλr2maxgi]
+
, i = 1, 2, · · ·, N, (20)

γi = [πλr2maxgie
−πλr2

max − µ]
+
, i = 1, 2, · · ·, N (21)

where [x]+ = max(0, x).
Proof: It is immediately required from (18) that ξi =

πλr2maxgi for some i such that pi = 0. Since ξi = µ − σi

for pi = 0 from (19), therefore, σi = µ − πλr2maxgi in this
case. Meanwhile, as σi = 0 and µ < πλr2maxgi for some i such
that pi > 0. Therefore σi can be expressed as [µ− πλr2maxgi]

+,
proving (20). From (18), furthermore, ξi = πλr2maxgie

−πλr2
max

for some i such that pi = 1. As ξi = µ+γi for pi = 1 from (19),
γi = πλr2maxgie

−πλr2
max−µ in this case. Meanwhile, as γi = 0

and µ > πλr2maxgie
−πλr2

max for some i such that pi < 1, γi can
be expressed as [πλr2maxgie

−πλr2
max − µ]

+
, proving (21). 2

As σ and γ are given in terms of µ by Lemma 1, we can
represent pi(µ,γ,σ) in (18) as pi(µ) in short. As µ is known for
pi = 1 or pi = 0 in Lemma 1, we only need to determine µ for
0 < pi < 1. Let I0 denote a set of contents that is never stored
in any device, i.e., I0 = {i|pi = 0, i ∈ I}. Similarly, define I1
to denote a set of contents that is always stored in all devices,
i.e., I1 = {i|pi = 1, i ∈ I}. As I0 and I1 depend on the given
dual solution µ, they can be re-defined as functions of µ by the
fact that µ < πλr2maxgi for pi > 0 and µ > πλr2maxgie

−πλr2
max

for pi < 1

I0(µ) = {i|πλr
2
maxgi ≤ µ, i ∈ [1, N ]}, (22)

I1(µ) = {i|πλr
2
maxgie

−πλr2
max ≥ µ, i ∈ [1, N ]}. (23)

In Theorem 1, we will show that given I0(µ) and I1(µ) for an
arbitrary µ, the optimal dual solution µ∗ will be a function µ.

Theorem 1: If I1(µ) = I1(µ
∗) and I0(µ) = I0(µ

∗) for an
arbitrary dual solution µ, then the optimal dual solution µ∗is
given as

µ∗ = µ exp

{

πλr2max

ñ(µ)

(

∑

i∈I

pi(µ)−M

)}

(24)

where ñ(µ) = N − |I1(µ) ∪ I0(µ)|.
Proof: Let µ and pi(µ) denote the arbitrary dual and pri-

mal solutions to (6), respectively. Similarly, let µ∗ and pi(µ
∗)

denote the optimal dual and primal solutions to (6), respectively.
Define ∆pi = pi(µ)− pi(µ

∗), given by (18) as follows

∆pi =
1

πλr2max

log
ξi(µ

∗)

ξi(µ)
. (25)

Adding ∆pi for all i,
∑

i∈I

∆pi =
1

πλr2max

∑

i∈I

log
ξi(µ

∗)

ξi(µ)
. (26)

Letting Φ(µ) = I1(µ) ∪ I0(µ), the summation term in (26) can
be represented as

∑

i∈I

log
ξi(µ

∗)

ξi(µ)
=

∑

i∈(Φ(µ)
⋃

Φ(µ∗))c

log
ξi(µ

∗)

ξi(µ)

+
∑

i∈Φ(µ)
⋃

Φ(µ∗)

log
ξi(µ

∗)

ξi(µ)

= n(µ∗, µ) log
µ∗

µ
+ ω(µ∗, µ)

(27)

where
n(µ∗, µ) = N − |Φ(µ) ∪Φ(µ∗)| (28)

and

ω(µ∗, µ) =
∑

i∈I0(µ)−Φ(µ∗)

log
µ∗

πλr2maxgi

+
∑

i∈I1(µ)−Φ(µ∗)

log
µ∗

πλr2maxgie
−πλr2

max

+
∑

i∈I0(µ∗)−Φ(µ)

log
πλr2maxgi

µ

+
∑

i∈I1(µ∗)−Φ(µ)

log
πλr2maxgie

−πλr2
max

µ

+
∑

i∈I0(µ∗)
⋂

I1(µ)

πλr2max

−
∑

i∈I1(µ∗)
⋂

I0(µ)

πλr2max.

(29)

Furthermore, p∗i in (6) can be optimal when
∑

i∈I p
∗
i = M , and

thus,
∑

i∈I

∆pi =
∑

i∈I

pi −M

=
1

πλr2max

{

n(µ∗, µ) log
µ∗

µ
+ ω(µ∗, µ)

}

.

(30)
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Solving (30) for µ∗,

µ∗ = µ exp

{

πλr2max

(
∑

i∈I pi(µ)−M
)

− ω(µ∗, µ)

n(µ∗, µ)

}

.

(31)
If I1(µ) = I1(µ

∗) and I0(µ) = I0(µ
∗), then n(µ∗, µ) = N −

|Φ(µ)| and ω(µ∗, µ) = 0, which reduces (31) to (24), i.e.,

µ∗ = µ exp

{

πλr2max

ñ(µ)

(

∑

i∈I

pi(µ)−M

)}

. (32)

2

In the subsequent theorem, we provide a necessary and sufficient
condition for the optimal dual solution, which will serve as a
stopping condition for our search algorithm.

Theorem 2: When I1(µ
∗) 6= I,

∑

i∈I pi (µ
∗) = M , i.e.,

an arbitrary value of is the optimal dual- solution µ∗ iff
∑

i∈I pi (µ) = M .
Proof: When N = M , p∗i = 1, ∀i ∈ I, i.e., I1(µ∗) = I,

which turns out to be a trivial solution. Therefore, we just con-
sider the case of N 6= M , i.e., I1(µ∗) 6= I. First,

∑

i∈I pi(µ
∗) =

M from (15). For arbitrary µ such that µ < µ∗,
∑

i∈I pi(µ) >
M since pi(µ) ≥ pi(µ

∗), ∀i ∈ I, and pj(µ) > pj(µ
∗),

∃j ∈ I− I1(µ
∗). Furthermore, for arbitrary µ such that µ > µ∗,

∑

i∈I pi(µ) < M since pi(µ) ≤ pi(µ
∗), ∀i ∈ I, and pj(µ) <

pj(µ
∗), ∃j ∈ I − I1(µ

∗). Therefore, for I1(µ∗) 6= I, µ∗ is a
unique value of µ such that

∑

i∈I pi(µ) = M . In other words,
∑

i∈I pi(µ) = M is a necessary and sufficient condition to be
µ = µ∗. 2

Theorem 1 indicates that the optimal solution µ∗ can be de-
rived by searching for an arbitrary value of µ such that I1(µ) =
I1(µ

∗) and I0(µ) = I0(µ
∗). In order to facilitate the search for

µ, a continuous real number, we first investigate the properties
of µ∗. In fact, the following theorem identifies the range of the
optimal solution µ∗.

Theorem 3: The optimal dual solution µ∗ exists within the
following ranges:

πλr2maxgMe−πλr2
max ≤ µ∗ ≤ πλr2maxgM . (33)

Proof: If πλr2maxgMe−πλr2
max > µ∗, then |I1(µ∗)| > M

and
∑

i∈I pi(µ
∗) > M . Furthermore, if µ∗ > πλr2maxgM , then

|I0(µ
∗)| > N −M and

∑

i∈I pi(µ
∗) < M . As

∑

i∈I pi(µ
∗) =

M by Theorem 2, the optimal dual solution must be in the range
of (33). 2

According to the definitions in (22) and (23), the elements
in I0(µ) and I1(µ) vary by gi, which determines the boundary
value. Now, let us define a set of boundary values for the dual
solution within the range of µ∗ given by Theorem 3, which is
given as

µ = {µ1, µ2, · · ·, µN}

=
{

πλr2maxgme−πλr2
max |m ∈ [1,M ]

}

∪
{

πλr2maxgm|gm > gMe−πλr2
max ,m ∈ [M,N ]

}

(34)

where we have assumed that µi ≤ µj for i > j without loss
of generality. Note that there are a maximum of N elements in

(34). To describe the proposed search algorithm, we define the
following dual-solution update function

f(x) = x exp

{

πλr2max

N − |Φ(x)|

(

∑

i∈I

pi (x)−M

)}

. (35)

Now, the optimal dual solution can be found by searching for
µ satisfying

∑

i∈I pi(f(µ)) = M as required by Theorem 2.
Therefore, based on Theorems 2 and 3, the following optimal
dual-solution searching algorithm can be constructed.

Algorithm 1 Optimal Dual-Solution Searching (ODSA).
//Set the boundary values
µ← {µ1, µ2, · · ·, µN}

=
{

πλr2maxgme−πλr2
max |m ∈ [1,M ]

}

∪
{

πλr2maxgm|m ∈ [M,N ]
}

where µi ≤ µj for i > j;

// Initialization of starting point, step size, and dual solution
n← ⌈N/2⌉; t← ⌈N/2⌉; µ← µn;
while

∑

i∈I pi (f(µ)) 6= M do
// Repeat until

∑

i∈I pi (f(µ)) = M
t← ⌈t/2⌉;
if
∑

i∈I pi (µ)−M > 0 then
n← max(0, n− t); //Set the next searching point

else if
∑

i∈I pi (µ)−M < 0 then
n← min(N,n+ t); //Set the next searching point

end if;
µ← µn;

end while
µ∗ ← f(µ);
p∗ ← p(µ∗);

Fig. 2 illustrates the searching process for Algorithm 1 when
|µ| = 14. At the first step, n is set to ⌈|µ|/2⌉ = 7. Since
∑

i∈I pi(f(µ7)) 6= M and
∑

i∈I pi(µ7) > M , n is reduced
by one-half, i.e., n = 7−⌈7/2⌉ = 3, for the second step. At the
second and third steps, n is updated as n = 3 + ⌈4/2⌉ = 5 and
n = 5 − ⌈2/2⌉ = 4, respectively. Since

∑

i∈I pi(f(µ4)) = M
at the fourth step, searching is stopped, and the optimum dual
solution is given by f(µ4). As each step reduces a search space
range by one half, starting from the maximum range ofN , Algo-
rithm 1 involves a complexity of O(log2N) iterations to search
for the optimal solution.

IV. NUMERICAL RESULTS

In this section, we first compare the performance of the pro-
posed ODSA and the subgradient method in the Appendix from
the viewpoints of computational complexity and accuracy for
the given operational environment. Then, we compare the per-
formance of the average caching failure rate obtained by using
the different caching probabilities, including the optimal one
found by ODSA.

In the current numerical analysis, we assume a maximum
transmission radius of 100 m, i.e., rmax = 100 m, and a
PPP distribution of devices with average λ (devices/m2). For
rmax = 100 m, an average of 10, 000λπ devices are uniformly
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Fig. 2. Illustrative example of Algorithm 1: |µ| = 14.
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Fig. 3. Zipf distribution with varying demand dominance factor s: illus-
tration.

distributed within a disc area of radius 100 m, centered around
an arbitrary receiver. We assume that each of the N representa-
tive contents has its own demand probability. For example, the
content demand probability for content i can be modeled by the
following Zipf distribution [8], [9]

gi (s,N) =
(1/i)s

∑N
k=1 (1/k)

s
(36)

where s is a demand dominance factor. The demand dominance
factor is a parameter that characterizes the distribution, i.e., the
larger the dominance factor is, the more demanded the popu-
lar contents are. Fig. 3 illustrates the distribution in (36) with
varying s. As shown in Fig. 3, more popular contents are more
frequently demanded as the demand dominance factor increases,
while s = 0 corresponds to a uniform distribution.

A. Complexity and Accuracy of Solution Approaches: Compar-
ison

The convergence rate and accuracy with ODSA and the sub-
gradient method are discussed in the Appendix, depending on
the number of contents (N ), the number of contents to be cached
(M ), the intensity of the caching server (λ), and the demand
dominance factor (s) in (36). As ODSA guarantees the op-
timal solution, it will be a basis for evaluating the accuracy
of the subgradient method, along with its relative complex-
ity. For the subgradient method, an initial value of µ is set to

N

N

(a)

N

(b)

Fig. 4. Computational complexity as varying the number of contents, N
: M = 10, s = 1, λ = 0.01/π, rmax = 100 m, and ∆µ = 10−5: (a)
ODSA and (b) subgradient method.

πλr2maxgMe−πλr2
max . Let p∗

A1 denote the optimal solution ob-
tained by ODSA. Let k∗(ε) be the minimum number of itera-
tions required for the iterative solution to obtain its performance
close to f̄(p∗

A1) in (4), within an error range of ε, i.e.,

k∗(ε) = min







k

∣

∣

∣

∣

∣
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f̄
(

p(k)
SG

)

− f̄ (p∗
A1)
∣

∣

∣

f̄ (p∗
A1)

< ε







(37)

where p(k)
SG is the solution using the subgradient method with

k iterations. The number of iterations in (37), k∗(ε), indicates
how much faster than the subgradient method ODSA converges
to the optimal solution.

Given device density λ and caching capacity M , the demand
dominance factor s and the number of contents N vary in prac-
tice. Therefore, let us investigate the number of iterations as N ,
s, and M vary. Fig. 4 shows the size of the search space for
ODSA and the number of iterations, k∗(ε), in the subgradient
method varying N with M = 1, s = 1, and λ = 0.01/π.
As shown in Fig. 4(a), the number of iterations for ODSA is
bounded by ⌈log2N⌉, e.g., 14 for N = 10, 000, while achiev-
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s
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(a)

s

(b)

Fig. 5. Computational complexity as varying the demand dominance
factor, s : N = 1, 000, M = 10, λ = 0.001/π, rmax = 100 m, and
∆µ = 8× 105: (a) ODSA and (b) subgradient method.

ing the actual number of iterations below the bound by breaking
the rule in Theorem 2. As shown in Fig. 4(b), meanwhile, the
subgradient method requires 5,000 to 10,000 iterations with an
update step size ∆µ = 10−5, while requiring more iterations
as ε is reduced. Note that ∆µ = 10−5 in this result is the best
value found by trial and error. However, it must be reconfigured
as M , s, and λ change. This implies that the actual number of
iterations required in practice would be greater than in Fig. 4(b).

Fig. 5 also shows the search space size for ODSA and the
number of iterations in the subgradient method with varying s
for N = 1, 000, M = 10, and λ = 0.001/π. In Fig. 5(a), we
find that ODSA requires an average of eight searches with an
upper bound of ten searches. We note that the upper bound on
the number of searches does not change with s, since N is fixed.
Meanwhile, the subgradient method takes roughly 100 to 1,000
iterations, depending on ε and s, with ∆µ = 8 × 105, as shown
in Fig. 5(b). The convergence rate of the subgradient method
depends on ∆µ and the initial value of µ. Furthermore, their
optimal values depend on s. This explains why the number of
iterations required to meet the target ε varies with s. As general

N

M

(a)

M

(b)

Fig. 6. Computational complexity as varying the number of contents that
can be store in the device, M :N = 1, 000, s = 1,λ = 0.001/π,
rmax = 100 m, and ∆µ = 2 × 107: (a) ODSA and (b) subgradient
method.

forms for the optimal values of ∆µ and initial values of µ are
not known for the various problems, it is impossible to set the
appropriate values for each problem in practice.

On the other hand, Fig. 6 shows the same results for varying
M with N = 1, 000, s = 1, and λ = 0.001/π. As in Fig. 5(a),
Fig. 6(a) shows that ODSA finds the optimal solution with the
number of searches bounded by ⌈log2N⌉. Meanwhile, Fig. 6(b)
shows that the subgradient method with ∆µ = 2× 107 involves
a large number of iterations, e.g., more than 10,000 iterations for
a rather small M . It can be observed in Fig. 6(b) that only one it-
eration is required for the subgradient method to meet ε = 10−1

when M = 51. We conjecture that ∆µ = 2× 107 and the initial
value of µ happens to be the best choice at M = 51 with a rather
loose requirement for accuracy, e.g., ε = 10−1. We note that a
large number of iterations are still required for ε < 10−1 even
when M = 51. As it is not possible to set appropriate values to
individual problems with different parameters, we may have to
resort to some fixed values of ∆µ = 2 × 107 and an arbitrary
initial value of µ. In practice, then, a sufficiently large number
of iterations will be required for the subgradient method to con-
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Fig. 7. Caching probability distribution as varying the demand domi-
nance factor, s : N = 10, M = 1, λ = 0.001/π, and rmax = 100

m.

verge within the given accuracy.
Taking all the results from Figs. 4–6 into account, we con-

clude that the proposed ODSA can significantly reduce com-
plexity as compared to the subgradient method, while guaran-
teeing a finite number of searches even when the various system
parameters are changed.

B. Performance Analysis of Caching Policies: Comparison

The performance of the proposed policy with the optimal
caching probability is compared with that of other caching poli-
cies: one with an EP caching policy and the other with a HPF
caching policy. The EP policy is to cache all contents with equal
probability, e.g., with the following probability

pi = M/N, ∀i ∈ I. (38)

The HPF policy is to cache the M most frequently requested
contents, corresponding to the following caching probabilities

pi =

{

1 if i ≤M ;

0 if i > M.
(39)

In the numerical results in this subsection, we assume that λ =
0.001/π.

Fig. 7 presents the optimum caching probability of individual
content for for N = 10, M = 1, λ = 0.001/π, and rmax = 100
m, that is computed by the proposed algorithm, as varying the
demand dominance factor s. Note that the content index without
a value of caching probability in Fig. 7 corresponds to pi = 0.
The optimum caching probabilities turn out be slightly different
from the demand probabilities by Zipf distribution. It indicates
that the most popular content does not need to be stored by all
CSD’s. Furthermore, it is found from Fig. 7 that some contents
with very low demand do not need to be stored in any CSD, i.e.,
pi = 0, due to the limited storage capacity, especially when s
is large, e.g., s > 1.5. Furthermore, it show that only the most
popular content must be stored by all CSD’s, i.e., p1 = 1 and
p2 = p3 = · · · = p10 = 0, when s = 15.

f
p

s

M

M

M

M

M

M

M

M

M

M

M

M

Fig. 8. The average caching failure probability as varying the demand
dominance factor s: N = 1, 000, rmax = 100 m, and λ = 0.001/π.

Fig. 8 shows the average caching failure performance for
the EP, HPF, and optimal policies with different numbers of
caching storage capacity M as a dominance factor s varies when
N = 1, 000. First, the caching failure probability decreases as
the demand dominance factor s increases. This is attributed to
the fact that only a limited number of contents will be requested
with a large demand dominance factor, which tends to store
some contents with a high probability, reducing the caching fail-
ure rate. In fact, the performance of the HPF policy is close to
the optimal performance for a large demand dominance factor.
It is the other way around for the EP policy. Meanwhile, when
M = 1, 000, all schemes have the same caching failure prob-
ability (showing only a single line in Fig. 8). It is attributed to
the fact that all contents can be stored with M = 1, 000 for
N = 1, 000 contents, i.e., with the caching probability of 1 for
each content.

Fig. 9 shows the average caching failure performance of EP,
HPF, and optimal policies for different numbers of caching
storage capacity M as the number of contents N varies with
s = 1. Due to limited storage capacity, the average caching fail-
ure probability increases with N . We observe that the EP and
HPF policies perform better for small and large numbers of con-
tents, respectively. Furthermore, the crossing point for the per-
formance of the EP and HPF policies moves toward the larger
N as M increases. However, the average caching failure per-
formance for the EP or HPF scheme deviates from the optimum
when M is sufficiently larger than N .

Taking the results from Figs. 8 and 9 into account, we note
that the optimal performance can be achieved by employing the
EP or HPF policy selectively, depending onN and s. As N tends
to be much larger than N , and most traffic will be governed
by some popular contents in general, a further study on such a
selective scheme may be meaningful.

V. CONCLUSION

In this paper, we considered a design and optimization frame-
work for an mCDN in which, by direct D2D communication,
mobile devices in proximity can share the contents that are
cached in the individual devices, i.e., a mobile device consumes
the contents while storing them as a CSD. As the connectiv-
ity of mobile D2D links are highly dynamic and, furthermore,



576 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 5, OCTOBER 2014

f
p

M

M

M

M

M

N

(a)

M

M

M

M

M

N

f
p

(b)

M

M

M

M

M

N

f
p

(c)

Fig. 9. The average caching failure probability as varying the number of
caching-service devices, N : s = 1, rmax = 100 m, and λ = 0.001/π:
(a) EP, (b) HPF, and (c) Optimum.

since storage size is strictly limited in the mCDN, we attempted
to determine which contents must be stored in CSD’s, given the
popularity of individual contents in terms of their demand prob-

abilities. In this paper, we presented a low-complexity search
algorithm to solve an optimization problem that minimizes the
average caching failure probability. Based on our optimization
framework, we found that less popular contents must still be
cached with some given probabilities while caching more popu-
lar contents with a higher probability. On the other hand, it was
found that when the demand statistics are not known a priori,
performance could be improved significantly by alternately em-
ploying the policy of caching all contents with the same prob-
ability and that of caching some of the highly popular contents
only.

As the small-cell approach becomes an essential means of
coping with mobile traffic explosion, the practicality of mobile
caching devices becomes more acceptable with an mCDN. In
fact, the ultimate form of the small cell would be a portable base
station that can be carried by an individual user with a wireless
backhaul, eventually allowing for more base stations than mo-
bile devices in some situations. The portable base stations are
dynamically inter-connected to form reconfigurable backhaul
links. As the popular contents can be cached in portable base sta-
tions, the reconfigurable backhaul infrastructure will serve as an
mCDN, reducing wireless data transmissions, especially with-
out communication with the server in the core network. Then,
caching policies become essential for dealing with the mobility
and limited storage of portable base stations. Therefore, our pro-
posed optimization framework and the solution approach therein
can be useful for implementing mCDN with portable base sta-
tions, which would be the ultimate form of small cells in the
next generation mobile information system.
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APPENDIX

A. Subgradient-based Iterative Method

The optimization problem (6)–(9) can be solved using the
projected subgradient method for the dual solution [4], [5]. It
first defines the following Lagrangian function

L(p, µ,γ,σ) =
N
∑

i=1

gie
−πλr2

max
pi − µ

(

M −

N
∑

i=1

pi

)

−

N
∑

i=1

γi (1− pi) +

N
∑

i=1

σipi.

(V-A.40)
Letting g(µ,γ,σ) = infpL(p, µ,γ,σ), a dual problem of (6)-
(9) can be stated as

maxµ,γ,σg(µ,γ,σ) (V-A.41)

subject to
µ ≥ 0, (V-A.42)

γi ≥ 0, σi ≥ 0, ∀i = 1, · · ·, N. (V-A.43)
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As L(p, µ,γ,σ) in (V-A.40) is jointly convex with respect to p,
∇L(p∗(µ,γ,σ), µ,γ,σ) = 0. Therefore, p̂(µ,γ,σ) minimiz-
ing L(p, µ,γ,σ)is found by the following equation

∂L(p, µ,γ,σ)

∂pi

∣

∣

∣

∣

p=p̂

= −πλr2maxe
−πλr2

max
p̂igi + µ+ γi − σi

= 0.
(V-A.44)

Solving (V-A.44) for p̂(µ,γ,σ),

p̂i(µ,γ,σ) =
1

πλr2max

log

{

πr2maxλgi
µ+ γi − σi

}

. (V-A.45)

Applying the projected subgradient method to the constrained
optimization problem defined in [4] and [5], the optimal
(µ∗,γ∗,σ∗) can be determined through the following iterative
steps.

µ(τ + 1) =

[

µ(τ) + ∆µ

{

M −
∑

i∈I

p̂i (µ(τ),γ(τ),σ(τ))

}]+

,

(V-A.46)

γi(τ + 1) = [γi(τ) + ∆γ (1− p̂i(µ(τ),γ(τ),σ(τ)))]
+
,

(V-A.47)

σi(τ + 1) = [σi(τ) + ∆σ p̂i(µ(τ),γ(τ),σ(τ))]
+ (V-A.48)

where [x]
+

= max(x, 0), ∆µ, ∆γ , and ∆σ are positive real
values as the step sizes for µ, γ, and σ, respectively. Assuming
strong duality, the optimal caching probability p∗i can be derived
by substituting (µ∗,γ∗,σ∗) into (V-A.45). In order to satisfy the
constraints (7)–(9), the elements of p∗ are normalized as follows

p∗i = min

(

M [p̂i(µ
∗,γ∗,σ∗)]

+

∑

i∈I [p̂i(µ
∗,γ∗,σ∗)]

+ , 1

)

. (V-A.49)
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