
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024 115

A Popularity-Based Caching Strategy for Improved
Efficiency in SVRF-based Multicast Control-Planes

Ruisi Wu and Wen-Kang Jia

Abstract—The packet forwarding engine (PFE), a vital com-
ponent of high-performance switches and routers, plays a pivotal
role in rapidly selecting the appropriate output port for tens of
thousands of packets. The performance of the PFE hinges on the
efficacy of the group membership algorithm. In this research, we
present a hybrid approach called caching scalar-pair and vectors
routing and forwarding (CSVRF), which comprises virtual output
port bitmap caching (VOPBC) and fractional-N SVRF, designed
to address significant multicast forwarding challenges such as
scalability. We achieve this through the implementation of content
address memory (CAM). Within the CSVRF framework, we
introduce an innovative virtual output port bitmap cache table,
which encompasses the most frequently occurring combinations
of output port bitmaps (OPB). Furthermore, we divide the
larger scalar-pair into N subgroups to enhance the reusability
of prime resources. We validate our findings using Matlab-based
mathematical models and simulations. Our results demonstrate
significant decreases in both memory space usage and forwarding
latency. Our approach assures minimized memory consumption,
faster processing, and robust scalability in high port-density
settings.

Index Terms—Membership querying, multicast, packet for-
warding engine (PFE), scalar-pair vectors routing and forwarding
(SVRF).

I. INTRODUCTION

MULTICAST communications increasingly attracts at-
tention for scalable and efficient data delivery in the

networking industry. Due to the growing demands of comput-
ing power such as that in cloud computing and datacenters,
the major network equipment–switches and routers must be
scalable and efficient for connecting tens or even hundreds of
thousands of subordinate end hosts to superordinate network
devices.

The performance of today’s switches and routers is con-
strained by the interconnection technology. An essential and
most complex component in a large-scale packet switch-
ing equipment such as high-end Ethernet switches and core
IP routers is the hardware-assisted packet forwarding en-
gine (PFE), which interconnects all of the network traffic
crossover, and holds a pivotal role to satisfy the exchange

Manuscript received March 17, 2023; revised August 24, 2023; approved
for publication by Seeling, Patrick, Division 3 Editor, October 27, 2023.

This research was sponsored by the National Natural Science Foundation
of China (Project No. 61871131).

R. Wu is with the College of Photonic and Electronic Engineering,
Fujian Normal University, Fuzhou, Fujian, China, and Graduate School of
Information Science and Technology, Osaka University, Suita, Osaka, Japan,
email: qsx20200789@student.fjnu.edu.cn, r-wu@ist.osaka-u.ac.jp.

W.-K. Jia is with the College of Photonic and Electronic Engineering, Fujian
Normal University, Fuzhou, Fujian, China, email: wkjia@fjnu.edu.cn.

W.-K. Jia is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2023.000054

requirements of the Internet-scale traffic [1], [2]. The function
of a PFE is forwarding packets as quick as possible from the
input queue to the output queue through a backplane (i.e.,
switch fabric) of the data-plane. If there is no matched entry
in the forwarding table to find the egress port(s) of the packet,
the PFE drops the packet with an unknown destination and
informs the routing engine for appropriate processing [3]. The
control-plane of PFE determines and instructs the forwarding
egress(es) of the data-plane through the forwarding table
(a.k.a. forwarding information base (FIB)), which is built up
by the upper-layer routing engine (RE) based on dynamic
routing protocols and routing table (a.k.a. routing information
base (RIB)). Since it requires huge system resources, only
software implementation is feasible.

Different from the unicast routing and forwarding, main-
stream multicast routing protocols such as MOSPF [4],
PIM [5], DVMRP [6], and CBT [7] need a very large size
of memory to store a huge number of states of the multicast
routing table (MRT) in the multicast-enabled PFEs. Generally,
MRT is not directly utilized for PFEs in modern switch/router
architectures, instead it is usually transformed into smaller
multicast forwarding tables (MFT), which consist of a set
of multicast forwarding entries (MFEs). Each MFE contains
only one unique flow identifier, output port identifier(s), and
corresponding next-hop node identifier(s). If necessary, all of
them are chosen by the RE as preferred routes for packet
forwarding, and the MFT is directly used by a faster control-
plane of PFE to control the forwarding of multicast packet
flows along the on-tree switches/routers [3].

Each multicast group has more complicated forwarding
information including its own specific branch pattern (i.e.,
indicating that it has multiple egress ports), which cannot
be simply aggregated as in the unicast [8]–[10]. We could
easily figure out that a certain number of multicast flows may
consume much more resources including memory space and
computing power than that consumed by the same number
of unicast flows. The memory resource of MRT/MFT in on-
tree switches/routers may be filled up quickly when a certain
number of large multicast groups and/or a large number of
small multicast groups are launched in the network. As pre-
defined memory space of a MFT might be very restricted due
to the expected cost and scale, and the maximum number of
multicast groups supported on a PFE will be strictly adhered
to. It will become a non-scalable issue and may frequently
occur at each on-tree switch/router located near the multicast
traffic hub. This issue can be treated as a structural limitation
inherent in today’s Internet, and an insuperable bottleneck in
the large-scale multicast-enabled networks [11]–[15].

1229-2370/24/$10.00 © 2024 KICS

116 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

The group membership algorithm is an essential building
block in the packet forwarding function of PFEs, it provides
lookup processes in a group with a consistent view of the
group membership. In a unicast packet, the network-layer
destination address is used by a group membership algorithm
to find a particular entry in the forwarding table, while in a
multicast packet, a multicast address is used by a multiset
group membership algorithm to find a single particular entry
in the multicast forwarding table. If the membership is not
found for a multicast packet in a group membership query,
the packet is considered invalid and dropped in the input
queue, or an exception handler such as PACK IN in software-
defined networks (SDNs) is executed. For unicast forwarding,
the group membership query responded by a PFE to forward
the packet is a particular output interface identifier (a.k.a. an
egress) and a corresponding next-hop address if necessary.
While in multicast forwarding, the result from a multiset group
membership query is a set of egresses. In computation theory,
the group membership algorithm transforms and simplifies the
query question: “Where should this packet go?” into the true-
false question: “Whether this packet should be forwarded to
this egress?”, which enables a PFE to make decisions from
a massive number of forwarding elements (entries) within
ultra-low processing latency. Nevertheless, due to complicated
membership queries upon massive membership, it results in
serious performance degradation, and conventional multicast
forwarding algorithms are unable to accommodate such a
high-intensity task, including high port-density (a.k.a. a large
number of egresses) and massive membership-capacity (a.k.a.
a huge number of forwarding entries) features [12], [16], [17].

To accommodate the scalability problems of managing a
massive number of large-scale groups, quite a few group
membership querying algorithms have been proposed in the
past two decades. Most of these proposals tried to reduce
memory consumptions by using bloom filter (BF) [18], which
has indeed attracted much attention in the research community
of both computation and networking recently [19]. Unfor-
tunately, the existing BFs are neither effective in multiset
group membership query for dynamic and rapid changes in
group members, nor sufficient for handling false-positive prob-
lems [20]. So far, the Internet-scale multicast solution is still an
unpopular research area in both academics and industries and
only a few novel schemes have been conducted. However, with
the progress of the market trend, launching a native multicast-
enabled network technology such as IPv6 is imminent. We
have observed that carrier-grade multicast-enabled PFE design
is facing new challenges, hence it is a promising area that
deserves considerable effort in investigation.

In this paper, we assume the selection of an output port
is subject to the power-law distribution, in particular, Zipf
distribution, also known as the 80/20 rule. The egress port,
serving as the output interface of a router/switch for the
transmission of packets to subsequent network nodes, assumes
a critical role in network communication. A notable phe-
nomenon arises in the selection of output ports, governed
by a power-law distribution. In this case, where the majority
multicast packets preferentially designate a few available ports.
And the remaining packets will distribute themselves across

the residual ports, which means that there is an uneven distri-
bution in output port selection. Meanwhile, the ratio between
is subject to Zipf distribution. For instances if a flow which
contain 1000 packets arrived in an eight-port router/switch, the
influence of the power-law distribution governing the selection
of output ports can be showed as that a distinctive pattern
emerges that most packets primarily opt for ρ1 and ρ2 as
their primary output ports, and a few additional ports. On
contrast, residue packets will select ρ3, ρ4, · · ·, and ρ8 as
their mainly output ports with a limited number of ρ1 and ρ2,
adhering to the principles outlined by the Zipf distribution.
And here ρ means the corresponding port in the router/switch.
In such a distinctive pattern, a considerable repetition of output
port combinations was observed in the forwarding table such
as ρ1 and ρ2 is recurrently favored as the output ports in
many times. And by strategically employing caching mecha-
nisms, a limited subset comprising the most frequently utilized
combinations possesses the capability to faithfully regenerate
all output port bitmaps (OPBs) associated with the requested
packet. It’s worth noting that the power-law distribution has
found application in various domains, with numerous research
findings conforming to this distribution. Examples include
power efficiency in data center networks (DCNs) [21], end-
to-end network traffic patterns [22], and the distributional
characteristics of sources within the IPv4 address space [23].
All of these studies affirm the prevalence of the 80/20 rule
in network traffic dynamics. Clearly, a stronger correlation
among ports leads to a higher frequency of recurring output
port combinations. We demonstrate that our proposed scheme
not only resolves the time inefficiency problem of the original
scalar-pair vectors routing and forwarding (SVRF), but also
achieves space saving compared with the original SVRF and
BF schemes.

The rest of this paper is organized as follows. In Section II,
the state-of-the-art of mainstream multicast forwarding algo-
rithms and their related works, weaknesses are presented. In
Section III, our proposed CSVRF scheme to alleviate memory
consumption is discussed and some implementation issues are
explained in detail. In Section V, we compare the performance
of space and time efficiency under five metrics and implement
them using hardware. Finally, some concluding remarks are
presented in Section VI.

II. RELATED WORKS

A. Bloom Filter (BF)

Straightforward approach to determining multiset member-
ship is to store the information of the group elements, usually
represented as a list, in memory. To determine whether an
element is a group member, we must get lists of all groups,
and query each group to determine whether an element is
its member. This operation features poor performance and
low scalability. One of the effective ways to improve query
performance is keeping an ordered full index in memory.
However, this method consumes more space than the primitive
methods in dealing with massive large groups [24].

WU et al.: A POPULARITY-BASED CACHING STRATEGY FOR IMPROVED ... 117

The multiset group membership scheme [24]–[26] has var-
ious applications in information and communications technol-
ogy (ICT) industries. A typical multiset group membership
scheme consists of a compact data structure and an efficient
search algorithm for determining membership about the groups
to which an element belongs. More precisely, let G ⊆ U a
group and let x∈ U be an element, where U is a universal
set. By utilizing the group membership query we can test
whether x∈ G in both time and space. Once a group mem-
bership query is executed, a certain search algorithm will be
performed to identify the target groups through a specific
predefined data structure. For example, a packet forwarding
algorithm needs to effectively determine whether a required
packet identifier exists in a binding relationship with an
egress without exhaustively checking all the elements in the
forwarding table. Instead of using single-selection situations
in a unicast forwarding, the group membership query is more
popular for multi-answer situations provided that the query
answer corresponds to multiple candidate groups, such as that
in a multicast forwarding.

BF [18] is a probabilistic group membership scheme
widely used in many network functions especially in forward-
ing/routing decision [19], [27], [28], flow identification [19],
[29], and packet classification [19], [30], etc. The BF is a time-
efficient algorithm with a space-efficient data structure used to
represent whether an element n is a member of a set S. It is
constituted by an m-bit vector that encodes the membership
of n-elements in a set {1, 2, · · ·, m}. The BF is initialized
with all bits set to zero. It has k-hash functions, which hash
elements uniformly and independently in the range {1, 2, · · ·,
m}, where k≪m. To insert an element x∈ S, the hash values
are computed by k independent hash functions h1(x), h2(x),
· · ·,hk(x), and the corresponding bits are set to 1s in the m-bit
vector at random locations. The query whether x∈ S or not
is decided by the hashed values h1(x), h2(x), · · ·, hk(x) by
checking if they are all set to 1s in this m-bit vector. If so,
the query returns that x ∈ S, otherwise it returns x /∈ S.
In a hardware implementation, the BF performs significantly
better because its k hash functions can be parallelized. Thus,
the time complexity of BF is claimed to be roughly O(k)
(a constant time completely independent of the number of
elements contained in the set, on the premise that memory
access times should be constant too).

However, the BF may mistakenly claim a nonmember to
be a member due to its probabilistic property. That’s to say,
the BF features a small error probability of false positive
while gaining considerable memory space savings. For many
applications, this is acceptable as long as the false-positive
rate is sufficiently small. The performance of the BF and its
many variants is evaluated by three fundamental criteria: 1)
Space complexity, 2) time complexity, and 3) false positive
probability. The BF allows much more bits to be set while still
maintaining a low false-positive probability if the parameters
are perfectly chosen. Given n elements and memory space m,
suppose we wish to optimize the number of hash functions k
and bits per element m/n, and to minimize the false positive
probability PBF of the BF, the optimization problem can be

formulated as

arg min
m,n,k∈N

PBF(m,n, k) =

(
1−

(
1− 1

m

)kn
)k

, (1)

where n ≤ k ≤ m. Note that

PBF(m,n, k) → (1− e−
kn
m)k, (2)

as m → ∞. The optimal number of the hash functions k will
be approximately (m×ln2)/n. From that, we can determine the
optimal number of functions k by assuming that we are given
the member capacity n and memory requirement m so as to
minimize the false-positive rate PBF [18].

Unfortunately, the BF faces many limitations [31] as fol-
lows:

1) The BFs incur inefficient space usage thus the cost of
product design may be surprisingly high.

2) The inaccuracy problems are inherent in BFs, i.e., the
traffic leakage may occur once a high false-positive rate was
found, it may be a security calamity for security-sensitive
applications such as the military application.

3) The BFs feature easy insertion but hard deletion of
elements, thus the maintenance cost of BFs grows as the
number of elements increases.

4) The existing BF solutions do not have sufficient flexibil-
ity, i.e., the memory space m and the number of hash functions
k that the BF can support must be pre-configured as fixed.
Besides, the BFs only determine whether an element is in a
set, but it is unable to return the value associated with an
element.

B. Scalar-pair and Vectors Routing and Forwarding (SVRF)

Error-free membership query schemes, SVRF [32] and its
derivative—fractional-N SVRF [33] were proposed to over-
come the disadvantages of BF. SVRF constructs and queries
group memberships based on utilizing RNS properties in-
cluding the continuous product (CP) and Chinese remainder
theorem (CRT) [34], [35] to improve unicast and multicast
packet forwarding in a PFE. It traverses the PFE and encodes
the entire forwarding table to a ‘scalar-pair’, which represents
a single forwarding entry as a ‘vector’. For example, corre-
sponding outgoing port(s) with residues, based on the selected
prime number set, i.e. ‘keys’. There are three key elements in
the SVRF arithmetic: 1) Node-specific scalar-pair (Mcp, Mcrt);
2) flow/group-specific keys; 3) flow/group-specific vectors.
Therefore, forwarding decision through a modulo operation
can be done based on the properties of RNS in the PFEs.

In the initial stage of SVRF with a finite forwarding
table (group) containing n entries (elements), all elements
in the forwarding table can be rewritten in a simple form
K = k1, k2, · · ·, kn, where K is a set containing all the
unicast and multicast packet (flow) identifiers (keys), and
kx is regarded as an integer. The whole vectors in the
forwarding table thus can be rewritten in the form B =
b1, b2, · · ·, bn which contains the corresponding outgoing port
bitmaps (OPBs) for multicasting or outgoing port indexes
(OPIs) for unicasting of all elements, and bx denotes a bit-
vectors bx = bx1, bx2, bx3, · · ·, bxρ that enumerates all possible

118 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

egress ports of the PFE, where ρ denotes the number of ports
supported by the PFE. Each element bxy of the bitmap is
assigned a value for all bits: A zero-bit value (bit off) indicates
that the associated port is not selected in the bitmap, while
a one-bit value (bit on) indicates that the associated port is
selected in the bitmap, where x ≤ n and y ≤ ρ. Thus we have

B =


b1 =

{
20b11 + 2′b12 + 22b13 + · · ·+ 2p−1b1,p

}
b2 =

{
20b21 + 2′b22 + 22b23 + · · ·+ 2p−1b2p

}
b3 =

{
20b31 + 2′b32 + 22b33 + · · ·+ 2p−1b3p

}
· · ·

bn =
{
20bn1 + 2′bn2 + 22bn3 + · · ·+ 2p−1bnp

}

 .

(3)
Note that all the keys are unique and relatively prime.

Otherwise, ki must be bigger than bi, and bi must be larger
than 2ρ in the case of multicast. In brief, a simply selected
ki might be the ith prime numbers in the range from 2ρ+1 to
2ρ+1-1. The first scalar, Mcp is defined as a product of all n
elements in K as follows:

Mcp =

n∏
i=1

ki. (4)

The second scalar Mcrt can be constructed by the CRT
function:

Mcrt = CRT


{k1, b1},
{k2, b2},

· · ·
{k1, bn, }

 . (5)

The CRT solver function states that given primes
{k1, k2, · · ·, kn} ∈ N, N represents all integers. Then for any
{b1, b2, · · ·, bn} ∈ N there exists a unique smallest positive
integer solution MCRT ∈N, which satisfies Mcrt mod kr= br
for any kx and bx. Note that the bit-vector bx during CRT
calculation is an integer value smaller than kx. Thus, we have
conducted the calculations on the scalar-pairs (Mcp, Mcrt) of
SVRF.

For each membership query, we first extract the node-
specific key kx from incoming packet identifier x as the
divisor. Then we fetch the scalar-pairs (Mcp, Mcrt) from
the memory unit as the dividends. Through two long-integer
division operations, the vector (OPB) bx for element x can be
obtained by

b
x
=

{
(Mcrtmodkx) ,if

(
Mcpmodkx

)
= 0

0 ,otherwise
. (6)

The formula (6) states that at first, the remainder of the 1st

division of Mcp by kx should be checked. If this residue is
zero, the other remainder obtained from 2nd division, dividing
Mcrt by ki will be the OPB, which helps forward packets to
the designated outgoing ports. Otherwise if the remainder of
Mcp (mod kx) is nonzero, the packet should be dropped and
bx is returned zero. It can be observed that with Mcrt and set
K, each element of set B can be restored by linear congruence,
and in the model there is a unique solution Mcrt as follows:

Mcrt ≡


b1(modk1)

b2(modk2)

· · ·
bn(modkn)

. (7)

Through this scheme, a unitary scalar-pair with sufficient
keys is sufficient to forward multicast packets toward desired
egress ports without any conflict.

C. Fractional-N SVRF

Based on the same concept of SVRF, the fractional-
N SVRF [33] preprocesses a scalar-matrix by dividing an
n-element group into N sub-blocks, hence when element’s
keys belonging to distinct sub-blocks of SVRF, it is al-
lowed to reuse relatively smaller and identical prime keys,
and membership queries can be partitioned to leverage task
parallelism, resulting in less memory consumption and lower
computational complexity. Nevertheless, the space efficiency
is still a bottleneck hard to overcome, especially in conditions
of high port-density.

To sum up, compared with the BF, SVRF can significantly
reduce the memory requirement under false-free conditions.
Since forwarded direction—vector can be easily computed
via simple modulo operations from a scalar-pair, it provides
higher flexibility in the deployment of new multicast services.
SVRF is expected to achieve higher scalability and efficiency
for network equipment, it features several different properties:
1) The memory usage is linearly increased until it reaches
the target group capacity (limited number of elements); 2)
the SVRF does not require random access across whole
memory space, unless under full-load conditions. On the
contrary, the SVRF sequentially accesses memory during the
fetch phase of very-long integer dividend, thus it can take
advantage in cost reduction by implementing the memory
hierarchy, and store the scalar-pair into low-cost dynamic
random-access memory (DRAM) instead of high-cost static
random-access memory (SRAM), or TCAM as in BFs; 3)
since a switch/router is sufficiently supported by a single
SVRF constructed components, the increasing rate in memory
usage is affected by both the port-density ρ (number of ports
in a PFE), and membership capacity n (number of forwarding
entries in a PFE). Since the primes become scarcer as they
grow larger, it implies that a large n may cause exponential
growth of the memory usage m.

Although SVRF overcomes the BF’s major defects such as
space efficiency, occurrence of false positives, and difficult
member eviction, it still suffers from inefficient processing
latency. The query performance of BFs might not be impacted
by the high port-density, because the criterion to deploy the
hardware BFs is that the number of BFs should be equal
to the number of logical interfaces of a PFE [24], and the
membership query is performed in parallel among all port-
specific BF components. As a consequence, the total hardware
cost of BF components in a high-end PFE is considerably high.
In unicast SVRF indeed does not have much advantage over
BF in terms of reducing the processing time, but SVRF is more
prominent in multicast forwarding. Unfortunately, SVRF still
faces the problem of high memory consumption when the port-
density in PFEs is huge. Since a single SVRF function utilized
by a PFE generates a large scalar-pair values that occupy huge
memory space, resulting in serious forwarding performance
degradation due to very long integer division, even if the

WU et al.: A POPULARITY-BASED CACHING STRATEGY FOR IMPROVED ... 119

Routing Engine
RIB

Insert() Remove()

SVRF
Constructing
Procedure

⌈log2q⌉-bit VOPB Index

ρ-bit logical OPB
(to Switching Fabric)

Insert/Remove
VOPBC Item

Ex
tr

ac
to

r

n-Flow
(Member)

Input Unit

Output Unit
TCAM Cache

Popularity
Algorithm

Em
pt
y

U
se
d vOPB2

vOPB3

vOPBt

pOPBDataset
01001001…0
10000101…0

Unused

Invalid

11001000…1

…

vOPBt+1

vOPBq

…
…

Unused

UnusedvOPBt+2 …

VOPBID

vOPB1

Memory Unit

{Mcp,Mcrt}

Cache
Management
Procedure

Flow
Identifier

Packet Drop/ Exception Handling

Processing
Unit

Mcp (Dividend1)

Y
N

Re
m

ai
nd

er
1

Z?

Mcrt (Dividend2)

Key
(Divisor)

Scalar-Pair

Processing Unit

Pr
im

e
G

en
er

at
or

Divider1 Divider2

Re
m

ai
nd

er
2

Memory Unit

Output
Unit

Input
Unit

Packet Drop/ Exception Handling

Fig. 1. The system framework of CSVRF within a ρ-port PFE.

division operation is accelerated by hardware. To underscore
the efficient forwarding latency performance in fractional-N
SVRF, we are driven to incorporate fractional-N SVRF into
this study.

III. CACHING SCALAR-PAIR AND VECTORS ROUTING AND
FORWARDING (CSVRF)

In this section, we will present CSVRF through five major
parts: 1) The conceptual framework of CSVRF; 2) constructing
the scalar-pair; 3) querying group membership, and 4) main-
taining group membership.

A. Proposed System Architecture

Though the significant time efficiency, fractional-N exhibits
a limited improvement in memory space especially in high
port-density. On the contrary, VOPBC boasts superior space
efficiency than fractional-N regardless either high or low port-
density, but conversely, it’s not good as fractional-N in terms of
time efficiency. A motivating idea is exploring the combination
of these two schemes, aiming to achieve superior performance
in both memory space and forwarding latency. Consequently,
we propose a hybrid scheme named CSVRF, which integrates
fractional-N and VOPBC. The goal of CSVRF is to combine
the strengths of both fractional-N and VOPBC, expected to
attain notable space efficiency as VOPBC while concurrently
maintaining high time efficiency resembling fractional-N. Spe-
cially, in the CSVRF, firstly the whole big group membership
is partitioned into N partitions, where each sub-groups oper-
ates independently. And then introduce a virtual cache which

accommodates all the most frequent output port combinations.
According to reuse the shorter bit-length prime and a faster
searching operation via an extern virtual cache, it’s reasonable
to assert that CSVRF can enhance both the performance of
memory space and processing time. The system model of
CSVRF is illustrated in Fig. 1. The encompassing essential
components of CSVRF include the 1) input unit, 2) processing
unit, 3) output unit, and 4) memory unit. The characteristics
of the packet processing are described as follows.

When a packet enters the system, it arrives at the input
unit. This packet typically contains information such as source
and destination addresses, next-hop information, and details
about the payload. The input unit extracts relevant router
information from the packet. This information includes details
like the source address, destination address, next-hop address,
and output ports. Each packet is assigned a routing identifier
based on the extracted router information. This identifier is
crucial for determining the appropriate processing path for
the packet. The packets are then distributed among various
sub-SVRF modules. This distribution is done based on the as-
signed routing identifiers. A demultiplexer (DEMUX) is often
used for this purpose. Each sub-SVRF module operates inde-
pendently. This independence ensures that each module can
efficiently process the assigned packets without interference
from others, each sub-group processes approximately nN=n/N
packets. Within each sub-SVRF, two dividers and a prime
generator are present. Every incoming packet receives a unique
prime key from the prime generator with the corresponding
routing identifier, and the unique prime of each packet keep its
isolated from the others. This design facilitates efficient packet

120 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

handling and routing within the system. Furthermore, each
prime assigned to packets is autonomous within its respective
sub-group and can be repurposed across various sub-groups
for examination. This approach significantly enhances the
efficiency of prime utilization, particularly in scenarios with
low port-density.

Within the processing unit, individual packets undergo com-
putation to determine the corresponding OPB. This calculation
involves the modular operation between the key and scalar-
pairs (Mcp, Mcrt), which are retrieved from the memory
unit. The multiplexer (MUX) consolidates the outputs from
every sub-group to determine the final output within the
processing unit. The output of the sub-SVRF modules is a set
of virtual OPB indexs (VOPBIs), which represent the potential
output ports index for the entered packets. These VOPBIs are
then sent to the output unit, where they are matched with
the corresponding VOPBID stored in the content-addressable
memory (CAM) cache. This matching operation determines
the specific entries in the cache associated with the processed
packets. The recently introduced VOPBC module based on
CAM is a crucial component in the output unit. The VOPBC
module primarily comprises the virtual cache which stores
pairs of VOPBID and the corresponding physics output port
bit-map (POPB). Based on the matching results, the associated
POPB dataset is transferred to logical OPB (LOPB). LOPB
represents the logical OPB that corresponds to the desired
output ports for the packets. The LOPB is then directed to
the switching fabric. This step signifies the completion of the
entire packet operation in CSVRF. The entries stored in the
virtual cache are managed using a popularity algorithm. If
there are modifications to the cache membership, the routing
engine (RE) activates the constructing procedure. This pro-
cedure recomputes all the scalar-pairs in the memory unit to
ensure the cache reflects the most popular and relevant output
port combinations. Simultaneously, the cache management
procedure updates the CAM cache accordingly.

CAM is acknowledged for its effectiveness in designing
high-throughput forwarding engines, especially in high-speed
IP lookup. renowned for its efficacy in designing high through-
put forwarding engines and facilitating high-speed IP lookups.
In this article, CAM is utilized for rapid matching of all
entries in the virtual forwarding table with the incoming
VOPBI within a single clock cycle. Despite its efficiency in
quick searches, CAM does pose challenges related to high
power consumption. The extensive switching of match-lines
and search-lines during fully parallel search operations can
lead to considerable dynamic power consumption and capacity
constraints. Researchers have explored meaningful solutions
to address these issues, as discussed in various research pa-
pers [36]–[38]. In the specific implementation within CSVRF,
the lookup operation in the virtual forwarding table involves
activating all cells in each clock cycle for parallel array access.
This allows for rapid and simultaneous comparison of the
incoming VOPBI with all entries in the virtual cache, resulting
in the efficient determination of the LOPB for further packet
processing. Because of the space constraints, the discussion
on methods to reduce the power consumption of CAM will
be delved as the next goal.

A notable distinction lies in the utilization of the output
generated by the sub-group than conventional SVRF. Instead
of directly employing it as an OPB, it is utilized as an index
for the virtual forwarding table, thereby accomplishing the
reusability of primes within each sub-group.

CSVRF strategically circumvents the computational com-
plexity associated with the extensive RNS calculations present
in conventional SVRF. This is achieved by employing parallel
operations, focusing solely on the latency calculation for an
individual sub-group and thereby minimizing computational
overhead. Furthermore, though all entries in the virtual for-
warding table are concurrently queried within a single clock
cycle, while VOPBC introduces an additional processing cycle
for match execution compared to conventional SVRF, this
approach strategically optimizes processing efficiency. Nev-
ertheless, the less bit length of each sub-group key in CSVRF
leads to a significant reduction in the necessary memory space
for all sub-scalar pairs (Mcp(N), Mcrt(N)). The group member
query algorithm’s processing time is inversely proportional
to the required memory, the substantial decrease in memory
demand in CSVRF translates to a corresponding reduction in
processing time. Consequently, CSVRF successfully achieves
a decrease in processing time through the anticipated reduction
in memory space.

B. Constructing the FIB for CSVRF

Within this sub-section, we delve into the composition of
the scalar-pair in CSVRF, which integrates of fractional-N
and VOPBC, as illustrated in Fig. 2. Every entry stored in
the virtual cache undergoes matching with the incoming
VOPBI and leading the corresponding LOPB to the switch
fabric. The added virtual cache occupies q × ρ bits; where
q represents the maximum number of entries that can be
accommodated in the virtual cache without overflow, and ρ
denotes the number of ports in the switch. Meanwhile q must
satisfy q ≥

∑N
i=1 qi , the variable qi indicates the caches

number in each sub-SVRFN, and N is the partition number
of SVRF. It’s worth noting that all entries in the virtual cache
are unique. The output of fractional-N is denoted as VOPBI
and is represented by x(i,N) in the subsequent context.
Parameter i stands for the index of ith entry in sub-SVRFN .
The entry can be expressed in simplified form as {KN ,
XN}={{k(1,N), x(1,N)}, {k(2,N), x(2,N)}, · · ·, {k(i,N), x(i,N)}}.
In this form, KN and XN denotes the corresponding key
set and VOPBI set of all entries in sub-SVRFN . KN and
XN construct the sub-scalar pair (Mcp(N), Mcrt(N)) of sub-
SVRFN together. And the length of the key in sub-SVRFN is
given by is ⌈ log2qi +1⌉, Mcp(N) is the continued production
of the keys, we have

Mcp(N) =

n∏
i=1

(
k(i,N)

)
, k(i,N) ∈ KN . (8)

Besides, MN = {m(1,N),m(2,N), · · ·,m(i,N)} , and m(i,N)

(mod x(i,N)) = 0, x(i,N) is an OPB(s) in sub-SVRFN . MN

can be calculated as:

M
N
= {

M
cp(N)

k
(i,N)

| ∀i ≤ n
N

and k
(i,N)

∈ K
N
}. (9)

WU et al.: A POPULARITY-BASED CACHING STRATEGY FOR IMPROVED ... 121

Another essential set is CN = {c1, c2, · · ·, cn} and can be
calculated as:

CN = {m(i,N)x(m
−1
(i,N)(modk(i,N)))}, (10)

∀ i ≤ nN and m(i,N)∈MN . In (10), m−1
(i,N) is the multiplicative

inverse which is calculated by m−1
(i,N)m(i,N)(modk(i,N)) = 1.

Each key within the system is generated as a unique prime
number through an assumed perfect prime generator. This
meticulous generation process ensures that every flow or entry
in the system is distinctly and uniquely associated with its own
key. After assigned the unique prime via prime generator, only
a matched smallest positive integer solution Mcrt(N) ∈ Z of
CRT for k(i,N) and x(i,N) through

Mcrt(N) = FCRT

((
k(i,N), x(i,N)

)∣∣∀i ∈ nN

)
. (11)

Each sub-scalar pairs (Mcp(N), Mcrt(N)) is stored in the
memory unit. Indeed, the crucial distinction lies in the output
characteristics of fractional-N and CSVRF. In fractional-N, the
output is an OPB with a key length of ⌈ ρ + 1⌉. In contrast,
CSVRF utilizes the output of fractional-N as the VOPBI,
serving as the index input to the virtual cache. Subsequently,
the corresponding LOPB is generated and output to the switch
fabric after matching, and the length of the key is ⌈ log2qi+1⌉.
This nuanced divergence in key properties underscores the
specific design choices made in CSVRF to optimize the
handling of keys and their subsequent utilization. CSVRF
achieves a significant reduction in the sub-scalar pair (Mcp(N),
Mcrt(N)) by optimizing the length of the key. This reduc-
tion enables effective multicast packet forwarding to multiple
output ports without conflicts, thanks to the availability of
sufficient keys. Despite the introduction of external VOPBC
processing, CSVRF maintains a significantly smaller required
memory space compared to conventional SVRF. Furthermore,
it demonstrates superiority over both VOPBC and fractional-N
in terms of memory space efficiency.

C. Performing the Forwarding Operation

When a multicast packet enters the input unit of PFE, it
will get an unique key k(i,N) based on its routing identifier.
Subsequently, this unique key becomes part of both Mcp(N)

and Mcrt(N), respectively. In the CSVRF scheme, the node-
specific key k(i,N) serves as the divisor, and the sub-scalars
(Mcp(N), Mcrt(N)) act as dividends. The residue obtained from
the division of Mcp(N) by k(i,N) is used to verify whether the
queried entry belongs to the virtual forwarding table. In this
case, the equitation sub-scalars (Mcp(N), Mcrt(N)) is provided
in (12).

(M
cp(N)

,M
crt(N)

) =


(0, x(i,N))
(0, x(i,N))

· · ·
(0, x(i,N))

 , if M
cp(N)

modk
(i,N)

= 0.

(12)

Simultaneously, for any given {k(i,N), x(i,N)}, Mcrt(N) can
be computed based on (13). The computation of x(i,N) is

derived from the modular operation between Mcrt(N) and
k(i,N) as shown in (13)

x(i,N) =

{
Mcrt(N)modk(i,N) ,if Mcp(N)modk(i,N) = 0

0 , otherwise
,

(13)
and ∀i ∈ n. The residue of (13) represents whether the
uniquely prime belongs to the set kN . More deeply, it means
the corresponding packet whether belong to the virtual cache.
If the residue of Mcp(N) mod k(i,N) is zero, indicating that
k(i,N) belongs to set kN , then x(i,N) obtained from Mcrt(N)

mod k(i,N) is the index of the virtual cache. Otherwise, it
denotes k(i,N) does not belong to set kN , it will drops the
packet or take other handling like resend.

In scenarios with the same OPB, it’s supported for different
multicast flows to de-map it into the corresponding OPB
generated through the mentioned calculation process. After
introduce popularity, a strategy employed is to cache only
the most popular OPB combinations in the virtual cache. This
cache is maintained periodically, ensuring the representation of
various OPB combinations within the limited capacity. And it’s
notably that the sub-scalar-pairs (Mcp(N), Mcrt(N)) remains
independent as well as the order of pair (k(i,N) , x(i,N))
because of the uniqueness of the prime. Further details about
the CRT algorithm can be found in [35].

D. Maintaining the FIB for CSVRF

In the SVRF construction procedure, forwarding informa-
tion base (FIB) was extracts from the router information base
(RIB) based on the RE. The SVRF construction procedure
simplifies the entire complex FIB into a structured format
such as {KN , XN}, where KN is the set of keys and XN

is the set of VOPBIs in the sub-groupN . This constructed
information is then uploaded to the memory unit. In essence,
the RE’s periodic pruning based on popularity ensures that the
cache remains efficient and populated with the most relevant
and frequently accessed items. The item replacement strategy
further optimizes cache usage by prioritizing more popular
entries. The group membership maintenance function handles
various operations in the MFT, such as insertion, removal,
or modification of entries. When there are changes in the
multicast group membership of the RIB, all multicast forward-
ing entries associated with the switch must be recomputed.
This involves updating the values of x(i,N) and k(i,N) and
subsequently updating the sub-scalar-pairs (Mcp(N), Mcrt(N))
stored in the memory unit. This process ensures that the
cache accurately reflects the current state of multicast group
memberships and optimizes lookup efficiency.

Upon the introduction of a new multicast flow entry to the
PFE and its integration into the RIB, the RE meticulously
examines the entry’s multicast address, output port identifier,
and next-hop node identifier. Following this verification, the
entry undergoes additional processing within a sub-group, and
subsequently, RE integrates it into the virtual cache. Routine
maintenance of the virtual cache is a critical responsibility for
RE. It systematically checks for inactive or invalid flows within
the cache and removes them as necessary. The newly added

122 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

item is then seamlessly accommodated in the available space
within the cache. When a new forwarding entry is introduced,
RE conducts a search through the cache from OPB1 to OPBt.
If an invalid item is encountered, it is promptly replaced with
the new entry. In the absence of an invalid item, the new entry
is placed in the next available slot, with the corresponding
index being OPBt+1 when the virtual cache is not yet full. In
scenarios where the cache reaches full capacity, RE employs
a removal strategy based on the popularity algorithm, such as
least frequency used. This strategic approach ensures that less
popular items are systematically removed to create room for
new entries, potentially more popular in nature. The entire op-
eration is visually depicted in Fig. 1. Furthermore, Section IV
briefly discusses a special case addressing the situation where
the number of combinations exceeds the assumed capacity q.

When incorporating a new multicast entry into the virtual
cache after processing within a sub-groupN , the introduction
of a new key k(i+1,N) and its corresponding value x(x+1,N)

prompts the computation of the updated scalar-pair M′
cp(N).

This updated pair is calculated as follows:

M′
cp(N) = Mcp(N) · k(i+1,N). (14)

The new pair M′
crt(N) is obtained by

M′
crt(N) = χN −Mcp(N)

{
γN , ifγN ≥ 0

k(i+1,N) + γN , otherwise
,

(15)
where χN = M′

cp(N) − Mcp(N) + Mcrt(N), γN =
(χNmodk(i+1,N)) − x(i+1,N)), and {K′

N ,X′
N} = {KN +

k(i+1,N),XN + x(i+1,N)}. We find that (13) adding
{k(i+1,N) + x(i+1,N)} is still satisfied (11) and the original
(Mcp(N), Mcrt(N)) will be updated.

If there are any entry is being removed from the virtual
cache, the new scalar-pair (M′

cp(N), M′
crt(N)) can be recalcu-

late by(
M′

cp(N),M
′
crt(N)

)
=

(
Mcp(N)

k(i,N)
,
Mcrt(N)

M′
cp(N)

)
, (16)

where k(i,N) no longer belongs to set KN and XN , and the
process of insert/ remove /modify is over.

IV. OPTIMIZATION OF THE SYSTEM PARAMETERS FOR
CSVRF

The integrated approach of CSVRF aims to achieve superior
performance in both memory space and processing time. In
this section, we will be delving into the impact on required
memory space after the integration, determining the optimal
number of partitions and selecting an appropriate value for q
are crucial aspects in optimizing the performance of CSVRF
and mitigating potential overflow problems.

A. Fractional-N with Correction τ

Absolutely, the key length plays a crucial role in the
distinction between conventional fractional-N and CSVRF.
Fractional-N sticks to a key length of ⌈ρ + 1⌉, aligning
with the original SVRF and offering limited improvements in

scenarios with high port density. On the other hand, CSVRF
employs a key length of ⌈ log2qi + 1⌉ for each sub-group by
utilizing virtual cache. This strategic choice empowers CSVRF
to surpass pure VOPBC by enabling the reusability of shorter
keys and facilitating parallel operations across multiple sub-
groups.

Upon integration with the VOPBC, the output of the pro-
cessing unit transitions into the virtual cache as the index and
is utilized to match entries stored in the virtual cache. This pro-
cess enables the identification of the corresponding POPB, and
the identified POPB is then output as the LOPB to the switch
fabric. In comparison to the conventional fractional-N SVRF,
CSVRF demonstrates improved memory space performance.
This enhancement is attributed to the reduction in the key
length. CSVRF achieves a significant reduction in key length.
While introducing external memory space with the addition of
a new virtual cache, the key length is notably shortened. This
reduction is determined by the variable qi (⌈ log2qi + 1⌉ ≪ ⌈
log2q+1⌉ ≪ ⌈ logρ+1⌉). Besides, each sub-group operates as
an independent SVRF module through partitioning, fostering
the reusability of primes essential for each judgment. The
principle of prime reusability, as elaborated in Section II,
underscores the capacity of each sub-group to reuse primes
independently, contributing to the efficiency of the overall
system.

Another challenge lies in the fact that as the port density
increases, the size of the virtual cache also grows, consuming
a significant portion of the overall memory. While CSVRF
mitigates memory space requirements compared to traditional
VOPBC, especially at lower port densities like 16 or 64, the
size of the virtual cache increases with higher port densities.
This poses a challenge in terms of efficiently managing
memory space as port density grows. Additionally, in terms of
processing latency, CSVRF demands more cycles compared to
traditional SVRF due to the incorporation of virtual caches.
The processing time is closely tied to the size of scalar pairs
(Mcp, Mcrt). As port density increases, the processing time
challenge becomes more pronounced, emphasizing the need
for effective strategies to address this issue. To validate this
assertion, simulations were conducted for scenarios where
N=1 and N=ρ , as detailed in Section V.

B. Optimal Threshold N for CSVRF

In this subsection, we first scrutinize the change of the
required memory space under the different partitions N. As
illustrated in Fig. 2, there are two choices of N, one is the
optimal N (=ρ) and another is N (=1) which means CSVRF
delegates to conventional VOPBC. It’s clear that the required
memory for the conventional VOPBC (N=1) is much less
than the CSVRF (optimal N). This discrepancy arises from
the introduction of port correlation, allowing the dynamic
adjustment of the size of q by manipulating the values of
τ and φ, where φ indicates the average number of ports
used for each forwarding. Indeed, as fractional-N preserves
a consistent key length in both high and low port-density
scenarios, the memory space improvement primarily stems
from the reusability of primes, particularly prominent in low

WU et al.: A POPULARITY-BASED CACHING STRATEGY FOR IMPROVED ... 123

port-density. The substantial memory enhancement is chiefly
attributed to the virtual cache in CSVRF.

Conversely, in the conventional VOPBC scheme, n packets
will enter a single SVRF processing module without any
partition, all the output will directly output as LOPB to the
switch fabric, and it also satisfied q < n. This is a case in the
conventional VOPBC, when arrived entries n =4096, q=1024,
the required bit-length of the key is ⌈ log2q + 1⌉ = 11. As n
and q grow, the required bit-length must grow to ⌈ log2q+2⌉
and ⌈ log2q + 3⌉ to satisfied one-by-one mapping. Compared
to the conventional VOPBC scheme, the arrived entries in each
sub-group that waiting for processing is much less and only
related to variable N in CSVRF (n/Nsub−group < nVOPBC).
And the cached entry is qi in each sub-group. Finally, only
required ⌈ log2qi + 1⌉ bit for each sub-group, and when
computing the total memory, it is only required to sum all
the sub-groups. Generally, CSVRF outperforms pure VOPBC
in terms of required memory space. And this improvement can
be attributed to a mechanism akin to fractional-N such as the
parallel processing and reusability of less bit-length prime.

C. Optimal Cached Entries q

In this sub-section, we explore the appropriate choice of q
to prevent overflow issues. As the number of ports increases,
the complexity of output port combinations also grows and
requiring an increase in the corresponding preset q. It’s crucial
to efficiently control the size of the q to ensure that q ¡ N,
and this limitation denotes a smaller forwarding table which
support faster matching operation. To avoid overflow and
accommodate the most popular output port combinations in
the virtual cache, it is essential to adjust the value of the port
correlation τ and the average output port-density φ which
can be efficiently control the size of the q with the grow
of port-density. Besides, a popularity algorithm is employed
to maintain the popularity of entry in the virtual cache. And
the value of port correlation is defined as τ=pi/pj , pi/pj like
80/20, 90/10. Thus, we have

PN =

(
nNpi
ϕpj

)
pnN−ϕ
i pϕj

(
nNpj
φpi

)
,

P =

N∑
i=1

PN .

(17)

PN is the probability of each output port combination enabled
in the sub-groupN , and P is the sum of the output port
combinations in the sub-groupN . Then, we have

q =


(
nNpi
φpj

)(
nNpj
φpi

)
/N ,if

(
nNpi
φpj

)(
nNpj
φpi

)
<n

n, otherwise
,

(18)
where nN is the arrived packets in each sub-SVRFN . Abso-
lutely, q is the core parameter both in the newly introduced
virtual cache and the required bit-length of the key. And in the
other hand, q denotes the correlation between ports, a higher
port correlation represents a higher bias on the selection of
egress port and will generate more the same port combinations
with given n. However, there exists a special phenomenon

is that the number of enabled egress ports are uncertain in
each forwarding. Luckily it has been improved by introducing
the parameter φ. Nevertheless, while there is no risk of
overflow in high port correlation, the possibility of overflow in
scenarios with low port correlation is a crucial consideration
which needs to be discussed. The previously mentioned port
correlation and the average port-density were applied as τ and
φ, and the next port correlation and the average number of
egresses is shown as τ ′=p′i/p

′
j and φ′. The new p′Nand p′ can

be computed as

PN
′ =

(
nNp

′

i

ϕ′p
′

j

)
p
n
′
N−ϕ

′

i pϕ
′

j

(
nNp

′

j

φ
′
p

′

i

)
,

P ′ =

N∑
i=1

PN
′,

(19)

and the new q′ is

q′ =


(
nNp′i
φ′p′j

)(
nNp′j
φ′p′i

)
/N , if

(
nNp′i
φ′p′j

)(
nNp′j
φ′p′i

)
/N<n

n , otherwise
,

(20)
for pi > p′j , in this case if φ ≥ φ′, dq < 0, there is a risk
of overflow. However, overflow will not occur if φ < φ′.
Therefore, managing and adjusting the value of τ becomes
crucial to avoid overflow in such cases.

V. SIMULATION AND RESULTS

A. Simulation Environment

In this section, simulations were conducted using Mat-
lab2020 to assess the performance of the proposed scheme.
As mentioned earlier, the processing time of a single sub-
group in CSVRF is required because of all the multiple
sub-SVRFs processes occur in parallel. We evaluate the per-
formance of the proposed CSVRF scheme and compare it
with fractional-N/traditional SVRF and pure VOPBC. The
evaluation includes assessments of memory space utilization,
different port correlations τ , average output port-density φ,
parallel processing sub-groups N, processing time. Addition-
ally, the assumption of the independence of each sub-group
is considered, facilitating the reuse of the short bit-length
primes in the scheme. We also discuss the size of virtual cache
and scalar-pair under different port-density to help understand
the trend of total memory space. Meanwhile, simulating port
correlation involves creating a set of rules or relationships
between different ports to mimic the behavior of a network.
It can be briefly concluded as follows: First step is deciding
how different ports are related to each other, then create a
correlation matrix where each entry represents the correlation
between ports. This matrix should reflect the rules we defined.
For example, if ports A and B are strongly correlated, the
matrix entry for (A, B) might be high. And consider about
the randomize or vary correlations in real world all the time,
we must introduce some randomness or variability in the
port correlation values and selection. After generated the
correlation matrix is incorporate correlation into simulation,
observe the behavior of the system and analyze the impact

124 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

Re
qu

ire
d

M
em

or
y(

bi
t)

Number of MFEs(n)

SVRF/Frac-N SVRF
VOPBC τ=5/5 φ=8
VOPBC τ= 3/1 φ=8
VOPBC τ=7/1 φ=8
CSVRF τ=5/5 φ=8
CSVRF τ= 3/1 φ=8
CSVRF τ=7/1 φ=8

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

Re
qu

ire
d

M
em

or
y(

bi
t)

Number of MFEs(n)

SVRF/Frac-N SVRF
VOPBC τ= 3/1 φ=8
VOPBC τ=7/1 φ=8
VOPBC τ= 15/1 φ=8
CSVRF τ= 3/1 φ=8
CSVRF τ=7/1 φ=8
CSVRF τ= 15/1 φ=8

210 212 214 216 218 210 212 214 216 218

(b)r =64(a)r =16

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

Re
qu

ire
d

M
em

or
y(

bi
t)

Number of MFEs(n)

SVRF/Frac-N SVRF
VOPBC τ=15/1 φ=32
VOPBC τ=15/1 φ=24
VOPBC τ= 15/1 φ=16
CSVRF τ=15/1 φ=32
CSVRF τ=15/1 φ=24
CSVRF τ= 15/1 φ=16

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09
Re

qu
ire

d
M

em
or

y(
bi

t)

Number of MFEs(n)

SVRF/Frac-N SVRF
VOPBC τ=31/1 φ=64
VOPBC τ=31/1 φ=32
VOPBC τ= 31/1 φ=16
CSVRF τ=31/1 φ=64
CSVRF τ=31/1 φ=32
CSVRF τ= 31/1 φ=16

210 212 214 216 218 210 212 214 216 218

(d)r =1024(c)r =256

Fig. 2. Required memory space m under different forwarding entries n in the ρ-port PFEs.

of port correlation on various metrics. In our experiments,
we explored four configurations of CSVRF based on the PFE
with different port-density, including 16, 64, 256, and 1024-
ports; the correlation coefficient τ varied from 5/5 to 31/1,
the average output port-density φ is ranging from 8 to 64
respectively. Additionally, we considered two scenarios for
the number of partitions: N=1 and N=ρ respectively. Our
evaluation focused on two crucial metrics: space efficiency
and time efficiency.

B. Memory Usages

In the evaluation of PFE, a key metric is the size of the re-
quired memory space. On the first simulation scenario, which
involves assessing the size of the required memory to store
the virtual cache. This measurement reflects the efficiency
of the CSVRF in managing and utilizing memory resources

based on different configurations and parameters, such as port-
density ρ=16, 64, 256, and 1024-port, port correlation τ=5/5
(50/50), 3/1 (75/25), 7/1 (lower than 90/10), 15/1 (higher
than 90/10), and 31/1(close to 96/4)), and average output
port-density φ. The goal is to understand how well the PFE
adapts to varying conditions and how it compares to other
approaches, including CSVRF with different partition settings
(N=1 and N=ρ), fractional-N, and conventional SVRF. The
simulation results are depicted in Fig. 2. The description
of the 80/20 rule and other correlation rules is referring to
the correlation between output ports. For example, the term
“50/50” suggests an equal distribution or correlation pattern.
It means that half of the packets in the simulation follow one
pattern of output port selection, and the other half follow a
different pattern. Importantly, there is no specific correlation
between the two groups; they are randomly selecting output

WU et al.: A POPULARITY-BASED CACHING STRATEGY FOR IMPROVED ... 125

ports without influence from each other. 75/25 (≈3/1) rule, 7/1
(close to 90/10) etc. are subject to the same theory [39], [40].
This rule is likely used in the simulation to create a diverse and
unbiased distribution of output port selection behaviors among
packets, providing a basis for evaluating the performance of
the PFE under different correlation scenarios.

The calculation about needed memory space in VOPBC and
CSVRF as follows:

mVOPBC =

q∑
i=1

∥VOPI∗i ρ∥+
∥∥(Mcp,Mcrt)VOPBC

∥∥ , (21)

Mcp(VOPBC) = ∥⌈log2 q⌉+ 1∥ ∗ nE , (22)

mVOPBC =

q∑
i=1

∥VOPIi ∗ ρ∥+
∥∥(Mcp,Mcrt)VOPBC

∥∥ , (23)

and

Mcp(SVRF) =

ρ∑
N=1

∥⌈log2 qN⌉+ 1∥ ∗ nEN
, (24)

the provided expression involves several variables as follows:
Where nE represents the total count of entries that have arrived
in the PFE, nE(N) represents is the count of entries that have
arrived specifically in single sub-groupN , in our system with
multiple sub-groups, each sub-group may process a subset
of the total entries. ρ represents the total number of ports
in the router/switch, ports are connection points for devices
in a network or system. ∥log2qi∥ involves taking the base-2
logarithm of qi and then applying the ceiling function rounds
up to the nearest integer. The result of ∥log2qi∥in this article
represents the number of bits required for the key in sub-
groupN . Figs. 3(a)–(d) shows the memory space required
by CSVRF under various parameter values at different port
densities. Figs. 3(a)–(b) reflects the trend of memory space
with the different τ when the φ is fixed. The bigger τ
will take larger improve in memory space. Conversely, the
Figs. 3(c)–(d) depicts the relationship between memory space
and φ with the same τ . It shows the bigger φ will occupy
more memory space.

Generally, the total required memory space is linearly
increasing with the port-density and our proposed scheme
outperforms than conventional VOPBC and SVRF in any case,
which demonstrates our scheme has a significant improve-
ment in memory space. Nevertheless, owing to the recently
introduced virtual cache, demanding additional memory, the
enhancement in space efficiency is minimal when the port den-
sity is low, for instance, in the case of a 16-port configuration,
as illustrated in Fig. 2(a). The rationale behind this modest
improvement can be inferred through (23), where the memory
space of CSVRF comprises both the external cache and the
scalar-pair components. According to the result as depicted
in Figs. 2(a)–(d), it’s easy to see mCSVRF < mVOPBC <
mSVRF < mFractional−N

, where m represents required memory
space. These findings suggest that our approach demonstrates
robust scalability and is well-suited for supporting large-scale
networks.

C. Forwarding Latencies

Time efficiency refers to the ability of a system or process
to achieve its goals or tasks within a reasonable or optimal
amount of time. Lower time consumption often indicates
efficiency and effectiveness in completing tasks or achieving
goals. It allows for more productivity, freeing up time for
other activities or endeavors. In the PFE, time efficiency is
crucial for the forwarding algorithms to swiftly processing
and making forwarding decisions regarding incoming packet,
and certainly much lower is better. In forwarding algorithms,
membership queries likely refer to the operations or queries
performed to determine if a particular entry or set of in-
formation is a member of a specific subset or structure.
It’s a fundamental part of the decision-making process for
packet forwarding and occupy the mainly processing time. To
enhance time efficiency in the PFE, one typical strategy is the
reduction of memory space required for membership queries.
By optimizing the storage and reducing the time it takes to pro-
cess and forward packets, the overall efficiency of the packet
forwarding process is improved. This reduction in memory
space could be achieved through introduction of fractional-N
in this article, fractional-N is mentioned to enable parallel
processing. Parallel processing involves executing multiple
operations simultaneously, allowing for quicker completion
of tasks. The combination of memory space reduction and
parallel processing contributes to improved time efficiency and
reduced latency.

While our proposed scheme appears to have several ad-
vantages, it’s important to consider potential drawbacks or
challenges. For instance, the truncation operation, especially
facing the long integer division in our scheme, can indeed
introduce delays and impact the accuracy of the division result.
And it can be addressed through the more bit length divider.
The hardware accelerator for CSVRF is designed with 2 GHz
32-bit dividers. This indicates that division operations are
performed at a clock frequency of 2 GHz, and the bit-width
of the dividers is 32 bits. Memory access times are crucial for
overall system performance, in our scheme we assume that
the demand for memory access in SRAM and DRAM on the
FPGA is 10 ns and 50 ns, respectively. The data path width
between memory and the processing unit is specified as 32
bits. This parameter influences the amount of data that can
be transferred between memory and the processing unit in a
single cycle. Each comparison/DEMUX operation are assumed
to be executed in a single clock cycle.

The description outlines the findings from Figs. 3(a)–(d),
which represents the relationship between the average packet
forwarding latency and the number of forwarding entries. The
green curves in the figures represent the forwarding latency
of the CSVRF. In particular, the results in Figs. 3(a)–(d)
reveal a substantial decrease in forwarding latency between
CSVRF and pure VOPBC, showcasing a remarkable improve-
ment of nearly 10× and 1000× across different port-densities.
This improvement underscores the efficiency of the proposed
CSVRF scheme in optimizing packet forwarding performance.
Furthermore, CSVRF exhibits superior performance over the
original fractional-N, attributed to the notable enhancement in

126 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

210 212 214 216 218 210 212 214 216 2181.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

Fo
rw

ar
di

ng
 L

ate
nc

ies
(n

s)

Number of MFEs(n)

SVRF
Frac-N SVRF
VOPBC (τ=7/1 φ=8)
CSVRF (τ=7/1 φ=8)

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

Fo
rw

ar
di

ng
 L

ate
nc

ies
(n

s)

Number of MFEs(n)

SVRF
Frac-N SVRF
VOPBC (τ=7/1 φ=8)
CSVRF (τ=7/1 φ=8)

(b)r =64(a)r =16

210 212 214 216 218 210 212 214 216 2181.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

Fo
rw

ar
di

ng
 L

ate
nc

ies
(n

s)

Number of MFEs(n)

SVRF
Frac-N SVRF
VOPBC (τ=7/1 φ=16)
CSVRF (τ=7/1 φ=16)

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10
Fo

rw
ar

di
ng

 L
ate

nc
ies

(n
s)

Number of MFEs(n)

SVRF
Frac-N SVRF
VOPBC (τ=7/1 φ=24)
CSVRF (τ=7/1 φ=24)

(d)r =1024(c)r =256

Fig. 3. Forwarding latency versus number of forwarding entries n in the ρ-port PFEs.

memory space efficiency with the increase in port-density, as
demonstrated in Fig. 3. Besides, the combination of fractional-
N and VOPBC, as depicted in Fig. 2(a), results in a slight
improvement in memory space, which corresponds to a pro-
portionally small enhancement in forwarding latency, aligning
closely with the performance of fractional-N, as indicated in
Fig. 2(a).

In summary, the integration of fractional-N and VOPBC
in the CSVRF scheme proves successful in achieving better
overall performance concerning both forwarding latency and
memory space, surpassing the outcomes of individual schemes.

The provided description of Fig. 4 outlines the results of
simulations comparing the proposed CSVRF scheme with
conventional fractional-N in different scenarios involving vary-
ing values of N (the number of partitions) and τ (port
correlation). As N approaches the optimal value (N=ρ), the

gap between CSVRF and conventional fractional-N widens.
This widening gap suggests that CSVRF demonstrates greater
time efficiency compared to conventional fractional-N as the
port-density increases. The decrease in memory space for
each sub-group due to the increase in partitions is indeed a
positive aspect as it contributes to a reduction in forwarding
latency. However, it’s important to note that as the number of
entries increases, there will still be a corresponding increase
in the overall memory space required to store the additional
information associated with these entries, which can impact
forwarding latencies. Even when the port correlation (τ) is set
at 50/50, indicating an even distribution of traffic across the
partitions or sub-groups, CSVRF exhibits better forwarding
latency performance compared to conventional SVRF. And in
a specific scenario where the distribution ratio is set to τ =15/1,
the forwarding latency of CSVRF is highlighted to be nearly

WU et al.: A POPULARITY-BASED CACHING STRATEGY FOR IMPROVED ... 127

(b)t =3/1(a)t =5/5

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Fo
rw

ar
di

ng
 L

ate
nc

ies
(n

s)

Number of MFEs(n)

Frac-N SVRF(ρ=16)
CSVRF (ρ=16 φ=8)
Frac-N SVRF(ρ=64)
CSVRF (ρ=64 φ=8)
Frac-N SVRF(ρ=256)
CSVRF (ρ=256 φ=32)
Frac-N SVRF(ρ=1024)
CSVRF (ρ=1024 φ=64)

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Fo
rw

ar
di

ng
 L

ate
nc

ies
(n

s)

Number of MFEs(n)

Frac-N SVRF(ρ=16)
CSVRF (ρ=16 φ=8)
Frac-N SVRF(ρ=64)
CSVRF (ρ=64 φ=8)
Frac-N SVRF(ρ=256)
CSVRF (ρ=256 φ=32)
Frac-N SVRF(ρ=1024)
CSVRF (ρ=1024 φ=64)

212 214 216 218 212 214 216 218

(d)t =15/1(c)t =7/1

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Fo
rw

ar
di

ng
 L

ate
nc

ies
(n

s)

Number of MFEs(n)

Frac-N SVRF(ρ=16)
CSVRF (ρ=16 φ=8)
Frac-N SVRF(ρ=64)
CSVRF (ρ=64 φ=8)
Frac-N SVRF(ρ=256)
CSVRF (ρ=256 φ=32)
Frac-N SVRF(ρ=1024)
CSVRF (ρ=1024 φ=64)

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07
Fo

rw
ar

di
ng

 L
ate

nc
ies

(n
s)

Number of MFEs(n)

Frac-N SVRF(ρ=16)
CSVRF (ρ=16 φ=8)
Frac-N SVRF(ρ=64)
CSVRF (ρ=64 φ=8)
Frac-N SVRF(ρ=256)
CSVRF (ρ=256 φ=32)
Frac-N SVRF(ρ=1024)
CSVRF (ρ=1024 φ=64)

212 214 216 218 212 214 216 218

Fig. 4. Forwarding latency versus different port correlation τ and average output port-density φ in the ρ-port PFEs.

1% of the forwarding latency exhibited by conventional SVRF.
In summary, while CSVRF requires more processing cycles
due to the presence of an external cache, it counteracts this by
efficiently optimizing the search speed through the reduction
in the size of scalar-pairs. CSVRF scheme is not only better
in forwarding latencies compared to conventional SVRF but
also maintains its superiority even when the distribution of
traffic is varied. This showcases the effectiveness of CSVRF
in enhancing forwarding performance in different network
conditions.

VI. CONCLUSIONS

The primary focus of designing the PFE lies in achieving
rapid matching for a high volume of forwarding entries while
concurrently reducing the necessary memory space. The pro-

posed solution, termed CSVRF, introduces a hybrid strategy
that amalgamates VOPBC with fractional-N SVRF concepts.
This hybrid approach aims to overcome the constraints of
conventional SVRF, enhancing performance in terms of re-
duced memory space requirements and improved forwarding
latencies. These two metrics are crucial for assessing the
efficiency and effectiveness of the proposed approach. The
introduction of a virtual cache is highlighted, which includes
the most popular output port combinations. Additionally, the
approach involves dividing a large scalar-pair into N sub-
groups to achieve the reusability of primes. This reusability
contributes to reducing the required memory space. CSVRF
aims to decrease the required memory by utilizing a shorter
length of the key. Moreover, it seeks to improve time effi-
ciency by enabling multiple sub-module parallel computations
through partitioning.

128 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

Compared to the original fractional-N SVRF, our modifica-
tion involves adjusting the key’s bit-length by introducing a
virtual cache. An innovation lies in transforming the output of
the original fractional-N SVRF to serve as the index of the
virtual cache rather than directly matching with the physical
OPB. In the original fractional-N SVRF, the key’s length is
represented as ⌈ log2ρ + 1⌉, where ρ is the number of ports
in the switch. In CSVRF, however, the key’s length becomes
⌈ log2qi + 1⌉, where qi represents the number of entries to
be cached in each SVRF sub-block. It’s important to note that
while the original fractional-N SVRF maintains a consistent
length for the prime key, the introduction of a virtual cache
in CSVRF significantly reduces the prime key’s length. The
transformation underscores how the virtual cache optimizes
key length and boosts the performance of the CSVRF-based
PFE overall.

In summary, CSVRF presents a refined approach by lever-
aging the benefits of both fractional-N SVRF and VOPBC,
demonstrates superior overall performance compared to indi-
vidual schemes of pure fractional-N SVRF and VOPBC indi-
vidually, particularly in scenarios involving frequently reused
output ports. Indeed, while simulation results underscore these
advantages, it’s crucial to recognize that the hardware imple-
mentation cost poses a substantial challenge. Striking a balance
between achieving optimal hardware efficiency and preserving
CSVRF’s benefits represents a key area requiring further ex-
ploration and development in future implementations. Finding
ways to maximize hardware efficiency without compromising
the advantages CSVRF offers will be a significant focus
for future endeavors. As another practical consideration, the
proposed CSVRF exhibits a degree of imperfection as it
is anticipated to yield heightened power consumption when
implemented on PFE, attributable to its intricate hardware
architecture. We will defer these aforementioned issues for
future investigation and exploration.

The PFE is a critical component in high-performance
switches and routers, responsible for efficient packet for-
warding. The primary concern addressed in this work is the
forwarding state scalability for high port-density in high-
performance switches and routers. The focus is on achieving
fast matching when dealing with a large number of for-
warding entries and reducing the required memory space.
The challenges outlined include the difficulty of achieving
fast matching when millions of forwarding entries arrive
simultaneously, and the performance degradation observed in
conventional SVRF when port-density is high. The proposed
solution is a hybrid strategy called CSVRF, which combines
the concepts of VOPBC with fractional-N SVRF. This hybrid
approach aims to address the limitations of conventional SVRF
and achieve better performance in terms of memory space and
forwarding latency. The performance of CSVRF is evaluated
using two main metrics: Memory space and forwarding la-
tency. These metrics are crucial for assessing the efficiency
and effectiveness of the proposed approach. The introduction
of a virtual cache is highlighted, which includes the most
popular output port combinations. Additionally, the approach
involves dividing a large scalar-pair into N sub-groups to
achieve the reusability of primes. This reusability contributes

to reducing the required memory space. CSVRF aims to
decrease the required memory by utilizing a shorter length
of the key. Moreover, it seeks to improve time efficiency by
enabling multiple sub-module parallel computations through
partitioning.

Furthermore, in comparison to the original fractional-N
SVRF, we modify the bit-length of the required key by
incorporating a virtual cache. A notable innovation lies in the
transformation of the output of the original fractional-N SVRF,
serving as the index of the virtual cache rather than directly
matching with the physical OPB. In the original fractional-
N SVRF, the length of the required key is represented as ⌈
logρ + 1⌉, where ρ is the number of ports in the switch. In
CSVRF, however, the length of the required key becomes ⌈
log2qi + 1⌉, where qi is the number of entries to be cached
in each sub- SVRFN . It is essential to note that the original
fractional-N SVRF maintains a consistent length for the prime
key. However, with the introduction of a virtual cache in
CSVRF, the length of the prime key is significantly reduced.
For a detailed proof, readers can refer to Section II in the
related work about fractional-N SVRF. This transformation
underscores the efficacy of the virtual cache in optimizing key
length and enhancing the overall performance of the PFE.

Finally, summarize the main differences between the pure
VOPBC and CSVRF in four aspects. 1) Handling of Scalar-
Pairs: VOPBC utilizes a single, large scalar-pair for process-
ing, while CSVRF divides the scalar-pair into N sub-groups,
allowing for parallel computation and the reuse of shorter
primes in each sub-group. 2) Key length: VOPBC requires
a key length of ⌈ log2q+1⌉, while CSVRF achieves a shorter
key length, denoted as ⌈ log2qi + 1⌉, due to the reuse of
less-length primes in each sub-group; 3) input index: VOPBC
utilizes a traditional OPB to match with all the entry in the
cache, while CSVRF reusing less-length OPB in each sub-
group, leading to more efficient memory space utilization. 4)
Probability of overflow: VOPBC may face potential overflow
issues in certain cache size scenarios, while CSVRF mitigates
potential overflow concerns through the introduction of sub-
groups and optimized key lengths.

In summary, CSVRF presents a refined approach by lever-
aging the benefits of both fractional-N SVRF and VOPBC,
demonstrates superior overall performance compared to in-
dividual schemes of pure fractional-N SVRF and VOPBC
individually, particularly in scenarios involving frequently
reused output ports. While simulation results showcase these
advantages, it’s essential to acknowledge that the hardware
implementation cost remains a significant challenge. Achiev-
ing optimal hardware efficiency while retaining the benefits of
CSVRF presents an area for further exploration and develop-
ment in future implementations.

Moreover, the proposed CSVRF scheme demonstrates a
high scalability, making it well-suited for diverse networking
scenarios. Scalability refers to the ability of a system to
handle an increasing workload or to be easily expanded
to accommodate growth without compromising performance.
For instance, CSVRF can be extended to meet the de-
mands of multicast routing and forwarding in large-scale
networks. It efficiently manages the forwarding of packets,

WU et al.: A POPULARITY-BASED CACHING STRATEGY FOR IMPROVED ... 129

even when dealing with numerous forwarding entries. Unlike
some schemes that might be optimized for specific scenarios,
CSVRF maintains superior performance even in non-80/20
scenarios. This adaptability ensures reliable operation across a
range of network traffic patterns. Such as in SDN, where the
control and forwarding planes are separated, CSVRF seam-
lessly integrates. The controller’s role extends beyond prime
key distribution to include the construction and maintenance of
the scalar-pair. This flexibility aligns with the dynamic nature
of SDN architectures. CSVRF is applicable to commercial
switches such as the Tofino switch 2.0, which supports the
P4 language for programming data-plane functions [41]–[43].
The programmable function in the P4 switch is designed
to generate the required prime key based on the parsed
information from the packet header. This prime key is crucial
for subsequent operations in the CSVRF scheme serve as
the basis for the modulo operation and can be precomputed
by the controller. By leveraging the programmability of the
P4 switch, CSVRF efficiently integrates with the data-plane
processing capabilities of the switch. This approach allows
for dynamic and adaptable forwarding decisions based on the
specific requirements of the network and the characteristics
of incoming packets. Besides, CSVRF’s applicability is not
limited to networking. It can address various computational
applications, including high-speed parallel computing, rapid
lookups, and big data analysis. This versatility enhances its
scalability for use in many domains [44], [45].

REFERENCES

[1] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with flow,” in Proc. USENIX ATC, 2018.

[2] D. Cerovic, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle,
“Fast packet processing: A survey”, IEEE Commun. Surveys Tuts, vol.
20, no. 4, pp. 3645–3676, Jun. 2018.

[3] J. Aweya, “Introduction to switch/router architectures,” in Switch/Router
Architectures: Shared-Bus and Shared-Memory Based Systems. Hoboken,
NJ, USA, 2018.

[4] J. Moy, “Multicast extensions to OSPF,” IETF RFC 1584, Mar. 1994.
[5] S. Deering et al., “An architecture for wide-area multicast routing,” in

Proc. ACM SIGCOMM, 1994.
[6] D. Waitzman, S. Deering, and C. Partridge, “Distance-vector multicast

routing protocol,” IETF RFC 1075, Nov. 1988.
[7] T. Ballardie, P. Francis, and J. Crowcroft, “Core based trees (CBT): An

architecture for scalable inter-domain multicast routing,” in Proc. ACM
SIGCOMM, 1993.

[8] B. Zhang and H. T. Mouftah, “Forwarding state scalability for multicast
provisioning in IP networks,” IEEE Commun. Mag., vol. 41, no. 6,
pp. 46–51, Jun. 2003.

[9] Z.F. Liu, W.H. Dou, and Y.J. Liu, “AMBTS: A scheme of aggregated
multicast based on tree splitting,” in Proc. IFIP Networking, 2004.

[10] J. Tapolcai et al., “Optimal false-positive-free bloom filter design for
scalable multicast forwarding,” IEEE/ACM Trans. Netw, vol. 23, no. 6,
pp. 1832–1845, Dec. 2015.

[11] A. Benslimane, “Hierarchical Multicast Protocols with Quality of Ser-
vice,” in Multimedia Multicast on the Internet. London, UK 2007.

[12] B. Grönvall, “Scalable multicast forwarding,” in Proc. ACM SIGCOMM
Comput. Commun. Rev., vol. 32, no. 1, pp. 68–68, Jan. 2002.

[13] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, “ESM: Efficient and scalable
datacenter multicast routing,” IEEE/ACM Trans. Netw, vol. 20, no. 3,
pp. 944–955, Jun. 2012.

[14] K. Keykhosravi, H. Rastegarfar, N. Peyghambarian, and E. Agrell,
“Overcoming the switching bottlenecks in wavelength-routing, multicast-
enabled architectures,” J. Lightwave Tech., vol. 37, no. 16, pp. 4052–4061,
Aug. 2019.

[15] J. Duan and Y. Yang, “MCL: A cost-efficient nonblocking multicast
interconnection network,” IEEE Trans. Par. and Distr. Syst, vol. 29, no. 9,
pp. 2046–2058, Sep. 2018.

[16] W. Cui and C. Qian, “Scalable and load-balanced data center multicast,”
in Proc. IEEE GLOBECOM, 2015.

[17] M. Rana, M. Kaykobad, and A.B.M. Alim Al Islam, “A new approach
for selecting aggregated multicast trees to reduce forwarding states,” in
Proc. ACM NSysS, 2018.

[18] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[19] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2003.

[20] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese,
“Beyond bloom filters: from approximate membership checks to approxi-
mate state machines,” in Proc. ACM SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 4, pp. 315–326, Aug. 2006.

[21] L. Huang, Q. Jia, X. Wang, S. Yang, and B. Li, “Pcube: Improving
power efficiency in data center networks,” in Proc. IEEE CLOUD, 2011.

[22] L. Nie, D. Jiang and L. Guo, “A power laws-based reconstruction
approach to end-to-end network traffic,” J. Netw. Comput. Appl., vol. 36,
no. 2, pp. 898–907, 2013.

[23] P. B. Z. Chen and C. Ji, “Spatial-temporal characteristics of internet
malicious sources,” in Proc. IEEE INFOCOM (Mini-Conference), 2008.

[24] F. Hao, M. Kodialam, T. V. Lakshman and H. Song, “Fast multiset
membership testing using combinatorial bloom filters,” in Proc. IEEE
INFOCOM, Apr. 2009.

[25] M. Franceschetti and J. Bruck, “A group membership algorithm with a
practical specification,” IEEE Trans. Par. and Distr. Syst., vol. 12, no. 11,
pp. 1190–1200, Nov. 2001.

[26] J. Wei, H. Jiang, K. Zhou, and D. Feng, “Efficiently representing
membership for variable large data sets,” IEEE Trans. Par. and Distr.
Syst., vol. 25, no. 4, pp. 960–970, Apr. 2014.

[27] S. Dharmapurikar, P. Krishnamurthy, and D.E. Taylor, “Longest prefix
matching using bloom filters,” IEEE/ACM Trans. Netw., vol. 14, no. 2,
pp. 397–409, Apr. 2006.

[28] D. Thaler and M. Handley, “On the aggregatability of multicast forward-
ing state,” in Proc. IEEE INFOCOM, 2000.

[29] W.C. Feng, D.D. Kandlur, D. Saha, and K.G. Shin, “Stochastic fair blue:
A queue management algorithm for enforcing fairness,” in Proc. IEEE
INFOCOM, 2001.

[30] F. Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 2–14, Feb. 2005.

[31] A. Ousterhout, J. Perry, H. Balakrishnan, and P. Lapukhov, “Flexplane:
An experimentation platform for resource management in datacenters,”
in Proc. USENIX NSDI, 2017.

[32] W.-K. Jia and L.C. Wang, “A unified unicast and multicast routing and
forwarding algorithm for software-defined datacenter networks,” IEEE J.
Sel. Areas Commun., vol. 31, no. 12, pp. 2646–2657, Dec. 2013.

[33] W.-K. Jia and Z. Jin, “Fractional-N SVRF forwarding algorithm for low
port-density packet forwarding engines,” IEEE Netw. Lett., vol. 3, no. 2,
pp. 42–46, Jun. 2021.

[34] A.S. Molahosseini, L.S. de Sousa, and C.H. Chang, “RNS applications
in computer networks” in Embedded Sys. Design with Special Arithmetic
and Num. Sys., Cham, Switzerland: Springer, pp.369–380, Mar. 2017.

[35] C. Ding, D. Pei, and A. Salomaa, Chinese Remainder Theorem: Appli-
cations in Comp., Coding, Cryptography. River Edge, NJ, USA, 1996.

[36] S. W. Hussain, T. V. Mahendra, S. Mishra and A. Dandapat, “Match-line
division and control to reduce power dissipation in content addressable
memory,” IEEE Trans. Consum. Electron., vol. 64, no. 3, pp. 301–309,
Aug. 2018.

[37] C. Li et al., “A scalable design of multi-bit ferroelectric content
addressable memory for data-centric computing,” in Proc. IEEE IEDM,
2020.

[38] S. Xu, X. Wang, G. Yang, J. Ren, and S. Wang, “Routing optimization
for cloud services in SDN-based Internet of things with TCAM capacity
constraint,” J. Commun. Netw., vol. 22, no. 2, pp. 145–158, Apr. 2020.

[39] M. Schrage, “AI is going to change the 80/20 rule,” Harvard Bus.
Rev., Feb. 2017. [Online]. Available: https://hbr.org/2017/02/ai-is-going-
to-change-the-8020-rule.

[40] H. Zhu, “Social development paradox: An E-CARGO perspective on the
formation of the Pareto 80/20 distribution,” IEEE Trans. Comput. Social
Syst., early access.

[41] A. Liatifis, P. Sarigiannidis, V. Argyriou, and T. Lagkas, “Advancing
SDN from OpenFlow to P4: A survey,” ACM Comput. Surv., vol. 55,
no. 9, pp. 1–37, Sep. 2023.

130 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

[42] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, Jul. 2014.

[43] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions architectures and open problems,” Proc.IEEE HPSR, 2018.

[44] L. Linguaglossa et al., “Survey of performance acceleration tech-
niques for network function virtualization,” Proc. IEEE, vol. 107, no.
4, pp. 746–764, Apr. 2019.

[45] P. Shantharama, A. S. Thyagaturu, and M. Reisslein, “Hardwareac-
celerated platforms and infrastructures for network functions: A survey
of enabling technologies and research studies,” IEEE Access, vol. 8,
pp. 132021–132085, 2020.

Ruisi Wu received the Master degree in Informa-
tion and Communication Engineering from Fujian
Normal University, Fuzhou, China, in 2023. He is
currently pursuing the PhD degree with the Grad-
uate School of Information Science and Technol-
ogy, Osaka University. His research interests include
high-performance switches and routers, named data
network, and P4 switch.

Wen-Kang Jia (S’09-M’11-SM’15) received the
Ph.D. degree from the Department of Computer
Science, National Chiao Tung University (NCTU),
Hsinchu, Taiwan, in 2011. Before returned to school,
he had been a Senior Engineer and Manager since
1991 in various networking areas including ICT
manufacturer, network integrator, and telecomm ser-
vice provider. Since January 2018, so far he is
currently a Full Professor with the College of Pho-
tonic and Electronic Engineering (P&EE) of Fujian
Normal University (FJNU) at Fuzhou, China. His

research interests include the OSI layer-2/3/4 such as TCP/IP protocol de-
sign, high-performance switching and routing, multicasting and broadcasting,
mobile management, error resilience coding, multimedia communications,
QoS and teletraffic engineering, IP-optical convergence networks, P2P overlay
networks, cloud computing, and 4G/5G mobile networks. He has published
more than 100 research papers, which has been cited over 500 times. He was
awarded second Fujian province hundred talent plan in 2019.

