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16-QAM Periodic Complementary Sequence Mates Based
on Interleaving Technique and Quadriphase Periodic

Complementary Sequence Mates
Fanxin Zeng, Xiaoping Zeng, Lingna Xiao, Zhenyu Zhang, and Guixin Xuan

Abstract: Based on an interleaving technique and quadriphase pe-
riodic complementary sequence (CS) mates, this paper presents a
method for constructing a family of 16-quadrature amplitude mod-
ulation (QAM) periodic CS mates. The resulting mates arise from
the conversion of quadriphase periodic CS mates, and the period of
the former is twice as long as that of the latter. In addition, based
on the existing binary periodic CS mates, a table on the existence
of the proposed 16-QAM periodic CS mates is given. Furthermore,
the proposed method can also transform a mutually orthogonal
(MO) quadriphase CS set into an MO 16-QAM CS set. Finally,
three examples are given to demonstrate the validity of the pro-
posed method.

Index Terms: Aperiodic and periodic correlation, complementary
sequence set, quadrature amplitude modulation (QAM) constella-
tion, quaternary sequence.

I. INTRODUCTION

As multimedia services, which require supporting devices
with a high transmission data rate (TDR), become increasingly
popular in communications, the design of high-TDR communi-
cation systems has assumed critical importance. In many poten-
tial candidates, spread-spectrum code-division multiple-access
(CDMA) communication systems, employing sequences over a
quadrature amplitude modulation (QAM) constellation as their
spreading sequences, are significant owing to their inherent ad-
vantages. More clearly, in comparison with the systems using
traditional spreading sequences of the same length, the TDR of
the former is a multiple of that of the latter [1]–[5]. In addi-
tion, there also are other advantages related to sequences over
the QAM constellation, such as the fact that QAM Golay com-
plementary sequence (CS) sets can be applied to an orthog-
onal frequency division multiplexing (OFDM) communication
system so as to reduce the peak-to-mean envelope power ratio
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(PMEPR) in such a system [6]–[16], and zero correlation zone
(ZCZ) QAM sequences can be employed in an approximately
synchronous CDMA communication system so as to remove
multiple access interference (MAI) and multi-path interference
(MPI) synchronously and completely [17], [18].

This paper will focus on construction of QAM periodic CS
sets. The technique invariably used to investigate CSs is to di-
vide them into periodic and aperiodic cases, respectively; for
example, QAM Golay CS sets, which were referred to above,
belong to the aperiodic case. Tarokh and Sadjadpour derived a
method for producing QAM CSs with a low PMEPR by quad-
riphase Golay CSs [6]. Davis and Jedwab found the relation-
ship between Golay CSs and Reed-Muller codes [7]. Sadjadpour
described a family of non-square M -QAM sequences [8]. Lee
and Golomb discussed 64-QAM Golay CSs [10], and so did
Chang, Li, and Hirata [9]. Li investigated both 16-QAM and
64-QAM Golay CSs [12], [13], and Zeng et al. discussed 16-
QAM Golay CSs as well [14], [15]. In addition, Fiedler, Jed-
wab, and Parker proposed a framework for constructing Golay
CSs [16]. On the other hand, although periodic and aperiodic
sequences are equally important in communications, all aperi-
odic CSs must be periodic ones, whereas the reverse may not
hold [19, p. 332]. Hence, investigation of QAM periodic CS sets
is valuable. For instance, QAM sequences with low correlation
[1]–[5], ZCZ QAM sequences [17], [18], 8-QAM+ periodic CSs
[20], and almost perfect or perfect QAM sequences/arrays [21]–
[24] are periodic sequences. In this paper, a family of 16-QAM
periodic CS mates will be presented that results from an inter-
leaving technique and quadriphase periodic CS mates.

This paper is organized as follows. In Section II, the rele-
vant definitions referred to in this paper are recapitulated. In
Section III, the basic properties of some 16-QAM sequences
are discussed. In Section IV, the proposed 16-QAM periodic CS
mates are described, and three examples are included. Finally,
the concluding remarks are made in Section V.

II. PRELIMINARIES

Throughout this paper, Bl = (bl0, b
l
1, · · ·, b

l
M−1) denotes a

sequence set that consists of M subsequences, where bld =
{bld(t)} = (bld(0), b

l
d(1), b

l
d(2), · · ·, b

l
d(N−1)) (0 ≤ d ≤ M−1)

denotes a sequence comprising complex values, having length
N , with bld(t) being the complex conjugate of bld(t) and the sym-
bol j being an imaginary unit; that is, j2 = −1.

Definition 1: For ∀ bld ∈ Bl and ∀ bhk ∈ Bh, for a time shift
τ , we refer to
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Rbl
d
,bh

k
(τ) =

N−1∑

t=0

bld(t)b
h
k(t+ τ) (1)

as a periodic correlation function (CF) between bld and bhk ,
where the sum t + τ is calculated modulo N . If l = h and
d = k, Rbl

d
,bl

d
(τ) is called a periodic autocorrelation function

(ACF); otherwise, it is called a periodic cross-correlation func-
tion (CCF).

Definition 2: Let Bl = (bl0, b
l
1, · · ·, b

l
M−1) consist of M sub-

sequences, each of length N . If we have

M−1∑

k=0

Rbl
k
,bl

k
(τ) =

{
> 0, τ ≡ 0 (mod N)
0 , τ 6≡ 0 (mod N)

(2)

we refer to the sequence set Bl as a periodic CS set, denoted by
PCSSH(Bl,M,N), where H = 4 and H = 16-QAM imply
that the corresponding sequences are quaternary and 16-QAM
ones, respectively. When M = 2, the sequence set Bl is called
a periodic CS pair.

Notes: In (2), when τ ≡ 0 (mod N), the sum in the tradi-
tional CS sets equals MN , whereas it equals a multiple of MN
in the 16-QAM CS sets (see Section IV for more details).

Definition 3: For PCSSH(Bl,M,N) and PCSSH(Bh,
M,N), if we have

M−1∑

k=0

Rbl
k
,bh

k
(τ) = 0 (∀ τ) (3)

we say that the sequence sets Bl and Bh are the mates to each
other.

Definition 4: Let A consist of T periodic CS sets
PCSSH(Bl,M,N) (1 ≤ l ≤ T ). For ∀ l, h (1 ≤ l, h ≤ T
and l 6= h), if PCSSH(Bl,M,N) and PCSSH(Bh,M,N)
are the mates to each other, we refer to A as a mutually orthog-
onal (MO) CS set.

Definition 5: Let the symbol L denote a left cyclic shift op-
erator. This is, for a sequence bld ∈ Bl and an integer ζ,
Lζbld = (bld(ζ), b

l
d(ζ + 1), · · ·, bld(ζ + N − 1)), in which the

addition ζ + t (t ∈ [0, N − 1]) is performed modulo N . For
two sequences bld and bhk , if there exists an integer ζ such that
bld = Lζbhk , these two sequences are said to be equivalent;
otherwise they are said to be distinct. For PCSSH(Bl,M,N)
and PCSSH(Bh, M,N), if there is an integer ζ such that
blk = Lζbhk (0 ≤ k ≤ M − 1), these two periodic CS sets
are said to be equivalent; otherwise, they are said to be distinct.

A. 16-QAM Symbols

The 16-QAM symbols can be driven by the QPSK symbols
[6]. This is, the 16-QAM symbols can be expressed by [1], [2].

Expression 1:

{(1 + j)(ja0 + 2ja1)|a0, a1 ∈ Z4} (4)

Expression 2:

{(1− j)(ja0 − 2ja1)|a0, a1 ∈ Z4} (5)

  

  

  

  

  

  

  

  

1 j! 3 j!

1 3 j! 3 3 j!

1 j" 3 j"

1 3 j" 3 3 j"

1 j! !

1 3 j! !

3 j! !

3 3 j! !

1 j! "

1 3 j! "3 3 j! "

3 j! "

Fig. 1. 16-QAM constellation.

both of which are mainly employed by [1]–[8], where Z4 =
{0, 1, 2, 3}.

Apart from those aforementioned two expressions, the au-
thors find that the 16-QAM symbols can be equivalently de-
scribed as follows

Expression 3:

{−j(1 + j)(ja0 + 2ja1)|a0, a1 ∈ Z4} (6)

Expression 4:

{j(1− j)(ja0 − 2ja1)|a0, a1 ∈ Z4}. (7)

In fact, Expression 3 makes four rotations of 16-QAM sym-
bols such as 1 + j → 1 − j → −1 − j → −1 + j or
1+3j → 3− j → −1−3j → −3+ j and so on. Similarly, Ex-
pression 4 also makes four rotations. In particular, it is exactly
by utilizing this property of four expressions that we construct
the 16-QAM periodic CS mates. The 16-QAM constellation is
shown in Fig.1.

B. An Interleaved Sequence

For the sequences {bld(t)} and {bhk(t)}, each of period N ,
we construct a new sequence called an interleaved sequence de-
noted by {bld(t

′)} ⊙ {bhk(t
′)} or bld ⊙ bhk , as follows

bld⊙bhk = (bld(0), b
h
k(0), b

l
d(1), b

h
k(1), · · ·, b

l
d(N−1), bhk(N−1))

(8)

which implies that the interleaved sequence has a length of 2N .

III. NEW 16-QAM SEQUENCES AND THEIR
PROPERTIES

Before we present the main results in this paper, some basic
correlation properties of the new 16-QAM sequences are dis-
cussed. For the sake of convenience, throughout this section, let
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U l = (ul
0, u

l
1, · · ·, u

l
M−1) and Uh = (uh

0 , u
h
1 , · · ·, u

h
M−1) con-

sist of M quadriphase subsequences of length N and the non-
negative integer δ satisfy 0 ≤ δ ≤ N − 1.

For ∀ k (0 ≤ k ≤ M −1), the new 16-QAM sequences based
on four expressions in (4)–(7) are defined as follows

v+,l,h
k (t) = (1 + j)(ju

l
k(t) + 2ju

h
k(t+δ)),

v−,l,h
k (t) = (1− j)(ju

h
k (t+δ) − 2ju

l
k(t)), (9)

w+,l,h
k (t) = −jv+,l,h

k (t),

w−,l,h
k (t) = jv−,l,h

k (t)

whose correlation properties are as follows.
Lemma 1: The autocorrelation functions of the 16-QAM se-

quences in (9) can be calculated with

R
v
+,l,h

k
,v

+,l,h

k

(τ) = R
w

+,l,h

k
,w

+,l,h

k

(τ)

= 2[Rul
k
,ul

k
(τ)+2Rul

k
,uh

k
(τ+δ)+2Ruh

k
,ul

k
(τ−δ)+4Ruh

k
,uh

k
(τ)],

(10)

R
v
−,l,h

k
,v

−,l,h

k

(τ) = R
w

−,l,h

k
,w

−,l,h

k

(τ)

= 2[Ruh
k
,uh

k
(τ)−2Ruh

k
,ul

k
(τ−δ)−2Rul

k
,uh

k
(τ+δ)+4Rul

k
,ul

k
(τ)].

(11)
Proof: Owing to limitations of sapce, onlyR

v
+,l,h

k
,v

+,l,h

k

(τ)

is derived; the other derivations are similar. For a time shift τ ,
we have

R
v
+,l,h

k
,v

+,l,h

k

(τ) =

(1+j)(1−j)
N−1∑

t=0

[ju
l
k(t)+2ju

h
k(t+δ)][j−ul

k(t+τ)+2j−uh
k(t+δ+τ)]

= 2[Rul
k
,ul

k
(τ)+2Rul

k
,uh

k
(τ+δ)+2Ruh

k
,ul

k
(τ−δ)+4Ruh

k
,uh

k
(τ)].

(12)

This completes our proof. 2

Lemma 2: The cross-correlation functions of the 16-QAM
sequences in (9) can be calculated by

R
v
+,l,h

k
,v

−,l,h

k

(τ) = 2j[Rul
k
,uh

k
(τ + δ)− 2Rul

k
,ul

k
(τ)+

2Ruh
k
,uh

k
(τ)− 4Ruh

k
,ul

k
(τ − δ)],

(13)

R
v
−,l,h

k
,v

+,l,h

k

(τ) = −2j[Ruh
k
,ul

k
(τ − δ) + 2Ruh

k
,uh

k
(τ)

−2Rul
k
,ul

k
(τ) − 4Rul

k
,uh

k
(τ + δ)],

(14)

R
v
+,l,h

k
,w

+,l,h

k

(τ) = jR
v
+,l,h

k
,v

+,l,h

k

(τ), (15)

R
v
−,l,h

k
,w

−,l,h

k

(τ) = −jR
v
−,l,h

k
,v

−,l,h

k

(τ), (16)

R
v
+,l,h

k
,w

−,l,h

k

(τ) = −jR
v
+,l,h

k
,v

−,l,h

k

(τ), (17)

R
v
−,l,h

k
,w

+,l,h

k

(τ) = jR
v
−,l,h

k
,v

+,l,h

k

(τ). (18)

Proof: Again only R
v
+,l,h

k
,v

−,l,h

k

(τ) is derived, for the rea-
sons mentioned earlier. Hence, we have

R
v
+,l,h

k
,v

−,l,h

k

(τ) =

(1+j)(1+j)

N−1∑

t=0

[ju
l
k(t)+2ju

h
k(t+δ)][j−uh

k(t+δ+τ)−2j−ul
k(t+τ)]

= 2j[Rul
k
,uh

k
(τ+δ)−2Rul

k
,ul

k
(τ)+2Ruh

k
,uh

k
(τ)−4Ruh

k
,ul

k
(τ−δ)].

(19)

Hence, this lemma is proved. 2

IV. NEW 16-QAM PERIODIC COMPLEMENTARY
SEQUENCE MATES

Consider the quadriphase periodic CS mates PCSS4(U
l,

M,N) and PCSS4(U
h,M,N). By making use of the inter-

leaving technique, we construct two classes of 16-QAM se-
quences with length 2N as follows

xl,h
k = v+,l,h

k ⊙ v−,l,h
k , (20)

yl,h
k

= w+,l,h
k ⊙ w−,l,h

k (21)
whose properties are as follows.

Theorem 1: The 16-QAM sequence sets X l,h = (xl,h
0 , xl,h

1 ,

· · ·, xl,h
M−1) and Y l,h = (yl,h

0
, yl,h

1
, · · ·, yl,h

M−1
) are PCSS16-QAM

(X l,h,M, 2N) and PCSS16-QAM(Y l,h,M, 2N), respectively.
Proof: Only PCSS16-QAM(X l,h,M, 2N) is derived, for

the reasons mentioned earlier. For the sake of convenience, we
consider the odd and even time shifts.

Case 1: The even time shift τ = 2η (0 ≤ η ≤ N − 1).
The relationship between the 16-QAM sequence xl,h

k and its
cyclical shift version with the time shift τ = 2η is

v+,l,h
k (0), v−,l,h

k (0), v+,l,h
k (1), v−,l,h

k (1), · · ·,

v+,l,h
k (η), v−,l,h

k (η), v+,l,h
k (η + 1), v−,l,h

k (η + 1), · · ·. (22)

Hence, we have

R
x
l,h

k
,x

l,h

k

(2η) =

N−1∑

t′=0

v+,l,h
k (t′)v+,l,h

k (t′ + η) +

N−1∑

t′=0

v−,l,h
k (t′)v−,l,h

k (t′ + η)

= R
v
+,l,h

k
,v

+,l,h

k

(η) +R
v
−,l,h

k
,v

−,l,h

k

(η).

(23)

After (10) and (11) are substituted into (23), (23) reduces to

R
x
l,h

k
,x

l,h

k

(2η) = 10[Rul
k
,ul

k
(η) +Ruh

k
,uh

k
(η)]. (24)

Furthermore, we have
M−1∑

k=0

R
x
l,h

k
,x

l,h

k

(2η) = 10[

M−1∑

k=0

Rul
k
,ul

k
(η) +

M−1∑

k=0

Ruh
k
,uh

k
(η)]

=

{
20MN, η ≡ 0 (mod N) (i.e., τ ≡ 0 (mod 2N))
0 , η 6≡ 0 (mod N)

(25)
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which results from Definition 2.
Case 2: The odd time shift τ = 2η + 1 (0 ≤ η ≤ N − 1).
The relationship between the 16-QAM sequence xl,h

k and its
cyclical shift version with the time shift τ = 2η+1 is as follows

v+,l,h
k (0), v−,l,h

k (0), v+,l,h
k (1), v−,l,h

k (1), · · ·,

v−,l,h
k (η), v+,l,h

k (η + 1), v−,l,h
k (η + 1), v+,l,h

k (η + 2), · · ·.
(26)

Therefore, we have

R
x
l,h

k
,x

l,h

k

(2η + 1) =

N−1∑

t′=0

v+,l,h
k (t′)v−,l,h

k (t′ + η) +

N−1∑

t′=0

v−,l,h
k (t′)v+,l,h

k (t′ + η + 1)

= R
v
+,l,h

k
,v

−,l,h

k

(η) +R
v
−,l,h

k
,v

+,l,h

k

(η + 1).

(27)

In accordance with (13) and (14), we obtain

M−1∑

k=0

R
x
l,h

k
,x

l,h

k

(2η + 1) = 2j

[M−1∑

k=0

Rul
k
,uh

k
(η + δ)−

2

M−1∑

k=0

Rul
k
,ul

k
(η) + 2

M−1∑

k=0

Ruh
k
,uh

k
(η)− 4

M−1∑

k=0

Ruh
k
,ul

k
(η − δ)

]

−2j

[M−1∑

k=0

Ruh
k
,ul

k
(η − δ + 1) + 2

M−1∑

k=0

Ruh
k
,uh

k
(η + 1)−

2

M−1∑

k=0

Rul
k
,ul

k
(η + 1)− 4

M−1∑

k=0

Rul
k
,uh

k
(η + δ + 1)

]
= 0 (28)

which is because

M−1∑

k=0

Rul
k
,ul

k
(ζ) =

M−1∑

k=0

Ruh
k
,uh

k
(ζ) (∀ ζ), (29)

M−1∑

k=0

Rul
k
,uh

k
(ζ) = 0 (∀ ζ), (30)

M−1∑

k=0

Ruh
k
,ul

k
(ζ) = 0 (∀ ζ). (31)

Summarizing Cases 1 and 2, this theorem follows immedi-
ately. 2

Theorem 2: Two periodic CS sets PCSS16-QAM(X l,h,M,
2N) and PCSS16-QAM (Y l,h,M, 2N) in Theorem 1 are the
mates to each other.

Proof: According to Definition 3, we only need to show
that those two sequence sets satisfy (3). Similarly, we consider
the odd and even time shifts as well.

Case 1: The even time shift τ = 2η (0 ≤ η ≤ N − 1).

The relationship between the 16-QAM sequence xl,h
k and the

cyclical shift version of yl,h
k

with the time shift τ = 2η is

v+,l,h
k (0), v−,l,h

k (0), v+,l,h
k (1), v−,l,h

k (1), · · ·,

w+,l,h
k (η), w−,l,h

k (η), w+,l,h
k (η + 1), w−,l,h

k (η + 1), · · ·.
(32)

As a consequence, we have

R
x
l,h

k
,y

l,h

k

(2η) = R
v
+,l,h

k
,w

+,l,h

k

(η) +R
v
−,l,h

k
,w

−,l,h

k

(η). (33)

Utilizing (15) and (16), we get

M−1∑

k=0

R
x
l,h

k
,y

l,h

k

(2η) = 6j

M−1∑

k=0

[Ruh
k
,uh

k
(η)−Rul

k
,ul

k
(η)]+

8j

M−1∑

k=0

Rul
k
,uh

k
(η + δ) + 8j

M−1∑

k=0

Ruh
k
,ul

k
(η − δ) = 0 (34)

which follows from (29)–(31).
Case 2: The odd time shift τ = 2η + 1 (0 ≤ η ≤ N − 1).
The relationship between the 16-QAM sequence xl,h

k and the
cyclical shift version of yl,h

k
with the time shift τ = 2η+1 is as

follows

v+,l,h
k (0), v−,l,h

k (0), v+,l,h
k (1), v−,l,h

k (1), · · ·

w−,l,h
k (η), w+,l,h

k (η + 1), w−,l,h
k (η + 1), w+,l,h

k (η + 2), · · ·.
(35)

Consequently, we have

R
x
l,h

k
,y

l,h

k

(2η + 1) = R
v
+,l,h

k
,w

−,l,h

k

(η) +R
v
−,l,h

k
,w

+,l,h

k

(η + 1).

(36)

Then, by (17) and (18), we can calculate

M−1∑

k=0

R
x
l,h

k
,y

l,h

k

(2η+1) = 2

[M−1∑

k=0

Rul
k
,uh

k
(η+δ)−2

M−1∑

k=0

Rul
k
,ul

k
(η)

+2
M−1∑

k=0

Ruh
k
,uh

k
(η)−4

M−1∑

k=0

Ruh
k
,ul

k
(η−δ)

]
+2

[M−1∑

k=0

Ruh
k
,ul

k
(η−δ+1)

+2

M−1∑

k=0

Ruh
k
,uh

k
(η + 1)− 2

M−1∑

k=0

Rul
k
,ul

k
(η + 1)

−4

M−1∑

k=0

Rul
k
,uh

k
(η + δ + 1)

]
= 0 (37)

which follows from (29)–(31) as well.
Clearly, this theorem is true. 2

Theorem 3: Let {PCSS4(U
l,M,N)|1 ≤ l ≤ T } be

an MO quadriphase CS set. Again, let X2(l−1)+1,2(l−1)+2

and Y 2(l−1)+1,2(l−1)+2 be constructed in accordance with
(20) and (21) from the mates PCSS4(U

(2(l−1)+1,M,N) and
PCSS4(U

(2(l−1)+2,M,N), where 1 ≤ l ≤ ⌊T/2⌋. Then, we
obtain an MO 16-QAM CS set

{PCSS16-QAM(X
2(l−1)+1,2(l−1)+2,M, 2N),

PCSS16-QAM(Y
2(l−1)+1,2(l−1)+2,M, 2N)|1 ≤ l ≤ ⌊T/2⌋}
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Table 1. Autocorrelation values of PCSS16-QAM(X1,2, 4, 12) in (38).
auto corr. τ

0 1 2 3 4 5 6 7 8 9 10 11
R

x
1,2
0

,x
1,2
0

(τ) 120 12j 0 −12j −40 −36j 0 36j −40 12j 0 −12j

R
x
1,2
1

,x
1,2
1

(τ) 120 −12j 0 12j −40 36j 0 −36j −40 −12j 0 12j

R
x
1,2
2

,x
1,2
2

(τ) 120 12j 0 20j 40 −20j 0 20j 40 −20j 0 −12j

R
x
1,2
3

,x
1,2
3

(τ) 120 −12j 0 −20j 40 20j 0 −20j 40 20j 0 12j

sum 480 0 0 0 0 0 0 0 0 0 0 0

Table 2. Cross-correlation values between PCSS16-QAM(X1,2, 4, 12) and PCSS16-QAM(Y 1,2, 4, 12) in (38) and (39), respectively.
cross corr. τ

0 1 2 3 4 5 6 7 8 9 10 11
R

x
1,2
0

,y
1,2
0

(τ) 0 −12 32j −12 0 36 −96j 36 0 −12 32j −12

R
x
1,2
1

,y
1,2
1

(τ) 0 12 −32j 12 0 −36 96j −36 0 12 −32 12

R
x
1,2
2

,y
1,2
2

(τ) 0 −12 32j −44 −48j −44 32j −44 −48j −44 32j −12

R
x
1,2
3

,y
1,2
3

(τ) 0 12 −32j 44 48j 44 −32j 44 48j 44 −32j 12

sum 0 0 0 0 0 0 0 0 0 0 0 0

where ⌊a⌋ denotes the largest integer not exceeding a.
Proof: For convenience, let t1 = 2(l1 − 1) + 1 and

t2 = 2(l2 − 1) + 1 (1 ≤ l1, l2 ≤ ⌊T/2⌋). By Theorem 1,
Xt1,t1+1 and Y t1,t1+1 are PCSS16-QAM(Xt1,t1+1,M, 2N) and
PCSS16-QAM(Y t1,t1+1, M, 2N), respectively. By employing
the method used to derive Theorem 2, PCSS16-QAM(Xt1,t1+1,
M, 2N) and PCSS16-QAM(Xt2,t2+1, M, 2N) (l1 6= l2),
PCSS16-QAM (Y t1,t1+1,M, 2N) and PCSS16-QAM(Y t2,t2+1,
M, 2N) (l1 6= l2), and PCSS16-QAM (Xt1,t1+1,M, 2N) and
PCSS16-QAM (Y t2,t2+1,M, 2N) (∀ l1 and ∀ l2) are the mates
of each other, respectively. 2

Here are two examples to help the reader understand.
Example 1: Consider the quadriphase periodic CS mate

{PCSS4(U
l, 4, 6)|l = 1, 2}, copied from [26].

[

U1

U2

]

=

[

u1

0
u1

1
u1

2
u1

3

u2
0
u2
1
u2
2
u2
3

]

=

[

113002 203312 010101 300211
122033 331220 021130 232323

]

.

Let δ = 1. Then, by Theorem 2, the resulting 16-QAM peri-
odic CS mate is as follows

X1,2 =









x
1,2

0

x
1,2
1

x
1,2
2

x
1,2
3









=























(

−3 −3 −3 −3 3 3 3 −3 3 −3 −3 3
−1 −1 −1 −1 1 1 −1 1 −1 1 1 −1

)

(

1 1 −1 −1 −1 1 −1 1 1 −1 1 1
−3 −3 3 3 −3 3 −3 3 3 −3 −3 −3

)

(

−1 −3 −3 −1 −1 −1 1 −3 3 −1 1 −1
−1 3 3 −1 3 3 −1 −3 3 1 3 −3

)

(

3 1 −1 −3 3 −3 −3 1 1 −3 −3 −3
−3 1 −1 3 −1 1 −3 −1 −1 −3 −1 −1

)























, (38)

Y 1,2 =











y1,2

0

y1,2

1

y1,2

2

y1,2

3











=























(

−1 1 −1 1 1 −1 −1 −1 −1 −1 1 1
3 −3 3 −3 −3 3 −3 −3 −3 −3 3 3

)

(

−3 3 3 −3 −3 −3 −3 −3 3 3 −3 3
−1 1 1 −1 1 1 1 1 −1 −1 −1 1

)

(

−1 −3 3 1 3 −3 −1 3 3 −1 3 3
1 −3 3 −1 1 −1 −1 −3 −3 −1 −1 −1

)

(

−3 −1 −1 −3 −1 −1 −3 1 −1 3 −1 1
−3 1 1 −3 −3 −3 3 1 −1 −3 3 −3

)























(39)

where
(
· · · a · · ·

· · · b · · ·

)
expresses the element a + bj in the 16-QAM

constellation, and
(
· · · a c · · ·

· · · b d · · ·

)
denotes a 16-QAM sequence

(· · ·, a+ bj, c+ dj, · · ·).
For the sake of clarity, the autocorrelation values of (38) and

the cross-correlation values between (38) and (39) are listed in
Tables 1 and 2, respectively.

Example 2: Consider an MO quaternary CS set {PCSS4(U
l,

4, 4)|1 ≤ l ≤ 4}, copied from [27], as follows



U1

U2

U3

U4



 =




u1

0
u1

1
u1

2
u1

3

u2

0
u2

1
u2

2
u2

3

u3
0
u3
1
u3
2
u3
3

u4
0
u4
1
u4
2
u4
3



 =

[
1232 0323 1232 0323
3032 2123 3032 2123
3212 2303 1030 0121
1012 0103 3230 2321

]
.

Let δ = 1. Thus, by utilizing Theorem 3 we can produce an
MO 16-QAM CS set as follows

X1,2 =




x
1,2
0

x
1,2
1

x
1,2
2

x
1,2
3



 =




(

1 −1 1 1 −1 1 1 1
3 −3 −3 −3 −3 3 −3 −3

)

(

−1 −1 −1 1 1 1 −1 1
3 3 −3 3 −3 −3 −3 3

)

(

1 −1 1 1 −1 1 1 1
3 −3 −3 −3 −3 3 −3 −3

)

(

−1 −1 −1 1 1 1 −1 1
3 3 −3 3 −3 −3 −3 3

)



, (40)

Y 1,2 =




y1,2

0

y1,2

1

y1,2

2

y1,2

3


 =




(

3 3 −3 3 −3 −3 −3 3
−1 −1 −1 1 1 1 −1 1

)

(

3 −3 −3 −3 −3 3 −3 −3
1 −1 1 1 −1 1 1 1

)

(

3 3 −3 3 −3 −3 −3 3
−1 −1 −1 1 1 1 −1 1

)

(

3 −3 −3 −3 −3 3 −3 −3
1 −1 1 1 −1 1 1 1

)



, (41)

X3,4 =




x
3,4

0

x
3,4
1

x
3,4
2

x
3,4
3


 =




(

3 3 −3 3 −3 −3 −3 3
1 1 1 −1 −1 −1 1 −1

)

(

−3 3 3 3 3 −3 3 3
1 −1 1 1 −1 1 1 1

)

(

−3 −3 3 −3 3 3 3 −3
−1 −1 −1 1 1 1 −1 1

)

(

3 −3 −3 −3 −3 3 −3 −3
−1 1 −1 −1 1 −1 −1 −1

)



, (42)

Y 3,4 =




y3,4

0

y3,4

1

y3,4

2

y3,4

3



 =




(

1 −1 1 1 −1 1 1 1
−3 3 3 3 3 −3 3 3

)

(

1 1 1 −1 −1 −1 1 −1
3 3 −3 3 −3 −3 −3 3

)

(

−1 1 −1 −1 1 −1 −1 −1
3 −3 −3 −3 −3 3 −3 −3

)

(

−1 −1 −1 1 1 1 −1 1
−3 −3 3 −3 3 3 3 −3

)




(43)

whose correlation values are omitted because of limitations of
space.

Because it is well known that all aperiodic CSs must be
periodic ones [19, p. 332], the quaternary aperiodic MO CS
sets given in [27] can be treated as periodic ones. Hence, we
have {PCSS4(U

l, 2r+1, 2rn)|1 ≤ l ≤ 2r+1}, where r and
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Table 3. Existing 16-QAM periodic CS mates come from binary periodic CS mates up to M = 12 and N = 50.
Binary CS sets [29]-[32] Binary CS mates Quaternary CS mates (Theorem 5 [27]) Theorem 2 here
M|N M|N M|N M|2N

2
∣

∣

∣

2, 4, 8, 10, 16, 20, 26,

32, 34, 40, 50
(44) 2

∣

∣

∣

2, 4, 8, 10, 16, 20, 26,

32, 34, 40, 50
2
∣

∣

∣

4, 8, 16, 20, 32, 40, 52,

64, 68, 80, 100

3
∣

∣

∣

4, 8, 12, 16, 24, 28, 32,

36, 40, 44, 48
unknown unknown unknown

4
∣

∣

∣

2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46,

47, 48, 49, 50

(44) 4
∣

∣

∣

2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46,

47, 48, 49, 50

4
∣

∣

∣

4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24, 26, 28, 30, 32,

34, 36, 38, 40, 42, 44, 46,

48, 50, 52, 54, 56, 58, 60,

62, 64, 66, 68, 70, 72, 74,

76, 87, 80, 82, 84, 86, 88,

90, 92, 94, 96, 98, 100

5
∣

∣

∣

4, 8, 12, 16, 20, 24, 28,

32, 36, 40, 44, 48
unknown unknown unknown

6
∣

∣

∣

2, 4, 6, 8, 10, 12, 14, 16,

18, 20, 22, 24, 26, 28,

30, 32, 34, 36, 38, 40,

42, 44, 46, 48, 50

(44) 6
∣

∣

∣

2, 4, 6, 8, 10, 12, 14, 16,

18, 20, 22, 24, 26, 28,

30, 32, 34, 36, 38, 40,

42, 44, 46, 48, 50

6
∣

∣

∣

4, 8, 12, 16, 20, 24, 28,

32, 36, 40, 44, 48, 52,

56, 60, 64, 68, 72, 76,

80, 84, 88, 92, 96, 100

7
∣

∣

∣

4, 8, 12, 16, 20, 24, 28,

32, 36, 40, 44, 48
unknown unknown unknown

8
∣

∣

∣

2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46,

47, 48, 49, 50

(44) 8
∣

∣

∣

2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46,

47, 48, 49, 50

8
∣

∣

∣

4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24, 26, 28, 30, 32,

34, 36, 38, 40, 42, 44, 46,

48, 50, 52, 54, 56, 58, 60,

62, 64, 66, 68, 70, 72, 74,

76, 87, 80, 82, 84, 86, 88,

90, 92, 94, 96, 98, 100

9
∣

∣

∣

4, 8, 12, 16, 20, 24, 28,

32, 36, 40, 44, 48
unknown unknown unknown

10
∣

∣

∣

2, 4, 6, 8, 10, 12, 14, 16,

18, 20, 22, 24, 26, 28,

30, 32, 34, 36, 38, 40,

42, 44, 46, 48, 50

(44) 10
∣

∣

∣

2, 4, 6, 8, 10, 12, 14, 16,

18, 20, 22, 24, 26, 28,

30, 32, 34, 36, 38, 40,

42, 44, 46, 48, 50

10
∣

∣

∣

4, 8, 12, 16, 20, 24, 28,

32, 36, 40, 44, 48, 52,

56, 60, 64, 68, 72, 76,

80, 84, 88, 92, 96, 100

11
∣

∣

4, 8, 12, 16, 20, 24, 28,

32, 36, 40, 44, 48
unknown unknown unknown

12
∣

∣

∣

2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46,

47, 48, 49, 50

(44) 12
∣

∣

∣

2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46,

47, 48, 49, 50

12
∣

∣

∣

4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24, 26, 28, 30, 32,

34, 36, 38, 40, 42, 44, 46,

48, 50, 52, 54, 56, 58, 60,

62, 64, 66, 68, 70, 72, 74,

76, 87, 80, 82, 84, 86, 88,

90, 92, 94, 96, 98, 100

n are two positive integers (see [27] and [28] for their mean-
ings), which provides the rich raw materials from Theorem
3. Hence, we have {PCSS16-QAM(Z

l, 2r+1, 2r+1n)|1 ≤ l ≤
2r} by Theorem 3. Apart from the quaternary periodic CSs
mentioned above, [25]–[27] can also provide such inputs. This
is, for any binary periodic CS set PCSS2(U

l, 2M ′, N) con-
sisting of 2M ′ subsequences that are each of length N , where
U l = (ul

0, u
l
1, · · ·, u

l
2M ′

−1), one of its mates is [19, p. 333]

Uh = (ũl
1,−ũl

0, · · ·, ũ
l
2M ′−1,−ũl

2M−2) (44)

where ũl
r denotes the reversal of the sequence ul

r (for its
definition, see [19, p. 32]. In accordance with Theorem 5
in [27], the aforementioned mates PCSS2(U

l, 2M ′, N) and
PCSS2(U

h, 2M ′, N) must result in the quaternary periodic
CS mates PCSS4(X

l, 2M ′, N) and PCSS4(X
h, 2M ′, N)

(for X l and Xh, see [27]), or PCSS4(Z
l, 2M ′, 2N) and

PCSS4(Z
h, 2M ′, 2N) (for Z l and Zh, please see [26, p. 240],

where N is an odd integer), respectively. As a consequence, we
obtain 16-QAM periodic CS mates PCSS16-QAM(X l,h, 2M ′,
2N) and PCSS16-QAM(Y l,h, 2M ′, 2N) by employing Theorem
2 in this paper. In conclusion, in accordance with the existing
binary periodic CS mates up to M = 12 and N = 50 [29]–[32],
the 16-QAM periodic CS mates that result from Theorem 2 in
this paper are listed in Table 3.

The following theorem gives the distinct 16-QAM periodic
CS sets from Theorem 1.

Theorem 4: For the quaternary periodic CS mates PCSS4

(U l,M,N) and PCSS4(U
h,M,N), let two integers δ1 and δ2

satisfy δ1 6= δ2 (0 ≤ δ1, δ2 ≤ N−1). For ∀ k (0 ≤ k ≤ M −1)
and i = 1, 2,

v+,l,h
k,i (t) = (1 + j)(ju

l
k(t) + 2ju

h
k(t+δi)),

v−,l,h
k,i (t) = (1− j)(ju

h
k(t+δi) − 2ju

l
k(t)).

(45)

By applying these relations to (20), we obtain two 16-
QAM periodic CS sets PCSS16−QAM(X l,h

1 ,M, 2N) and
PCSS16−QAM(X l,h

2 ,M, 2N), where

xl,h
k,1 = v+,l,h

k,1 ⊙ v−,l,h
k,1 and xl,h

k,2 = v+,l,h
k,2 ⊙ v−,l,h

k,2 . (46)

Then,PCSS16−QAM(X l,h
1 ,M, 2N) andPCSS16−QAM(X l,h

2 ,M,
2N) are distinct. Further, employing (20) yields N distinct 16-
QAM periodic CS sets.

Proof: Provided that for δ1 6= δ2, PCSS16−QAM(X l,h
1 ,M,

2N) and PCSS16−QAM(X l,h
2 ,M, 2N) are equivalent to each

other; that is, there exists an integer ζ so as to satisfy xl,h
k,1 =

Lζxl,h
k,2 (0 ≤ k ≤ M − 1). We can, then, conclude that a con-

tradiction must appear. In fact, for ∀k we consider two cases:
ζ = 2π and ζ = 2π + 1 (0 ≤ π ≤ N − 1).

Case 1: ζ = 2π.
Clearly, the relationship between the 16-QAM sequences xl,h

k,1

and L2πxl,h
k,2 is

v+,l,h
k,1 (0), v−,l,h

k,1 (0), v+,l,h
k,1 (1), v−,l,h

k,1 (1), · · ·,

v+,l,h
k,2 (π), v−,l,h

k,2 (π), v+,l,h
k,2 (π + 1), v−,l,h

k,2 (π + 1), · · ·. (47)

As a consequence, from Definition 5 we have
{

v+,l,h
k,1 = Lπv+,l,h

k,2 ,

v−,l,h
k,1 = Lπv−,l,h

k,2

(48)

which reduces to
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{
ju

l
k(t) − ju

l
k(t+π) = 2[ju

h
k(t+δ2+π) − ju

h
k(t+δ1)],

2[ju
l
k(t) − ju

l
k(t+π)] = ju

h
k(t+δ1) − ju

h
k(t+δ2+π)

(49)

with the application of (45). Further, (49) is simplified to
{

ju
l
k(t) = ju

l
k(t+π) ∀ t,

ju
h
k(t+δ2+π) = ju

h
k(t+δ1) ∀ t

(50)

which implies both that π = 0 and δ1 = δ2. Obviously, this is a
contradiction.

Case 2: ζ = 2π + 1.
Similarly, the relationship between the 16-QAM sequences

xl,h
k,1 and L2π+1xl,h

k,2 is given by

v+,l,h
k,1 (0), v−,l,h

k,1 (0), v+,l,h
k,1 (1), v−,l,h

k,1 (1), · · · (51)

v−,l,h
k,2 (π), v+,l,h

k,2 (π + 1), v−,l,h
k,2 (π + 1), v+,l,h

k,2 (π + 2), · · ·.

(52)

Hence, by Definition 5 we have
{

v+,l,h
k,1 = Lπv−,l,h

k,2 ,

v−,l,h
k,1 = Lπ+1v+,l,h

k,2

(53)

Substituting (45) into (52) yields




ju
l
k(t) + 2ju

h
k(t+δ1) =

−j[ju
h
k(t+δ2+π) − 2ju

l
k(t+π)],

(54a)

ju
h
k(t+δ1) − 2ju

l
k(t) =

j[ju
l
k(t+π+1) + 2ju

h
k(t+δ2+π+1)].

(54b)

Multiplying ju
l
k
(t) to the right-hand side in (53a), and apply-

ing to (1), yields

Rul
k
,ul

k
(0) + 2Ruh

k
,ul

k
(−δ1) =

−j[Ruh
k
,ul

k
(−δ2 − π)− 2Rul

k
,ul

k
(−π)]

(55)

which reduces to

M−1∑

k=0

Rul
k
,ul

k
(0) = 2j

M−1∑

k=0

Rul
k
,ul

k
(−π) (56)

from (2) and (3).
Similarly, multiplying ju

l
k
(t+1) to the right-hand side in (53b)

yields

Ruh
k
,ul

k
(1− δ1)− 2Rul

k
,ul

k
(1) =

j[Rul
k
,ul

k
(−π) + 2Ruh

k
,ul

k
(−δ2 − π)]

(57)

which reduces to

j

M−1∑

k=0

Rul
k
,ul

k
(−π) = −2

M−1∑

k=0

Rul
k
,ul

k
(1) = 0 (58)

from (2) and (3).
Hence, according to (55) and (57) we have

MN =

M−1∑

k=0

Rul
k
,ul

k
(0) = 0 (59)

which is clearly impossible.
In addition, when the parameter δ varies over the range 0 to

N − 1, the foregoing derivation guarantees that the N resultant
16-QAM CS sets from Theorem 1 are distinct from one another.

2

Example 3: In Example 1, let δ = 2. Therefore, we have

X1,2 =



x
1,2
0

x
1,2
1

x
1,2
2

x
1,2
3


 =




(

−3−3 1 −1 3 1 3 −3−1 −1 −3 1
−1−1 3 −3−3 1 −1 1 3 3 −3−1

)

(

−3 3 −1 −3−1 1 3 3 1 −3 1 1
1 −1 −1 3 −3 3 1 1−1 −3 −3−3

)

(

−1−1 −3 −1 3 −3 1 −1 3 −1 −3−3
3 3 3 −1−1 1 3 −3 3 1 −1−1

)

(

−1 1 3 −3−1 −3 1 1 −3 −3 1 −3
−3 3 −1 1 −1 3 −3 −3−1 −1 −1−3

)



,

(60)

Y 1,2 =



y1,2

0

y1,2

1

y1,2

2

y1,2

3


 =




(

−1 1 3 3 −3 −1−1 −1 3−3 −3 1
3 −3−1 −1 −3 1 −3 −3 1−1 3 1

)

(

1 1 −1−3 −3 −3 1 −1 −1 3 −3 3
3 3 1 −3 1 1 −3 3 −1−3 −1 1

)

(

3 −3 3 1 −1 −1 3 3 3 −1 −1 1
1 −1 3−1 −3 −3−1 −1 −3−1 3 −3

)

(

−3 −3−1 −1 −1 −3−3 3 −1 1 −1 3
1 1 −3 −3 1 −3−1 1 3 −3 −1 −3

)



.

(61)

Clearly, the resultant 16-QAM CS sets in (38), (39), (59), and
(60) are cyclically distinct from one another.

V. CONCLUSION

In this paper, we construct a family of 16-QAM periodic CS
mates, and expand the resultant mates to a class of MO 16-QAM
CS sets. The proposed methods are applicable to conversion of
all currently known quadriphase CS mates to 16-QAM ones.
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