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In-vehicle Network Latency Analysis for a Lane
Keeping Assistance System
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Abstract—Due to the rapid advancements in automotive
technologies, vehicles now rely on additional high-speed sensors.
This development has led to an increase in transmission rates
and traffic levels within in-vehicle networks (IVNs), thereby ne-
cessitating changes in the electrical/electronic (E/E) architecture
and the emergence of next-generation IVNs. This paper explores
the adoption of zonal architecture with an Ethernet backbone
as the vehicle topology and analyzes the factors influencing
end-to-end latency. Furthermore, to evaluate the impact of IVN
latency on safety-critical applications, we adopted the lane-
keeping assistance system (LKAS) and employed the widely used
metric, lateral error distance, to analyze how much the vehicle
deviates from its intended position. We determined the feasibility
of LKAS support by establishing vehicle-specific lateral distance
thresholds, as allowable lateral error distances vary depending on
vehicle size and comparing them with the lateral error distance.
Since LKAS demands higher resolutions to achieve enhanced
accuracy, this study examines the required resolution for vehicles
equipped with next-generation architectures. Additionally, the
paper proposes guidelines for the compression ratio of camera
sensors at various resolutions and determines the maximum
lateral vehicle speed achievable.

Index Terms—Advanced driver assistance system, automo-
tive Ethernet, data compression, end-to-end latency, in-vehicle
networks, lane-keeping assistance system.

I. INTRODUCTION

DUE to the growth of automotive technologies ranging
from the advanced driver assistance system (ADAS) to

autonomous driving, sensors in vehicles now require high-
speed, low-latency data transmission [1]. Traffic of in-vehicle
networks (IVNs) has also increased rapidly as many features
are added to vehicles. In particular, camera sensors require
data rates ranging from approximately 1.6 Gbps to 48 Gbps
for fully autonomous driving [2], [3]. However, conventional
IVNs such as the controller area network (CAN), controller
area network flexible data rate (CAN FD), FlexRay, and media-
oriented systems transport (MOST) provide data rates of up
to 1 Mbps, 5 Mbps, 10 Mbps, and 150 Mbps, respectively [4].
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There is a limit to handling increased sensor traffic levels with
conventional IVNs. Therefore, there is considerable latency in
IVNs, which has strongly detrimental effects on safety-related
ADAS applications.

To solve this problem, automotive Ethernet and automotive
SerDes (serializer/deserializer) technologies are predicted as
next-generation IVNs to handle increasing transmission rates.
In particular, automotive Ethernet is expected to become a ma-
jor technology constituting the backbone network of a vehicle
because it is compatible with the upper layer of the existing
commercial Ethernet technology [5]. A backbone network
refers to a major network serving to provide interconnections
among various networks in vehicles with high bandwidths. The
standardization of automotive Ethernet, providing transmission
rates up to 10 Gbps, has been established, and the standard
for 25/50 Gbps is currently being established [6].

The automotive electrical/electronic (E/E) architecture is
also changing as the number of sensors increases. The
conventional automotive E/E architecture follows a decen-
tralized design, consisting of numerous electronic control
units (ECUs) distributed throughout the vehicle [7]. Each
ECU is responsible for processing data from different sensors,
and in cases where additional sensors are required, they must
be connected to specific ECUs, even if the distance between
the sensor and the ECU is considerable. Consequently, the
weight and length of the wiring harness increase due to this
functional mapping. Considering these problems, a zonal
architecture has been proposed as a next-generation type of
E/E architecture for vehicles [8]. In the zonal architecture,
sensors are connected to a zonal switch which is positioned
at the nearest physical location, as opposed to the use of
functional mapping. Therefore, the length and weight of
the harness can be decreased. Also, the zonal network is
a centralized form of E/E architecture that uses the vehicle’s
central computer, meaning that it offers scalability and efficient
management of ECUs.

A high transmission rate of the IVN is essential for a back-
bone network in the zonal architecture, and the development
of automotive Ethernet made this possible with the zonal
architecture. In reality, most OEMs and suppliers, including
BMW, Volkswagen, and Bosch, have announced that they
will design their vehicles with the zonal architecture when
the Ethernet backbone is applied to vehicles in the future [9].

Therefore, in this paper, we configure the topology of
the zonal architecture with an Ethernet backbone in a
heterogeneous network and analyze the end-to-end latency
encompassing the IVN latency. In addition, to analyze the
effects of IVN latency on safety-related applications, a control
loop of a lane-keeping assistance system (LKAS) is applied
to the IVN configuration of the vehicle. LKAS is one of
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the most important functions in an ADAS, as it prevents the
vehicle from crossing into other lanes.

Furthermore, we employed the broadly used LKAS evalua-
tion metric, lateral error distance, to analyze the impact of IVN
latency on the primary autonomous driving function, LKAS.
Lateral error distance assists in evaluating the extent to which
the vehicle deviates from its intended position [10]–[12].
Considering allowable errors vary with vehicle size, we
analyze the feasibility of actual LKAS support by taking into
account the maximum allowable lateral distance threshold
based on vehicle size. As a result, we provide suitable camera
resolutions and compression ratios for practical applications
in LKAS that meet the lateral distance threshold conditions.

The main contributions of this paper are listed as follows.
• In this paper, we model end-to-end latency and latency

factors, taking into account the recently standardized
high transmission speed automotive Ethernet and the
zonal architecture proposed for the next-generation E/E
structure in vehicles, and present simulation results.

• To analyze the impact of high data transmission rates on
IVN latency performance, we considered camera sensor
data which is widely used on autonomous vehicles. In
particular, we analyze end-to-end latency and dominant
latency factors influenced by image data resolution and
compression.

• We consider the prominent ADAS feature, LKAS, to ana-
lyze the impact of IVN latency on the actual autonomous
vehicle. As a result, we analyzed the lateral error distance
in LKAS caused by IVN latency and investigated the
required compression rates for each resolution based on
vehicle size.

II. RELATED WORKS

A. LKAS Model and Methodology

Various studies have been conducted to implement the
prominent feature of autonomous vehicles, LKAS. Represen-
tatively, S. Wei et al. in [13] categorized various aspects of
LKAS, presenting existing research studies corresponding
to each category. Moreover, they standardized the objective
research evaluation procedure for LKAS and engaged in
discussions concerning multiple assessment methodologies.
In the research conducted in [14], the authors investigated
type 2 fuzzy approaches for lane-keeping assistance systems,
considering human drivers. They designed a controller to
mitigate uncertainty in the presence of vehicle speed errors.
The authors in [15] proposed a driver-centric neural adaptive
control-based LKAS model to ensure the smoothness of
vehicle control actions and reduce parameter estimation errors.
To validate the proposed LKAS model, performance analysis,
including speed and lateral offset, was conducted using
simulated vehicle dynamics and a driving simulator. In [16],
a lane detection method was proposed for estimating the
three-dimensional position of drivable lanes. In this study, the
proposed method detects whether an object is on the road
or off-road and optimally selects weights accordingly. H.-J.
Cha et al. demonstrate the impact of the trade-off between
the control period and end-to-end latency on LKAS control
performance. However, they solely consider latency as an

input parameter without analyzing the underlying factors
contributing to latency [10].

Many previous LKAS-related studies mostly focused on
accurately detecting lanes and reducing vehicle location errors.
However, in those studies, IVN latency was not specifically
considered in the LKAS control loop. In practical autonomous
vehicles, IVN latency is an inevitable occurrence in LKAS.
As a result, even when lane detection and vehicle control
are executed flawlessly during LKAS application, accidents
can potentially occur due to latency in detection or control
commands reaching the vehicle, attributed to IVN latency.
Therefore, it is imperative to consider IVN latency to ensure
the real-time performance of LKAS.

B. IVN Latency Analysis

Many researchers have researched IVN latency since it can
result in accidents and vehicle malfunctions. In [17], authors
measured the end-to-end latency in a cooperative adaptive
cruise control system but overlooked the complexities of
vehicle topology with zonal architecture, instead considering
a simplistic topology that differs from real-world vehicles. For
instance, they do not include gateway latency and artificial
intelligence (AI) computing latency in the end-to-end latency
calculation due to the simplified vehicle topology. It is
crucial to consider a more intricate topology that reflects the
network topology of real vehicles since IVN latency increases
with the growing number of sensors due to network traffic.
In the research conducted in [18], an end-to-end latency
performance analysis was conducted, considering domain
architecture. In this paper, the authors model end-to-end
latency and present latency based on frame size and the
number of nodes through analysis and simulation. The authors
in [19] proposed a gateway to control data traffic passing
through the IVN backbone to prevent transmission efficiency
degradation of the IVN Ethernet backbone due to excessive
vehicle data traffic and analyzed average latency. Z. Zhou et al.
analyzed multiple traffic scheduling and shaping mechanisms
in automotive Ethernet. In addition, the authors introduced
a time-sensitive networking (TSN)-based test model and
analyzed the latency performance [20]. A study conducted
in [21] provides an overview of the latency characteristics
of IVNs and analysis methods. However, since only up to
1 Gbps Ethernet is considered, high-speed data transmission
such as high-definition camera sensor data can be difficult.

While numerous studies have investigated end-to-end IVN
latency and latency factors, most of these studies have either
considered small-scale data or focused on specific latency
factors, resulting in limited findings. Additionally, there has
been a lack of performance analysis concerning high data rate
Ethernet, as well as zonal architectures in next-generation E/E
systems. However, considering the recent standard of Ethernet
and sensor data with high data rate in zonal architectures,
there is a growing need for latency performance analysis to
support the advanced autonomous driving function. Therefore,
the study on latency performance analysis considering high
data rate is meaningful.

Therefore, we analyze the end-to-end latency and latency
factors considering the LKAS operation according to the
camera resolution and compression within an IVN. Also,
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TABLE I
THE LATENCY FACTORS CONSTITUTING THE END-TO-END LATENCY.

(DE2E )

Latency factor Description
DS2V Latency from sensor to VC
DV 2M Latency from VC to MDPS

DIV N,S2V IVN latency in DS2V

DProc,S2V Processing latency in DS2V

DIV N,V 2M IVN latency in DV 2M

DProc,V 2M Processing latency in DV 2M

DT Transmission latency
DF Frame division latency
DP Propagation latency
DG Gateway latency
DS Switch latency
DD Disrupter latency
DQ Queueing latency
DL LKAS processing latency
DC Compression latency

we configure an IVN topology that closely resembles a
real vehicle with various transmission rate of the Ethernet
backbone network. It is crucial for vehicle network designers
to determine the appropriate transmission rate of the backbone,
considering the trade-off between performance and cost. A
higher transmission rate in the network backbone comes with
increased expenses, while a lower rate may fail to meet safety
requirements. Accordingly, we provide results concerning the
end-to-end latency associated with sensor resolution, along
with the required compression ratio.

III. THE EFFECT OF END-TO-END IVN LATENCY IN
LKAS

An LKAS, a representative function of an ADAS, is a
system that prevents the vehicle from deviating from its lane
without human control. The LKAS is mainly composed of
a camera sensor, a steering direction sensor, a vehicle speed
sensor and a motor-driven power steering (MDPS) [10]. The
MDPS is an actuator that controls the heading angle in an
LKAS. The operational process of an LKAS is divided into
perception, decision, and control processes. In the perception
process, both lanes are recognized through the camera sensors
and the vehicle states are identified with the steering direction
and vehicle speed sensor. Then, sensor data is sent to the
vehicle computer (VC). During the decision process, the VC
calculates the lateral deviation of the vehicle relative to both
lanes with the camera data and determines the heading angle
considering the present speed and steering direction of the
vehicle. Finally, in the control process, control data is sent to
the MDPS to actuate the steering wheel so as to ensure that
the vehicle does not deviate from its lane.

During the entire process, the end-to-end latency, meaning
the time from sensing to actuation, affects the control perfor-
mance. Table 1 summarizes the latency factors comprising
end-to-end latency. Therefore, the end-to-end latency, DE2E ,
can be determined as follows:

(a) Lateral error distance (b) Lateral distance threshold

Fig. 1. Lateral error distance and threshold of LKAS.

DE2E = DS2V +DV 2M , (1)

where DS2V is the latency from the sensor to the VC and
DV 2M is the latency from the VC to the MDPS. The VC
calculates a suitable heading angle that ensures that the vehicle
does not deviate from its lane with the received vehicle
state data considering that it is the present vehicle state data.
However, the VC makes a control decision with previous
sensor data if DS2V is large. Also, the steering wheel is
actuated on a latency if DV 2M is large. Therefore, accurate
control is ensured only when DE2E is short enough [10]. The
latencies in (1) are composed of the IVN latency and the
processing latency. DS2V can be determined by

DS2V = DIV N,S2V +DProc,S2V , (2)

where DIV N,S2V and DProc,S2V are correspondingly the
IVN latency and the processing latency in DS2V . DV 2M is
determined as

DV 2M = DIV N,V 2M +DProc,V 2M . (3)

In this equation, DIV N,V 2M and DProc,V 2M are respectively
the IVN latency and the processing latency in DV 2M .

It is possible to calculate how much the vehicle moves in
the lateral direction considering DE2E , the heading angle,
and the speed of the vehicle (see Fig. 1(a)). The lateral error
distance, ed, is computed as

ed = vDE2E sin θ, (4)

where θ is the heading angle of the vehicle and v is the
longitudinal speed of the vehicle. Vehicles supporting LKAS
can provide assistance for speeds of up to 200 km/h [22].
There is limited information on LKAS adaptation to other
types of transportation. Recently, Honda has been preparing
for the development of LKAS for motorcycles [23]. However,
the maximum speed for LKAS application on motorcycles
has not been specified. Currently, Honda’s LKAS can support
speeds of approximately up to 145 km/h [24]. Consequently,
when considering LKAS application in vehicles, it must
meet more stringent requirements compared to applying it to
motorcycles, given the higher LKAS requirements for vehicle
use. Therefore, we assumed that v can be supported in the
range of 0–200 km/h, and θ is considered to have a range of
0–20 degrees because the ADAS application avoids abrupt
directional control of the steering wheel [22].

The maximum allowable error distance of ed is the distance
between the lane and the vehicle assuming that the vehicle is
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Fig. 2. Example of IVN topology considering LKAS control loop.

at the center of the lane (see Fig. 1(b)). This is determined by
considering the width of the vehicle and the lane. Therefore,
the lateral distance threshold, em, is computed as follows:

em = (wv − wl)/2, (5)

where, wv and wl are the widths of the vehicle and lane,
respectively, which can be determined based on Korean
road traffic laws, rules for road structure and facilities
standards [25]. There are four types of vehicles in Korean
law: Passenger vehicles, small vehicles, large vehicles, and
semi-trailers. Widths for small and large vehicles are used
in this paper (2 m for small vehicles and 2.5 m for large
vehicles). Taking an example with a real vehicle model, the
width of Hyundai “SANTA FE” is about 1.9 m and Hyundai
“Xcient” is 2.5 m [26], [27]. Also, wl is designed considering
the vehicle speed, which is assumed to be 3 m, 3.25 m, and 3.5
m for roads with speed limits of 60 km/h, 100 km/h, and more
than 100 km/h, respectively. In this case, wl is set to 3.5 m to
consider all available vehicle speeds. Therefore, the evaluation
criteria for the effects of DE2E on the LKAS system can be
determined by comparing ed to em. It is assumed that there is
a straight road and the vehicle is always in the middle point
of the road. In addition, we assumed that when ed exceeds em
and fails to satisfy the threshold condition, the vehicle would
cross into another lane, potentially leading to a collision. In
other words, when the lateral distance error exceeds the lateral
distance threshold, it indicates that the vehicle is deviating
from its current lane center and represents a potential collision
risk.

Fig. 2 illustrates an example of the IVN topology consider-
ing the LKAS control loop. The camera sensor captures data
from the road with lanes and transmits it to the VC connected
through automotive Ethernet with a switch. Subsequently, for
LKAS, the VC generates control data related to steering angle,
speed, and more based on lane and vehicle position and status.
The control data is then relayed to the MDPS through a series
of switches via the Ethernet-CAN gateway.

A. IVN Latency Factors

First, the factors of DIV N of the LKAS control loop are
analyzed. DIV N contains the transmission latency (DT ), the
frame division latency (DF ), the propagation latency (DP ), the
gateway latency (DG), the switch latency (DS), the disrupter

TABLE II
PARAMETERS USED FOR DEFINING LATERAL ERROR DISTANCE AND

LATENCY FACTORS.

Parameters Description
ed Lateral error distance
em Lateral distance threshold

v
Longitudinal speed of the vehicle

(0–2 km/h)

θ
Heading angle of the vehicle

(0–20◦)
wv Width of the vehicle
wl Width of the lane
L The data size of the video sensor

R
Data rate of IVN

(0–25 Gbps)
Lf Length of IVN frame
Lp Length of maximum payload

dw
Length of the wire

(1–1.5 m)
s Propagation speed in wire

c
Speed of light
(3 · 108 m/s)

ND
Number of disrupters in the control loop

(0–1)

Nf
Number of arrived frames per second

(0–900)

tf
Time to extract the lane feature for 1 bit

(0.02 ms)

ts
Time to calculate the steering angle

(7 ms)

C
Compression ratio of the data

(0–100%)

tc
Time to compress/decompress 1 bit

(0.029 ns)
Nhop Hop count in the control loop

latency (DD), and the queuing latency (DQ). The parameters
used to define the latency factors are presented in Table 2.

1) Transmission latency : The transmission latency is the
length of time required to push all of the packet’s bits
into the wire. This latency arises between the Ethernet
backbone and the transmitter, which is the camera sensor
or VC used when transmitting the data. The transmission
latency, DT , is determined via

DT =
L

R
, (6)

where L is the length of the transmitting data and
R is the data rate of the IVN. L is determined
according to the pixel size and pixel depth of the camera
sensor. This latency significantly differs according to the
transmission rate of the Ethernet backbone transmitting
the data.

2) Frame division latency : The frame division latency
is generated in addition to DT if the data length to
be sent exceeds the maximum payload of the IVN
frame. For example, considering the Ethernet frame,
data exceeding 1500 bytes must be divided into several
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Ethernet frames and transmitted. Therefore, additional
latency is generated by Ethernet frame data apart from
the payload data, i.e., overhead of Ethernet frame. An
additional 42 bytes overhead except for the payload
data will be added per frame. Therefore, frame division
latency, DF , is computed as

DF =
Lf − Lp

R
⌈
L

Lp
⌉, (7)

where Lf is the length of IVN frame containing
overhead and payload, Lp is the length of the maximum
payload in IVN frame, and ⌈·⌉ denotes a ceiling
function.

3) Propagation latency : The propagation latency, DP ,
is the length of time taken for a signal to reach its
destination through a wire. It is determined via

DP =
dw

s
, (8)

where dw is the length of the wire and s is the
propagation speed in the wire. In copper wire, the speed
s is generally 2c/3, where c is the speed of light.

4) Switch latency : The switch latency, DS , is the length
of time taken inside the switch, including the routing
latency. While it is different for each manufacturer, it
generally does not exceed 10 µs in industrial applica-
tions which is very marginal compared to other latencies.
There is a variation in this latency, so the mean value of
specific switch model is used in this paper for analysis.
As an example, DS is set to the mean value of RSG2288,
which is 7 µs [28]. It is also assumed that switches
always have the same latency regardless of message
types for simple analysis.

5) Gateway latency : The gateway latency, DG, is the
length of the time taken inside the gateway. DG includes
the routing, buffering, and transforming latency. Similar
to DS , DG varies among manufacturers and exhibits
variations. Taking [29] as an example, DG is set to
500 µs, representing the mean value of gateway latency
observed in the implemented Ethernet-CAN gateway
discussed in [29]. Gateway latency typically surpasses
switch latency as it encompasses both routing and
transforming processes. Additionally, it is assumed
that gateways consistently exhibit the same latency
irrespective of message types.

6) Disrupter latency : The disrupter latency, DD, is the
latency that occurs in the switch when two or more
sensors with the same priority are contained in the
control loop. It is computed as

DD = ND(DT +DF ), (9)

where ND is the number of disrupters in the control
loop. Camera data for the LKAS should be transmitted
with the same level of priority for accurate perceptions,
and this causes disrupter latency in the switch. If only
one camera is in the control loop, ND is zero. However,
if two cameras (i.e., stereo) with the same priority are
in the control loop, ND becomes one and the time is
delayed with DT and DF by the disrupter. In this paper,

it is assumed that all cameras have the same payload
size as it is a stereo type camera.

7) Queuing latency : The queuing latency, DQ, depends on
the number of earlier-arriving packets and the waiting
time for transmission on the link [30]. This latency
considers the delay caused by the nodes connected
to the switch, except the camera nodes. The average
queuing latency can be computed as shown below.

DQ =
Nf (Nf − 1)L

2R
. (10)

Here, Nf is the number of frames arriving every second.
The queuing latency in the network actually takes from
micro-seconds to milliseconds.

B. Processing Latency Factors

In addition to DIV N , the factors of DProc of the LKAS
control loop are analyzed. DProc,S2V consists of the AI
processing latency, DL, and the compression latency, DC .

1) LKAS processing latency : The LKAS processing
latency, DL, is the latency in the VC that arises when
calculating a suitable heading angle at which lane
crossing does not occur. DL includes the time required
to identify the lateral deviation of the vehicle from the
center of the lane with feature extraction and to calculate
the proper heading angle considering the present vehicle
speed and steering direction. The latency of feature
extraction with AI is usually proportional to the camera
data size [31], [32]. Compared to feature extraction,
the latency for calculating the heading angle is not
proportional to the input data size because the heading
angle is calculated with the lateral distance of the vehicle
after receiving all the data. Then, DL is determined as

DL = Ltf + ts. (11)

In this equation, tf is the time required to extract the
lane feature for 1 bit, and ts is the time required to
calculate the proper heading angle. DL differs according
to the feature extraction model and the angle calculating
algorithm. In this paper, tf and ts are respectively set
to 0.02 ns and 7 ms, which are the mean values for
extracting the lane feature and calculating the proper
heading angle in [31].

2) Compression latency : Compression latency refers
to the duration required to compress or decompress
data when necessary, typically due to large data sizes.
In this paper, we assume that the time required for
decompression is the same as that for compression.
When compression is necessary, compression latency
occurs in the compression module of the camera
sensor for compression and in the video codec (VC)
for decompression. Accurately modeling compression
latency can be challenging due to various factors such
as computing power, group of pictures (GOP) size,
compression model, coding mode, and input data [33].
However, it is evident that compression latency increases
significantly with larger data sizes. Therefore, in this
study, we model the compression latency as linearly
increasing with the data size. Specifically, we target the
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H.264 video compression for modeling compression
latency since it is currently one of the most widely used
video codecs, particularly in vehicular communications
[34]. H.264 employs inter-frame compression, and the
compression latency increases as the compression ratio
rises according to the GOP size. Considering this
linear modeling approach, we compute the compression
latency, DC , as

DC = L(1− C)tc, (12)

where C is the compression ratio of the data (in
percentage) and tc is the time required to compress or
decompress 1 bit (in seconds). tc is computed based on
level 6.2 of H.264, which is the highest level of advanced
video coding (AVC) [35]. Here, a maximum of 2.1 GB
can be compressed with a compression ratio of 2% for
one second. Considering this, tc can be computed as
0.029 ns. DC may increase to the millisecond range
depending on the size of the compressed data. H.264
uses lossy compression and thus data compression
should be considered carefully because information
losses can occur compared to the raw data, even with
the same resolution.

There is also control latency for the operation of a steering
wheel in LKAS, but it is not considered because it is
significantly shorter than others. Considering all types of
IVNs and processing latencies, DS2V is computed as

DS2V =DC +DTeth
+DFeth

+Dp +DDEth

+Nhop(Ds +Dp) +DQ.
(13)

Similarly, DV 2M is computed as

DV 2M =DC +DL +DTeth
+Nhop(Ds +Dp)

+Dp +DG +DTCAN
+DP +DQ.

(14)

In this equation, Nhop denotes the hop count, which refers
to the number of network devices through the control loop.
Note that DT , DF , DD, and DC are the latency factors that
are greatly affected by the data size of the camera. The other
latency types do not change dramatically with the data size.
When the data size is small, DL is the most significant latency
factor. However, as the data size increases, the IVN latency
increases and becomes the major latency source of end-to-
end latency. Therefore, DT , DF , DD, DC , and DL can be
regarded as the major factors of end-to-end latency of the
LKAS.

IV. PERFORMANCE EVALUATION

Fig. 3 shows the designed IVN configuration for the
performance evaluation with a topology employing the zonal
architecture equipped with an Ethernet backbone. Given that
IVN topologies vary depending on the vehicle model, it is
challenging to encompass all possible topologies. Therefore,
in this paper, we designed the topology with consideration
for the LKAS application which includes camera sensors, a
VC, and an MDPS. The number of camera was determined
by referencing Tesla’s product models, with Tesla Model 3,
Model S, Model X, and Model Y using approximately 8–9
cameras [36]. Furthermore, Tesla Semi and Tesla Cybertruck

Fig. 3. Designed IVN topology of the zonal architecture with the Ethernet
backbone.

are considering the use of 10 and at least 8 cameras, respec-
tively [37], [38]. Therefore, we assumed the use of 10 cameras,
considering the feasibility of applying zonal architecture in
future vehicles, and accordingly, we arranged switches and
gateways. Similarly, the number of switches in the IVN’s
topology is also variable depending on vehicle design and
model. As the number of switches increases, routing becomes
more complex, and paths lengthen, yet coping with delays
due to bottlenecks becomes easier. Conversely, reducing
the number of switches simplifies routing, but in cases of
bottleneck-induced latency, coping becomes challenging due to
the limited number of switches available. Typically, 6–8 zonal
switches are considered in a general zonal architecture [39].
Consequently, we employed six switches in our topology,
aligning with Toshiba’s considerations [40]. Through this
topology, our analysis provides insights into the impact on
ADAS encompassing the latency implications associated with
zonal networks. Each switch is connected using a 1 m Ethernet
wire capable of link speeds of 5, 10, and 25 Gbps, while all
of the CAN and Ethernet nodes are connected via a 1.5 m
wire.

The number of CAN nodes is determined considering
ISO11898 [41]. One to two CAN buses are connected to
a switch, with each CAN bus containing three to seven CAN
nodes. There are 126 CAN messages with different IDs, and
the payload of all CAN messages is set to 8 bytes. Regarding
the sensor period, the period of the control message to MDPS
was set to 10 ms, and sensor messages are equivalently set to
50 ms. For the Ethernet node, two to three Ethernet camera
nodes are deployed per switch. The payloads of these camera
sensors vary depending on the resolution and are determined
as the product of the pixel size and the pixel depth. Here,
the pixel size refers to the product of the horizontal and
vertical pixels. The pixel depth means the number of colors
that one pixel can represent. HD, FHD, QHD, UHD, and 8K
are considered for the resolution, and the real color depth of
24 bits is applied for the pixel depth. For the sensor period,
the periods of the camera sensors are set to 33.3 ms and
16.7 ms, indicating a 30 fps and 60 fps camera, respectively.
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Fig. 4. End-to-end latency and latency factors with raw data.

A. The End-to-End IVN Latency with Raw Camera Sensor
Data

We analyzed the latency performance based on the sensor
resolution of raw camera data and Ethernet backbone trans-
mission rate using the previously defined end-to-end latency
and latency factors. When using the raw camera data, DC

is omitted. Therefore, if the Ethernet backbone transmission
rate is sufficient, it can also provide an advantage in end-
to-end latency performance. Besides the analysis, computer
simulations were also conducted using OMNeT++, a network
simulator capable of implementing an IVN in-vehicle network
system on a computer. The simulations aimed to validate the
analysis results, verify the latency in each sensor data, and
design the configuration of the desired IVN topology [42].

First, DE2E of the camera sensors for each resolution
without compression was calculated based on (1)–(13) with
the different Ethernet backbones of 5G, 10G, and 25G (see
Fig. 4(a)). DE2E increases when the data size increases with
a higher resolution and when an Ethernet backbone with low
link rate is used. We find that DE2E is significantly affected
by the link rate of the Ethernet backbone. For example, DE2E

with 8K resolution varies from 100 ms for 25G backbone

TABLE III
REQUIRED COMPRESSION RATIO IN CAMERA DATA.

Camera Required
specification compression ratio [%]

Sensor Resolution 5G 10G 25G
period Backbone Backbone Backbone

30 fps

HD, FHD 0 0 0
QHD 0 0 0
4K 23.15 0 0
8K 80.92 61.83 4.55

60 fps

HD, FHD 0 0 0
QHD 8.38 0 0
4K 61.58 23.15 0
8K 90.46 80.92 52.28

to 370 ms for 5G backbone. Unlike the analysis, which
utilized average latency values in queuing, switching, and
disruption calculations, the simulation results incorporated
the effects of statistical variables. It is important to note
that the simulation results exhibit similar performance to the
analytical results, with negligible variations from the mean
values. This suggests that the random effects on latency are
currently marginal in the given scenarios, except for extreme
cases where the latency increases without bounds over time
(e.g., in scenarios involving QHD for 5G, 4K for 10G, and
8K for 25G backbones). To ensure easier readability and
avoid redundancy, simulation results are not presented in the
subsequent graphs since they align closely with the analytical
findings.

To analyze the effects on each of the latency factors, the
proportion of each latency factor in the 10G Ethernet backbone
is shown as an example in Fig. 4(b). It is clear that DE2E

does not change dramatically when the resolution of the
camera is low because DProc is the most significant latency
factor. However, as the resolution increases, DE2E changes
remarkably because DIV N increases and becomes the major
latency source of DE2E . In particular, DT , DF , and DD

are greatly affected by the data size of the camera, having
considerable effects on DE2E .

B. The End-to-End Latency with Compressed Camera Sensor
Data

We analyzed the end-to-end latency performance of the
compressed camera sensor data similar to raw camera sensor
data. Compression reduces data size but introduces neces-
sary compression latency, thus affecting end-to-end latency
performance. Firstly, we consider data loss for the camera
sensor. If DT of the camera exceeds the sensor period of the
camera (i.e., 33.3 or 16.7 ms), data loss occurs because the
transmission of the new frame starts before the transmission
of the previous frame ends. Therefore, it is necessary to check
whether DT is smaller than the sensor period. To prevent this
type of data loss, compression of the sensor data should be
considered. Table 3 shows the required minimum compression
ratio to prevent the loss of data. Fig. 5(a) shows DT after data
compression with the required compression ratio. We found
that the DT values of the camera sensors are smaller than the
sensor period, becoming similar when data is compressed by
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Fig. 5. Latency factors according to the required compression ratio.

the required compression ratio for resolutions with the values
in Table 3. Here, DC occurs simultaneously and affects DT .
It also differs according to the compressed data size. The
compressed data size becomes larger when the resolution
increases or the compression ratio decreases. Fig. 5(b) shows
DC with the required compression ratio. We find here that
the compression latency, DC , increases when the size of the
compressed data is large.

Fig. 6 presents DE2E and latency factors after video
compression with 50% compression ratio. As shown in
Fig. 6(a), DE2E of compressed data has lower latency when
compared to DE2E of raw data. The data size of the camera
sensor decreased significantly after compression, resulting in
an effective reduction in IVN latency. Consequently, the end-
to-end latency decreased compared to the raw camera sensor
data for all Ethernet backbone transmission rates. Fig. 6(b)
shows latency factors in the 10G backbone. When compared
with Fig 4(b), DC for video data compression was added.
However, due to the reduced data rate, the latency required in
the backbone and the latency related to image processing are
reduced, resulting in a reduction in DE2E . It can be seen that
DC is not zero when compression is required for a higher
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Fig. 6. End-to-end latency and latency factors with compressed data.

resolution to meet the requirement of the transmission latency
being smaller than the sensor period. Also, we find that other
latency factors which are proportional to the data size are
affected by compression.

C. Latency Effects on LKAS Performance

We considered ed and em to investigate the feasibility of
LKAS support. If ed exceeds em, it indicates the potential for
lane departure beyond the lateral distance threshold, making it
challenging to provide LKAS functionality. Fig. 7 shows the
maximum ed of the vehicle with the maximum longitudinal
speed, i.e., v is 200 km/h and θ is 20◦. Note that the
compression ratio of each resolution referring to Table 3
is applied again. To assess the proper functioning of LKAS,
we compared the ed with the em. This comparison allowed
us to determine whether the vehicle was at risk of deviating
from its current lane and potentially encroaching into adjacent
lanes. The magenta dashed line represents the em for small
vehicles (in this case, 0.75 m), while the light blue dashed
line corresponds to the em for large vehicles (0.5 m).

Taking the small vehicle as an example, ed of the vehicle
with the HD camera resolution is lower than em in all Ethernet
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TABLE IV
COMPRESSION RATIO AND LONGITUDINAL SPEED TO SATISFY THE LATERAL DISTANCE THRESHOLD.

Vehicle size Resolution
Compression ratio Available

for LKAS (%) longitudinal speed (m/s)
5G 10G 25G 5G 10G 25G

HD 0 0 0 19.001 19.001 19.001

Large
FHD 18.12 0 0 19.001 19.001 19.001
QHD 60.86 12.3 0 19.001 19.001 19.001

(em = 0.5) 4K 92.76 83.77 36.52 19.001 19.001 19.001
8K Impossible Impossible Impossible 8.561 8.586 8.601
HD 0 0 0 19.001 19.001 19.001

Small
FHD 0 0 0 19.001 19.001 19.001
QHD 20.81 0 0 19.001 19.001 19.001

(em = 0.75) 4K 75.96 46.14 0 19.001 19.001 19.001
8K Impossible Impossible Impossible 12.841 12.879 12.902
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Fig. 7. Lateral error distance (ed) with required compressed data.

backbones. ed of the vehicle with the FHD camera resolution
is lower than em in the 10G and 25G Ethernet backbones, but
ed exceeds em in the 5G Ethernet backbones. For the QHD
resolution, ed of the vehicle is lower than em only in the
25G case, and ed exceeds em in all Ethernet backbones with
resolutions of 4K and 8K, where we should consider additional
data compression at the cost of additional computation.

The proper compression ratio to meet em is shown in
Fig. 8. Note that all the appropriate compression ratios are
higher than the sensor period of 60 fps so that it can operate
under both 30 fps and 60 fps sensor periods. The maximum
compression ratio is set to 99.9%. The black boundary line
indicates em, which is 0.5 m for a large vehicle and 0.75 m for
a small vehicle. Each color of the domains indicates whether
the vehicle can satisfy the lateral distance threshold or not.
The red domain means ed ≥ 0.75, the orange domain means
0.5 ≤ ed ≤ 0.75, and the yellow domain means ed < 0.5. For
example, a large vehicle satisfies the lateral distance threshold
condition in the yellow domain, and a small vehicle meets
the lateral distance threshold condition in both the yellow and
orange domains. Taking the large vehicle with the 5G Ethernet
backbone as an example, the resolution of HD can satisfy the

lateral distance threshold condition without compression.
However, compression becomes essential starting from

FHD. To have ed lower than em at the FHD, QHD, and
4K resolutions, compression ratios of approximately 18%,
60%, and 92% as shown in Fig. 8(a), are required. However,
even with compression of camera sensor data at 8K resolution,
ed exceeds em, making it unfeasible to support LKAS.

Table 4 shows the proper compression ratio and available
longitudinal speed of each resolution to satisfy the lateral
distance threshold condition. Here, the maximum speed of the
vehicle is 19.001 m/s referring to the product of the maximum
heading angle (20◦) and maximum vehicle speed (200 km/h).
For a large vehicle, a vehicle with the 5G Ethernet backbone
can only use HD cameras without data compression. Also,
without compression, a large vehicle with the 10G backbone
can use camera resolutions up to the FHD range, and a vehicle
with the 25G backbone can use camera resolutions up to
QHD. With data compression, a large vehicle can use camera
resolutions up to 4K in all Ethernet backbones. However, 8K
cameras cannot be used in large vehicles even with 99.9%
data compression considering the maximum vehicle speed of
19.001 m/s.

A small vehicle with the 5G backbone can use camera
resolutions up to the FHD range without data compression.
Also, without compression, a small vehicle with the 10G
backbone can use camera resolutions up to QHD, and a
vehicle with the 25G backbone can use camera resolutions
up to 4K. With data compression, large vehicles with 5G and
10G backbones can also use camera resolutions up to 4K.
However, 8K camera cannot be used, as in small vehicles,
even with 99.9% data compression considering the maximum
vehicle speed of 19.001 m/s.

When a vehicle satisfies the lateral distance threshold, the
available longitudinal speed is 19.001 m/s. However, for both
vehicle types with 8K cameras, even when compressing the
camera data to the maximum compression ratio, ed remains
larger than em, preventing the vehicles from operating at
maximum speed. The available longitudinal speed with the
8K camera is from 8.561 to 8.601 m/s for a large vehicle
and from 12.841 to 12.902 m/s for a small vehicle when the
compression ratio is 99.9%. Finally, it becomes possible to
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Fig. 8. Required compression ratio to satisfy the lateral distance threshold with different camera resolutions.

determine the proper resolutions and compression ratios with
the Ethernet backbone for all vehicle types. In the designed
vehicle architecture, vehicles with up to 4K cameras are able
to satisfy the lateral distance threshold, with data compression.
However, an increase in the data rate of the Ethernet backbone
is required to use the 8K camera. This can be considered in
the future standardization of higher-rate automotive Ethernet.

V. CONCLUSION

This paper focuses on analyzing the impact of IVN latency
on LKAS. To assess the LKAS performance, we considered
a lateral error distance and lateral distance threshold, taking
into account the end-to-end latency. The study analyzed the
factors contributing to end-to-end latency in an LKAS system,
identifying IVN latency and processing latency as key factors.
To evaluate the end-to-end latency, a next-generation IVN
topology was designed, considering the zonal architecture
with an Ethernet backbone. A system-level simulation of the
IVN topology was conducted using OMNeT++ to validate
the analysis results. To ensure data integrity, a required
compression ratio was determined based on the camera’s
sensor period and resolution. Subsequently, the end-to-end
latency of the designed IVN topology with the required
compression ratio was calculated. Based on the obtained
end-to-end latency, the paper proposed lateral error distances
for different vehicles. A graph was introduced to determine
whether a vehicle equipped with cameras at various resolutions
satisfies the lateral distance threshold condition or not. In
cases where high-resolution cameras are impractical due to
latency constraints, guidelines were provided to determine
the required compression ratio for each resolution and the
maximum longitudinal speed of the vehicle at that compression
ratio. The queuing latency in this study was deemed negligible,
as the network traffic load was relatively low, considering the
single function of LKAS. However, it is acknowledged that
queuing latency should be considered in more complex future
vehicle networks that support diverse ADAS or autonomous
vehicle functions with higher network traffic. Additionally,
further validation of the simulation results in real-world
vehicle testing environments is necessary. In the future, we
plan to consider the resolution and quantity of various sensors,
including LiDAR and radar, in addition to cameras, and apply
technologies like 3D road lane classification with improved
texture patterns and optimized deep classifier to our research.

This will enable us to implement more realistic and diverse
ADAS functions and analyze associated factors such as IVN
latency. Through this analysis, we can enhance the efficiency
and stability of autonomous vehicles when applied in real-
world autonomous driving scenarios by using the optimal
sensor combination that meets the latency requirements.
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