
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023 789

Predictive Path Routing Algorithm for Low-Latency
Traffic in NFV-based Experimental Testbed

Juncal Uriol, Juan Felipe Mogollón, Mikel Serón, Roberto Viola, Ángel Martín,
Mikel Zorrilla, and Jon Montalbán

Abstract—The growth of network traffic and the rise of
new network applications having heterogeneous requirements
are stressing the telecommunication infrastructure and pushing
network management to undergo profound changes. Network
management is becoming a core research area to push the
network and its performance to the limits, as it aims at
applying dynamic changes across the network nodes to fit the
requirements of each specific network traffic or application.
Here, solutions and frameworks based on software-defined
networking (SDN) and network function virtualization (NFV)
facilitate the monitorization and control of both the network
infrastructure and the network services running on top of it. This
article identifies and analyzes different implemented solutions to
perform experiments on network management. In this context,
an innovative experimental testbed is described and implemented
to allow experimentation. A predictive path routing algorithm is
later proposed and tested by designing experiments with specific
network topologies and configurations deployed through the
testbed. The algorithm exploits predictions on network latency
to change the routing rules. Finally, the article identifies the
open challenges and missing functions to achieve next-generation
network management.

Index Terms—Network analytics, network function
virtualization, networking, software-defined networking.

I. INTRODUCTION

5G networks and beyond will experience profound
changes to cope with the requirements of network-

based applications and services. The networks should provide
increased flexibility and better resource utilization to address
specific application requirements and assess the demanded
quality of service (QoS) [1], as well as reduced capital
expenditure (CAPEX) and operational expenditure (OPEX)
[2], [3]. To achieve it, the objective is to create an adaptive and

Manuscript received May 5, 2022 revised December 2, 2022; approved for
publication by Mubashir Husain Rehmani, Division 3 Editor, April 15, 2023.

This research was supported by the Spanish Centre for the Development
of Industrial Technology (CDTI) and the Ministry of Economy, Industry
and Competitiveness under grant/project CER-20191015 / Open, Virtualized
Technology Demonstrators for Smart Networks (Open-VERSO).

J. Uriol is with Fundación Vicomtech, Basque Research and Technology
Alliance, 20009 San Sebastián, and with the Department of Communications
Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao,
Spain, email: juriol@vicomtech.org.

J. F. Mogollón, M. Serón, R. Viola, Á. Martín, and M. Zorrilla are
with Fundación Vicomtech, Basque Research and Technology Alliance,
20009 San Sebastián, Spain, email: {fmogollon, mseron, rviola, amartin,
mzorrilla}@vicomtech.org.

J. Montalbán is with the Department of Electronic Technology,
University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain,
email: jon.montalban@ehu.eus.

J. Uriol is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2023.000018

automated network capable of monitoring and analyzing itself
to perform operations to maintain its performance. Hence,
the network should be able to automatically trigger actions
in response to detected events or monitored changes in its
behaviour. A network with such capabilities is usually referred
to as self-organizing network (SON) [4]. A SON includes
specialized functionalities that deal with configuration (self-
configuration), optimization (self-optimization) and healing
(self-healing) of the network, which could be complementary.

New technologies that emerged in recent years, such as
software-defined networking (SDN) [5] and network functions
virtualization (NFV) [6], are fundamental enablers to provide
the higher levels of automation necessary to implement a SON.
SDN and NFV follow the principle of decoupling softwarized
functions from general-purpose hardware, usually referred
commercial off-the-shelf (COTS), where they are meant to
be run. SDN solutions focus on forwarding capabilities,
i.e., layer 2 (L2) and layer 3 (L3) of the open systems
interconnection (OSI) model, providing a centralized control to
monitor and operate distributed network routers and switches.
NFV technologies manage higher layers (L4-7) of the OSI
model, virtualizing RAM and CPU resources and simplifying
the lifecycle management of software instances of network
functions, referred to as virtual network functions (VNF), or
a combination of them in a complete infrastructure, referred
as network service (NS), on top of them.

Consequently, SDN and NFV are profoundly changing the
telecommunication infrastructures and pushing the research
on network deployment, monitoring and management. The
combination of SDN and NFV capabilities will create
virtualized networks embedding heterogeneous softwarized
functions and running on top of programmable network
devices.

However, the paradigm shift introduced by SDN and NFV
brings with it significant challenges. The most important one
is their interoperability inside the network architecture. While
their complementarity is evident, their integration in a common
network infrastructure still presents major issues to overcome.
SDN and NFV solutions will need further steps to integrate
and achieve a fully programmable virtualized network.

In this context of virtualized networks implemented through
SDN and NFV to implement SONs, the contributions of this
work are the following:
• This article identifies and analyzes different solutions

based on SDN and NFV to perform experiments on
management of virtualized networks. For each of them,
both features and limitations are studied.

1229-2370/23/$10.00 © 2023 KICS

790 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

• An innovative and experimental testbed is proposed
and implemented to perform experiments dealing with
network management. The testbed includes functional
NFV-compliant solutions to simplify the deployment
and control over the experiments. Moreover, the
testbed provides the flexibility to run heterogeneous
network services and applications embedded in virtual
machines (VMs).

• A predicted path routing algorithm, based on latency
predictions, is proposed and employed to validate the
testbed when running SON experiments. The algorithm
uses the matricial autoregressive (MAR) model and
Dijkstra’s algorithm to predict links’ latencies and
select the optimal end-to-end path. The design of the
experiments includes specific network topologies and
configurations deployed through the testbed.

• This work also discusses the state of the art concerning
the management of virtualized networks and identifies
open challenges and missing functions which future
research activities will address.

The remainder of the article is organized as follows. Section
II describes the state of the art of 5G and beyond network
management. Section III analyses the tested alternatives
for network management and describes the selected ones
deployed in the experimental testbed proposed in this
work. Section IV describes the predictive path routing
algorithm for low-latency, implemented and deployed across
the aforementioned experimental testbed. Section V includes
the overall experimental setup and implementation details
and provides numerical results of the validation. Section VI
discusses the achieved results and the open challenges. Finally,
in Section VII we assert our conclusions.

II. NETWORK MANAGEMENT: STATE OF THE ART

A. Architecture of Network Virtualization

Network management relies on softwarization and
virtualization technologies, such as SDN and NFV. The
former aims at instructing distributed network nodes
implementing L2 and L3 packet forwarding (network routers
and switches). The latter allows instead the deployment of
VNFs implementing L4-7 functionalities.

Going deeply, SDN [5] consists in centralizing the network
control and the management of forwarding rules between
distributed data centers and the VNFs running on them.
It enables the separation between control and data planes
such that the control plane is employed to operate the data
plane with forwarding rules to be applied when processing
data packets. An SDN controller is employed to have a
global network topology view. It implements the control
plane to manage all the SDN-enabled devices, such as
switches and routers, representing the data plane. Therefore,
the SDN paradigm creates an abstraction layer for the network
administrator, who no longer needs to manually configure each
network node and can applies programmed policies.

On the other side, NFV [6] enables virtualizing the physical
resources available at the data centers distributed across

Fig. 1. NFV MANO architecture and possible integration with SDN.
Source: [7, Fig. 2].

different network locations and interconnected though SDN.
In network management, the virtualization, already widely
employed in cloud computing platforms, allows to easily scale
or migrate a NS, composed by one or more network VNFs,
depending on the demanded computational resources and the
network status at any moment. Thus, a NS can be deployed as
a combination of VNFs and does not need a specific hardware
configuration anymore, as VNFs can run on top of general-
purpose hardware.

NFV management and orchestration (NFV-MANO),
presented in Fig. 1, is the architecture proposed by the
European telecommunications standards institute (ETSI)
to cope with the needs to effectively deploy and manage
NSs, VNFs and the underlying infrastructure. The NFV-
MANO includes three main components: The virtual
infrastructure manager (VIM), the virtual network function
manager (VNFM) and the network function virtualization
orchestrator (NFVO).

The VIM controls and manages the NFV infrastructure
(NFVI) by virtualizing the psychical resources, including
computation, storage and network ones. It creates and assigns
the virtual resources needed by each VNF. The VNFM
oversees the lifecycle of VNFs deployed on top of the NFVI,
including the configuration, deployment, scaling operations
and the termination. Finally, the NFVO is responsible for the
NSs and VNFs by validating them before the deployment. It is
also in charge of the lifecycle management of NSs, meaning
the orchestration of the different VNFs included in the NS
according to programmed networking policies.

In general, the NFV stack is expected to increase flexibility,
improve the utilization of network resources, as well as to
provide the ability to fit the requirements of each network
application in terms of QoS with reduced CAPEX and
OPEX [2], [3].

To achieve it, NFV enables the management of physical
resources available at each data center within the network,
such as RAM and CPU, and creates logical or virtual resources
to be assigned at each VNF.

The integration of SDN and NFV enables the operation and
management of VNFs instances on top of virtualized resources
available at NFV-enabled data centers and interconnected

URIOL et al.: PREDICTIVE PATH ROUTING ALGORITHM FOR LOW-LATENCY ... 791

through the forwarding rules of the SDN resources,
such as switches and routers, established by an SDN
controller. To achieve such integration, several possibilities are
envisioned [7], on top of the ETSI’s NFV-MANO stack shown
in Fig. 1. The SDN resources might be located depending on
the nature of programmed systems:
• Physical switch or router (case a): Hardware-based

implemented solution with software interfaces to program
it;

• Virtual switch or router (case b): Software-based solution
running on top of virtual resources;

• E-switch (case c): Software-based switch in a general-
purpose physical server;

• Switch or router as a VNF (case d): Software-based
solution running as VNF.

Accordingly, the SDN controller can be deployed as part of
the NFVI, on top of physical or virtual resources and managed
by the VIM, or as VNF, managed by the VNFM [7].

B. SDN Technologies

The main feature of the SDN paradigm is the separation of
the control and data planes. To achieve it, the SDN controller
provides a Northbound API to enable the communication
between the network administrator application and the control
plane. A Southbound API communicates between the SDN
controller and network devices. Unlike the Northbound API,
where each SDN controller has its REST API implementation,
the Southbound API is usually based on standard and widely
employed protocols, such as OpenFlow [8] and NETCONF [9]
to bridge universal interoperability.

Concerning the control plane, lots of SDN controller
implementations are available, where the most employed
for research purposes are open network operating
system (ONOS) [10], OpenDaylight (ODL) [11], RYU [12],
and FloodLight [13]. A comparison of standard SDN
controllers is presented in [14], where several features, such
as programming language, graphical user interface (GUI) and
APIs, platform support and internal architecture (modularity,
distributed/centralized), are considered.

For the switches and routers implementing the forwarding
plane, every OpenFlow-enabled device can be managed by all
the available SDN controllers. Solutions range from vendor-
specific hardware solutions (case a), e.g., Cisco systems and
Juniper networks, to open-source software implementations,
where the most employed is open vSwitch (OVS) [15], [16].
The software nature of OVS has made it perfect for being
installed on generic hardware acting as a switch (case c). The
authors of [17] employ OVS to create an SDN-enabled switch
using a Raspberry Pi [18]. Furthermore, OVS can also be
run inside a VM, allowing the generation of virtual networks
inside a data center (case b) [19] or as a VNF on top of the
virtualized environment (case d). In the last case, a VNF-based
switch is not employed as it does not present any significant
advantages over other solutions, but some implementations are
provided [20].

In any case, having physical or virtualized (VM/VNF)
systems to perform experiments is complex and costly

in terms of hardware or virtualization infrastructure setup
and maintenance. Mininet [21] is a tool for creating
realistic virtual networks by instantiating and interconnecting
several OpenFlow/OVS-enabled switches on a single machine,
simplifying the setup. Nowadays, Mininet represents the most
common solution to investigate SDN routing algorithms [22],
[23].

Finally, the problem of interconnecting several networks,
each one with its SDN controller, has been rising in the
last few years and remains unsolved. An East-West API is
required to enable the coordination between the different SDN
controller implementations. However, it is still far from being
standardized; even some proposals are already being discussed
in literature [24], [25], [26].

C. NFV Technologies

The introduction of NFV is essential to increase flexibility
when provisioning network resources. It enables fitting the
QoS requirements of applications in a network while reducing
the costs for its operation (CAPEX and OPEX).

As previously explained, NFV MANO architecture has three
different components: VIM, VNFM and NFVO. Each of these
components provides APIs according to ETSI specifications
[27], [28] in order to intercommunicate with each other.

When considering VIM solutions, common public cloud
platforms, such as Amazon web services (AWS), Microsoft
Azure and Google cloud platform, already provide APIs to be
used as VIMs. OpenVIM [29], hosted by ETSI, and OpenStack
[30], supported by open infrastructure foundation [31],
represent the reference solutions and the most used ones. Both
of them are open source and have proven to be valid for
managing private data centers [32].

Regarding VNFM and NFVO, it is not easy to separate
the solutions between those that provide VNFM and those
that provide NFVO, as in many cases, they are together
in the same suite. Regarding open source software, the
most relevant VNFM/NFVO implementations are open source
MANO (OSM) [33], hosted by ETSI, and open network
automation platform (ONAP) [34], supported by Linux
Foundation. VMware vCloud director [35] is also meant
for private clouds but consists of proprietary software. A
comparison between them is presented in [36]. Other existing
solutions are Tacker, an OpenStack project consisting of a
generic VNFM/NFVO, open Baton, and Cloudify [37].

Among commercial solutions, there are Cisco network
services orchestrator [38], Ericsson network manager [39] and
ZTE CloudStudio [40], [41].

D. Network Monitoring

Monitoring is an essential process in modern networks
to provide insights in terms of the satisfaction of service
level agreement (SLA), matching the key performance
indicators (KPIs) from the network and the QoS requirements
from applications. Thus, the network is constantly monitored
to detect network issues, virtual functions life-cycle or QoS
violations to perform actions that restore the proper operation.

792 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

According to ETSI specification, network monitoring tasks
may be passive, active or hybrid [42]. Passive monitoring
consists in observing network traffic generated by network
applications and users. It is limited to collecting data already
available at the network agents. Here, the type of traffic and
the duration of network flows influence the measurements [43].
However, measurements may not be available during periods
when network traffic is not generated.

On the other hand, active measurement aims to perform
a more extensive diagnostic of the network conditions and
determine if network packets are correctly transferred between
hosts. To achieve it, active monitoring involves the generation
of synthetic or test traffic to validate network applications’
performance and verify that the SLA is fulfilled. Then, instead
of simply collecting information available at network agents,
it generates and sends traffic flows to analyze the behaviour of
the network [44]. This, for sure, brings some communication
overheads.

Finally, as the name suggests, hybrid monitoring is an
approach that uses the information obtained from both
active and passive monitoring. Already existing traffic flows
provide passive measurements, while added testing traffic
flows enables active measurements.

In the context of the virtualized network, the set of metrics
to monitor is broader compared to a legacy physical network.
Nowadays, virtualized networks also provide distributed CPU,
memory and disk capabilities to be shared among the network
applications [45]. It means that new metrics such as CPU load
or memory usage are now necessary to be considered when
describing the network behaviour, together with legacy metrics
limited to describing the communication channel, e.g., packet
loss or network delay. It results in continuous monitoring of
performance metrics on each SDN switch, NFV infrastructure
or VNF instance. Moreover, specific time series databases and
visual analytics tools are included in SDN/NFV environment
to store, visualize and process the collected measurements.
Suppose the measurements do not comply with the SLA
or QoS requirements. In that case, alarms are triggered,
and actions are set up according to programmed policies to
modify the behaviour of the network and guarantee that the
requirements are fulfilled.

Prometheus [46], InfluxDB [47], and Elasticsearch [48]
represents the most employed time series database, while
Grafana [49] and Kibana [50] are the worth of mention tools
to visualize data through data charts and dashboards, i.e., the
composition of data charts into a unique visualization.

E. Routing Algorithms

Traditional or best-effort routing treats all traffic flows
equally, no matter their requirements. It means that all
the traffic flows share the network resources without any
prioritization or differences when choosing the delivery path,
i.e., if two flows have the same source and destination,
they have the same delivery path and compete for the
network resources without any mediation. It considers fairness,
overall throughput, and average response time as the essential
performance aspects of traditional routing.

Nevertheless, traditional routing has already been replaced
by QoS routing. QoS routing aims at guaranteeing the
appropriate resources for each traffic flow. It is connection-
oriented, providing each traffic flow with a resource
reservation according to its QoS requirements. Hence, meeting
the QoS requirements is the key to evaluating the effectiveness
of the routing strategy. Moreover, depending on the QoS
requirements, a different problem can be defined to find the
optimal routing path [51], where the most common are the
following ones:

• Shortest path (SP): The route has to minimize a unique
end-to-end QoS metric, referred to as the cost.

• Constrained shortest path (CSP): The route has to
minimize an end-to-end QoS metric while being
constrained by a defined bound of another metric, referred
to as the constraint.

• Multi-constrained shortest path (MCSP): Similar to the
CSP problem, but in this case, multiple constraints have
individual bound constraints.

• Multi-constrained path (MCP): It is similar to MCSP, but
without the cost to be optimized. The route has only to
keep the constraints below prescribed bounds.

These fundamental problems can also be extended to find k
distinct paths that optimize the QoS metric and/or fulfill the
constraints [52] or to optimize more than one QoS metric [53].

This work focuses on the SP problem, where Dijkstra [54]
is the well-known and widest employed algorithm. It works by
selecting an optimal partial path at each iteration till finding
the optimal end-to-end path. A partial path is a path that starts
from the source node and reaches an intermediate node which
is not the ultimate destination. At each iteration, it takes the
least-cost path among the available partial paths, and then it
generates k new paths by extending the chosen partial path
with the k outgoing edges of the node.

Different surveys [51], [55], [56] compile and study other
SP algorithms, such as the Bellman-Ford and the Floyd-
Warhsall ones. These are similar to Dijkstra algorithm. The
Bellman-Ford algorithm finds the shortest path between a
given node and all other nodes in the graph, sharing the goal
with Dijkstra. Bellman-Ford is slower than Dijkstra, while
it is more versatile, as it is compatible with graphs with
negative weights. This implies that there is no shortest path
in negative cycles where the sum of edges means a negative
value, therefore the algorithm is prevented from being able
to find the correct route since it terminates on a negative
cycle. This algorithm can detect negative cycles and report
on their existence. The Floyd-Warshall algorithm is an SP
algorithm that stands out because, unlike the previous two
algorithms (Dijkstra and Bellman-Ford), it is not a single-
source algorithm. This means that it calculates the shortest
distance between every pair of nodes in the graph rather than
only calculating from a single node. It works by breaking the
main problem into smaller ones and combining the answers
to solve the shortest path issue. This algorithm is beneficial
when generating routes for multi-stop trips as it calculates
the shortest path between all the relevant nodes. For this
reason, many route planning software utilize this algorithm as

URIOL et al.: PREDICTIVE PATH ROUTING ALGORITHM FOR LOW-LATENCY ... 793

it provides the most optimized route from any given location.
Another SP algorithm is given by Johnson’s algorithm and is a
way to find the shortest paths between all pairs of vertices in an
edge-weighted directed graph. It allows some edge weights to
be negative numbers, but no negative-weights cycles may exist.
It works by using the Bellman-Ford algorithm to compute a
transformation of the input graph that removes all negative
weights, allowing Dijkstra’s algorithm to be used on the
transformed graph. Finally, as indicated at [51], the A*
algorithm was proposed by Hart et al. for finding a single-
destination SP by introducing a so-called guess function. At
each node, this guess function provides an estimation for the
cost of the SP from this node to the destination node.

III. TESTBED FOR NETWORK MANAGEMENT

This section describes the testbed employed for the
experimentation with network management. For this purpose,
the first subsection overviews different alternatives to perform
the SON experiment for low latency routing comprising
the considered characteristics. Then, the second subsection
compares the alternatives, their advantages and limitations,
and the selected one to perform our experiments on network
management.

A. Alternatives for Network Management

To perform flexible experimentation on predictive routing,
the testbed include the following elements or features:
• Deployment of the virtual networks
• Programmable routing capability
• A management interface for controlling the virtual

networks
• Endpoints for monitoring the networks
The identified and evaluated testbed alternatives to set up

our experiment are analyzed in this subsection.

1) SDN emulation: To provide a complete vision of
alternatives for network management, the description of
alternatives starts with SDN emulation tools, representing a
good solution for fast prototyping. Still, their capabilities could
be limited in deploying a complex network scenario.

Mininet [21] is a well-known SDN emulation tool which
employs virtualization mechanisms to enable the deployment
and test of networks on a single machine. It is widely
employed in the research community since it comes with
interesting features, such as the capacity for fast prototyping
and the possibility of sharing the prototypes and results with
other scientists. As backwards, it presents limitations when
considering the performance fidelity between the emulated
and the real environment. Each network node is implemented
through a Linux namespace, which means that all the
network nodes share the same hardware resources available
on one single machine, also resulting in a disadvantage for
experiments on a larger scale [57].

Containernet [58], Maxinet [59] and VIM-EMU [60]
are more recent tools to emulate networks. All of them
are based on Mininet and aim to reduce the gap

between emulated and real environments. Containernet [58]
substitutes Linux namespaces with containers, which means
providing a separation between network nodes closer to
a NFV infrastructure. Containers share kernel resources,
but each has its software stack to differentiate it from
the others [61]. Maxinet [59] extends Mininet to span the
emulated network over several machines. It allows scaling
the emulated network by enabling more network nodes and
distributing them among different machines. Finally, VIM-
EMU [60] evolves Containernet by emulating a multi-point of
presence (multi-PoP) environment. The containers deployed
through Containernet are instantiated into an emulated
distributed data centers architecture. VIM-EMU also features
an API to allow it to be employed as a VIM component in
NFV MANO architecture.

2) SDN-controlled OpenStack: To overcome the limitations
and complexity of configuration and maintenance of
deployment of bare-metal machines for SDNs, NFVI
solutions are employed to arrange cloud computing platforms
automatically. Several solutions are available as commercial
deployment, e.g., Amazon EC2 [62], Google cloud engine [63]
and Azure [64], or open source software, e.g., OpenStack [65],
Eucalyptus [66] and Opennebula [67]. OpenStack is the most
attractive solution for our testbed deployment, as it has a more
extensive foundation supporting its development, including
all the major tech industry players [68], [69]. Thus, the
deployment of OpenStack in our infrastructure enables the
capability to deploy multiple virtual machines and virtual
networks to create network topologies and configure them for
any experiment.

OpenStack offers several interfaces to control and manage
the infrastructure, such as a web GUI, a command line
client and a REST API, and an orchestration engine, called
Heat [70], to launch multiple composite networks and
machines using a descriptor file.

OpenStack networking architecture and management are
based on Neutron engine [71], which is the software
element capable of creating, modifying and deleting different
virtual network elements available on OpenStack, such as
virtual networks and routers. The Neutron engine’s primary
technology is OVS, the element capable of creating those
virtual network elements.

To manage OpenStack virtual network, we have tested
the possibility of integrating it with an SDN controller, for
example, the widely employed ODL solution [11]. We have
researched two different ways to control OpenStack virtual
networking devices using ODL:

1) OpenDaylight-Neutron integration
2) OpenDaylight controlling OVS

To get a direct integration between OpenDaylight and
Neutron, there is a plugin called Networking-ODL, which is
supposed to make available the control of OpenStack devices
by ODL [72]. The interaction between ODL and Neutron
allows us to monitor the network topology already deployed
into OpenStack infrastructure and the traffic crossing the
virtual networks. However, we cannot manage the performance
of the virtual networks and create or reroute no one of those

794 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

virtual networks. Based on these limitations, we discarded this
approach to manage Neutron infrastructure through ODL.

Following the approach to get a connection between
OpenStack and an SDN controller, we have checked the
possibility of connecting Open vSwitch through standard SDN
protocols like OpenFlow directly. This way, we use tools such
OpenDaylight to manage Open vSwitch virtual devices [73].
This approach brings a high limitation as OpenStack is able to
manage just one Open vSwitch in each OpenStack deployment
when creating virtual network devices. Therefore, a topology
cannot be arranged with just one Open vSwitch.

3) VNF-enabled switches: After checking the limitations
of the results provided by former approaches given in III-A2,
we have tried several VNF approaches to get a working
testbed environment for the management of routing on network
topologies.

The first approach to set up a VNF [74] networking
architecture was deploying a virtualized network topology
using Ubuntu VMs in OpenStack as routers. Here, we scale
the network up by adding one more node or scale it down by
removing a node based on network traffic. In this setup, OSM
manages the deployment of those VMs. The VNF descriptor
for describing and configuring those VMs includes a cloud init
file for each VM that composes the topology by performing
Day-0 actions in order to configure the VM once it is deployed.
Here, the automated routing of the topology deployed based
on those Ubuntu VMs is applied in the configuration of the
cloud init file of each VM. Thus, the idea was to change their
routing table through Day-0 actions, ensuring connectivity in
the whole topology.

The second approach for VNF architecture consists in using
OVS VMs. Network topology is built by running multiple
Open vSwitch instances, each consisting of a single virtual
machine deployed in our OpenStack infrastructure.

The overall network architecture consists of several
instances (VMs) connected by multiple virtual networks
inside the OpenStack infrastructure. Each of these instances
has two network interfaces and runs OVS [75] software to
manage them. Thus, OVS acts as a gateway between the
network interfaces available at each VM and interconnects the
virtual networks where such interfaces are connected. Taking
advantage of the capabilities of OVS to be managed by using
SDN protocols will enable the management of the network
topology by an SDN controller.

4) OpenStack native networking: OpenStack, through its
network engine Neutron, provides some NFV devices like
virtual networks, firewalls and routers. OpenStack virtual
routers are called qrouters, and have capabilities to re-route
incoming and outgoing traffic through the connected networks
to the router. Those routing capabilities are very useful to
modify the behavior of the traffic routing inside the network
topology in our testbed.

Qrouters provide routing functionality into the OpenStack
virtual networking infrastructure and can be configured in a
fancy way in order to redirect traffic through the different
networks they are connected to. That possibility, combined
with native OpenStack networking capabilities, offers us a
robust scenario where multiple virtual networks interconnected

through multiple qrouters can route incoming traffic from each
network in a way to arrange custom topologies for the given
case.

Qrouters and virtual networks are part of OpenStack
standard tools and can be managed by the standard interfaces
offered by OpenStack, like API/REST, command line and
orchestration services like Heat. This way, management of
arranged topology infrastructure, in terms of deployment and
configuration, can be automated.

Heat [76] orchestration engine from OpenStack can
create and modify multiple bandwidth-related limitations
from OpenStack networking devices. It can manage those
limitations in Day-1 and Day-2 actions simplifying integration
and application.

B. Comparison and Testbed Selection

In this subsection, we present the analysis of the different
evaluated alternatives characteristics explained in the section
before, as well as the proposed experimental testbed of this
experiment. Accordingly, Table I compiles and classifies all
the research activities exploring different approaches to create
a functional testbed for network management and routing
experiments. Thus, this table shows in a summarized way
the capabilities, requirements and limitations of all different
approaches.

After testing all the alternatives presented above, the
proposed experimental testbed is given by the OpenStack
native networking. This testbed complies with most of the
characteristics mentioned above in the previous section, so this
testbed implemented and used is the best option for performing
SON experiments of routing techniques on top of network
management tools. This testbed refers to the ETSI architectural
framework presented in Fig. 1.

We evaluated this approach and made some tests in order
to check its capabilities, and the results were positive when
interacting with the deployed topology. We could deploy
any topology based on virtual networks and qrouters and
modify its routing operation through OpenStack Orchestrator
API several times once deployed. This kind of deployment
also did not require high computing resources. We use Heat
actions above explained to deploy an initial infrastructure
composed of virtual networks, qrouters and virtual machines
inside OpenStack infrastructure, making a Day-1 action. By
modifying Heat description file and commanding it again with
desired modifications, the testbed topology could be modified
by applying routing changes into qrouters as a result of a
Day-2 action.

We decided to follow this approach to implement our testbed
based on these results. The next step in implementing a
routing SON experiment was to determine the grade of control
that can be achieved using this approach. To get a working
testbed, we need to control several elements of the networking
infrastructure:
• Deployment of network topologies by means of Day-1

actions
• Definition of network configuration and rerouting rules

through Day-2 actions

URIOL et al.: PREDICTIVE PATH ROUTING ALGORITHM FOR LOW-LATENCY ... 795

TABLE I
COMPARISON BETWEEN DIFFERENT APPROACHES.

Alternative Management
interface

Network
deployment

Network
routing

Computational
resources Architecture Endpoints Limitations

SDN-Emulation
[21], [58], [59],
[60]

SDN Yes Yes Very Low SDN Namespaces

Gaps to real and complex
NFV setups & no bindings
for integration with network
management systems

SDN-OpenStack
(Neutron) [72] SDN No No Low SDN/NFV VMs No programmable routing

or topology creation
SDN-OpenStack
(Open vSwitch)
[73]

SDN No No Low SDN/NFV VMs
Limited to 1 OVS instance
meaning no topology
possible

VNF-Networking
[74] Cloud-init Yes Yes High VNF VMs

No programmable routing
& no easy scalability &
no impact on routing when
adding a new node

VNF-Open
vSwitch [75] SDN Yes Yes High VNF VMs No efficient deployment and

scalability

OpenStack native
[71], [76]

Heat,
API/REST,
cli

Yes Yes Low NFV VMs No significant drawback

• Apply configurable bandwidth limitations at different
network nodes/routers to be able to impress bottlenecks
on injected network traffic

• Monitor network nodes/routers metrics to predict the
routing issues and feed the SON algorithm with data

The rest of the testbed alternatives mentioned in the above
section were discarded for the following reasons. Regarding
the SDN emulated alternative, all the evolutions listed in
Section III-A1 expand the emulation and try to deploy a more
realistic environment for experimentation. However, some
intrinsic limitations remain. The most important is the inability
of the emulation tools to manage real machines (physical
or virtual). Moreover, most of them do not provide NFV-
compliant REST APIs (only VIM-EMU has this interface),
making the integration within the NFV MANO architecture
non-viable.

On the contrary, SDN and NFV software may enable a
complete experimentation environment where VMs can be
deployed and tested while managing their interconnection
through virtualized networks. Even with an increase in testbed
complexity, SDN and NFV software guarantee the presence of
REST APIs to simplify the monitoring and management of the
testbed.

Regarding the SDN-controlled OpenStack alternative, to
get OpenStack and an SDN controller connected, we have
employed OVS, which can be managed through standard SDN
protocols like OpenFlow. This way, we can manage it directly
by using ODL as before. This approach was not feasible
because OpenStack can only offer one OVS in each OpenStack
deployment when creating virtual network devices. Therefore,
arranging a topology with just one OVS is impossible.

Once we evaluated both the SDN controller and OpenStack
approaches, we decided to abandon this SDN approach
because of the lack of opportunities to get a customizable
topology. OpenStack only offered one OVS or did not offer
any way to interact with virtual network topologies created

inside OpenStack.

Related to the VNF alternative, several problems were found
when deploying topologies with VNFs.

• The automated routing through Day-0 actions imposed by
cloud init file for VMs configuration was unsuccessful as
the connectivity to the topologies was impossible.

• Due to the heavy consumption of computing resources
from VMs, the scalability for deploying topologies with
many nodes on top of an OpenStack server is quite
limited. Specifically, when using OVS as an instance,
each OVS instance needs significant capabilities, i.e., at
least one core and 512 MB of RAM. Thus, this approach
results in a bottleneck when a topology with multiple
switches needs to be deployed, causing a lack of resources
to deploy virtual machines that act as typical clients or
server instances that communicate with each other over
the deployed network topology.

• When scaling up by adding a node, there is not effect on
reducing the traffic load of the topology.

To sum up, Table I resumes the main characteristics of
different alternatives. Some features underline the reasons
backing the selection of an OpenStack native networking
testbed. The main advantage of this testbed is that it has
different management interfaces and it allows interaction
with the already deployed topology, reconfiguring it. Another
relevant aspect is that it means low computational resources
need, enabling us to deploy different topologies while saving
OpenStack’s assets. Finally, as the endpoints of the testbed are
VMs, it eases the monitoring of the network.

In summary, as we have mentioned before, the selected
testbed is given by OpenStack native networking. The
implementation and validation of the selected testbed are
explained in Section V.

796 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Start

Data Acquisition

Link Latencies Predictor

Shortest Path Algorithm

Δt > T Wait 𝑚 seconds

pathLL ≠

pathcurr

Route Update

No

Yes

Yes

No

Fig. 2. Predictive path routing algorithm for low-latency flow chart.

IV. PREDICTIVE PATH ROUTING ALGORITHM

This section presents the predictive path routing algorithm
for low-latency, tested through the experimental testbed. The
algorithm aims at predicting QoS metrics to select or update
the routing path proactively. The flow chart of the algorithm
is presented in Fig. 2.

This flow chart presents the following parameters, whose
values need to be defined:
• m is the number of seconds configuring the update rate

of network metrics in the database and the mathematical
models, updating forecasts of path metrics with a Link
Latencies Predictor and finding routing paths bringing
low latency (pathLL) with a shortest path algorithm.

• T defines the timeout in minutes establishing how often
the routing update is evaluated if the path providing lower
latency (pathLL) has changed from the current routing
setup (pathcurr).

• Δt is the elapsed time t from the last evaluation.

Δ𝑡 = 𝑡 − 𝑡𝐿𝑎𝑠𝑡𝐸𝑣𝑎𝑙 (1)

Going into details of the evaluated predictive path routing
algorithm, Algorithm 1, the link latencies predictor used is
the matricial autoregressive model (MAR Model) due to both
the input for feeding this model, and the output of the
predictor is a matrix. The shortest path algorithm selected
and implemented in the predictive routing path algorithm is

the Dijkstra algorithm due to that this algorithm calculates the
shortest path in a graph given a known source and destination.

The first step is to initialize all the variables related to
the algorithm, such as the time scheduled for the subsequent
routing evaluation, the traffic source and destination, in order
to calculate the critical path and the current routing path, which
is initially defined according to the default routing rules of the
deployed topology. The initialized parameters are:
• tNextEval is the scheduled time in which the subsequent

route evaluation is performed.
• pathcurr is the default routing path for the topology.
• src is the traffic source of the network topology.
• dst is the traffic destination of the network topology.
Then, the algorithm executes the process and decision

blocks shown in the flow chart of Fig. 2. The overall workflow
is composed of these steps:

Step 1: The first step is to construct the hyper-
matrix (HipMatL) with the latency metrics in
order to input the matrix into the link latencies
predictor.

Step 2: Then, the next step is to calculate the predicted
latencies between different adjacent links from the
adjacency matrix (M̂atL).

Step 3: The third step is to calculate the shortest path
routing (pathcurr), feeding the shortest path algorithm
with the predicted link latencies adjacency matrix, the
traffic source and the destination.

Step 4: The next step is to wait for the next evaluation time
tNextEval. Otherwise, the algorithm keeps capturing
metrics for n seconds and evaluates mathematical
models with the new data.

Step 5: As far as the scheduled time for evaluating the routing
change comes, the current (pathcurr) and shortest
routing paths (pathLL) are compared. The algorithm
does not update the topology routing rules if both
routing paths are equal. But if both routing paths
are different, the topology routing rules are updated.
In both cases, the tNextEval is updated by adding the
timeout T.

All the blocks that compose the predictive path routing
algorithm for low latency are presented and individually
explained in the following sections.

A. Data Acquisition

A network topology can be easily associated with a finite
graph. A graph [77] is a pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a set
of vertices and 𝐸 is a set of paired vertices called edges. A
graph may be fully specified by its adjacency matrix, which
is an 𝑛 × 𝑛 square matrix, where 𝑛 is the number of nodes
of the graph, with 𝐴𝑖 𝑗 specifying the number of connections
from vertex 𝑖 to vertex 𝑗 . For a simple and unweighted
graph, 𝐴𝑖 𝑗 ∈ {0, 1}, indicating disconnection or connection,
respectively. Furthermore, 𝐴𝑖𝑖 = 0 (as an edge can not start
and end at the same vertex), as can be seen in Fig. 3.

URIOL et al.: PREDICTIVE PATH ROUTING ALGORITHM FOR LOW-LATENCY ... 797

Algorithm 1 Predictive path routing algorithm

function MAIN()
tNextEval ← t + T ⊲ Timeout setup
pathcurr ← pathdefault ⊲ Route init
src ← S ⊲ Source init
dst ← D ⊲ Destination init
while true do ⊲ Infinite loop

HipMatL ← DataAcquisition()
M̂atL ← MARModel(HipMatL)
pathLL, dist ← Dijkstra(M̂atL, src, dst)
if t > tNextEval then ⊲ Every timeout

if pathLL ≠ pathcurr then
RouteUpdate() ⊲ Update rules
pathcurr ← pathLL ⊲ Update path

else
pathcurr ← pathcurr ⊲ Unchange path

end if
tNextEval ← t + T ⊲ Schedule evaluation time

end if
sleep (m) ⊲ Wait 𝑚 seconds

end while
end function

Algorithm 2 Data acquisition algorithm

function DATAACQUISITION()
for k ← t - N to t do ⊲ Past events

L ← GetLatency(k) ⊲ Get metrics
MatL ← L ⊲ Adjacency matrix
HipMatL ← HipMatL(MatL) ⊲ Hyper-matrix

end for
return HipMatL

end function

Consider now a weighted graph, that is, a graph in which a
certain weight is assigned to each edge. The adjacency matrix
changes indicating now the weight in a direct connection of
the graph, i.e. 𝐴𝑖 𝑗 ∈ {0,weight}, indicating disconnection or
connection metric respectively, meanwhile 𝐴𝑖𝑖 = 0.

This block of the algorithm presented in Algorithm 2
is responsible for reading the metrics from the database
and composing the adjacency matrix associated with the
virtualized network topology. The corresponding metrics we
use for creating the adjacency matrix are the link latencies
between nodes of the virtualized topology, so our adjacency
matrix is composed of 0 and the latency of each edge in a
direct connection of the topology. Moreover, it is responsible
for creating the hyper-matrix of past history/records for link
latencies, which are necessary for the predictor.

The N parameter is referred to the number of past samples
needed by the predictor to forecast the following values
accurately.

B. Matricial Autoregressive Model

The MAR model [78] is an analytical method to predict the
values of a data matrix. In our case, the link latencies at the
current time 𝑡 are stored in an adjacency matrix (MatL). Those

1 2

3 4

(a) Square 2x2 Topology −→

©«

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

ª®®®®®®¬
(b) Adjacency matrix

Fig. 3. Adjacency matrix associated to an unweighted graph.

Fig. 4. Latencies hyper-matrix for the MAR model.

stored metrics get into a MAR model to predict the latencies
at the next time 𝑡 + 1. The first step is to acquire samples of
𝑁 past time instants to feed the predictor. The predictor uses
them to forecast the adjacency matrix of link latencies at the
next scheduled time. The example shown in Fig. 4 depicts
how the latencies samples compose a hyper-matrix where 𝑛 is
the number of nodes in the topology. The 𝑁 is the number of
samples that compose the HipMatL.

The MAR model presented in [78] employs a bilinear
structure as follows:

𝑋𝑡 = 𝐴𝑋𝑡−1𝐵
𝑇 + 𝐸𝑡 . (2)

The matrix resulting from the MAR processing (M̂atL) is
also an adjacency matrix of the considered network topology,
where the values correspond to the predicted link latencies.
These predicted link latencies adjacency matrix is the input
for the next block of the predictive routing algorithm, i.e., the
Dijkstra algorithm.

C. Dijkstra Algorithm

Dijkstra algorithm [54] is an algorithm for finding the
shortest path between nodes in a graph depending on the
weight of the edges of the graph itself. The Algorithm 3, runs
over each vertex and considers the weight of each edge as a
measurement of the distance between vertices. Thus, it selects
the neighbour vertex connected with the minimum distance to
the current vertex. This operation is performed recursively to
find the shortest path between the source (S) and destination
(D) vertices.

First, the algorithm initializes two vectors:

798 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Algorithm 3 Dijkstra algorithm

function DIJKSTRA(M̂atL, src, dst)
dist[src] ← 0 ⊲ Initialization
for v in L̂atMat do ⊲ Visit all nodes

if v ≠ src then
dist[v] ← ∞ ⊲ Distance init
pathshort[v] ← empty ⊲ Short path init

end if
Q ← Q.append(v) ⊲ Add vertex in queue

end for

while Q is not empty do ⊲ The main loop
u ← Q.extract_min() ⊲ Get vertex with minimum

distance
for each (v,u) do ⊲ Vertex in queue

d ← dist[u] + M̂atL[u][v] ⊲ Calculate d
if d < dist[v] then

dist[v] ← d ⊲ Update dist
pathshort ← u ⊲ Update minimum path
Q ← Q.rmv(v) ⊲ Remove visited vertex

end if
end for

end while
pathLL ← pathshort ⊲ Shorter provides Low Latency
return dist[dst], pathLL

end function

• dist: It contains the minimum distances from the source
to all possible destinations.

• 𝑝𝑎𝑡ℎ𝑠ℎ𝑜𝑟𝑡 : It contains the vertices to be crossed from the
source to each destination along the shortest path.

Then, the algorithm needs to run over all the graph vertices
to calculate their distances from the source. For that, the
weights to the neighbour vertices are captured and stored in
dist. This is done in two steps:

1) Extract the neighbour vertex with the smallest distance
from the vector dist.

2) Check the different distances between neighbour vertices
and keep just the one with the lower weight.

Finally, both the value of dist with the minimum distance
calculated from the shortest path given by 𝑝𝑎𝑡ℎ𝑠ℎ𝑜𝑟𝑡 and the
shortest path itself are updated.

The use of this algorithm allows us to predict the shortest
path between a source and a destination of the virtual network
topology based on the lowest end-to-end predicted latency.
The final objective is to update the routing rules based on that
predicted shortest path.

D. Routing Update

The last block of the Predictive Path Routing Algorithm,
is in charge of updating the routing rules inside the topology
when needed. It is responsible for changing the current routing
rules of the topology (pathcurr) based on the shortest path given
in this case by the Dijkstra algorithm (pathshort). If the shortest
path is different to the current one, the update of the topology

routing process is activated to grant low latency (pathLL).
Otherwise, the algorithm starts the flow again.

V. VALIDATION

This section describes all the experiment validation,
including the description of the employed setup, the
performance metrics to analyze the topology routing and,
finally, the obtained results.

A. Experimentation Setup

The testbed to carry out the experiment has several
components, as shown in Fig. 5. On the one hand, a server runs
an OSM instance which executes Day-1 and Day-2 actions
through JUJU charms [79]. JUJU software is installed on
the same server to create and update the topology routing.
An OpenStack server is configured and managed by the
OSM/JUJU server to deploy the necessary VNFs to create the
desired topology. Moreover, on another server, a Prometheus
database [46] and a Grafana data analytics tool [49] are
configured in order to store the network metrics obtained
from the topology and to analyze them at a visual level.
A Prometheus PushGateway [80] system is also deployed
on this server. Prometheus works in pull mode by design
to retrieve the metrics from the monitored nodes. It means
that Prometheus should discover the probed endpoints (IP
addresses) to pull the metrics from the monitored nodes every
time the routing configuration of the topology changes. To
enable Prometheus to gather all the metrics even when the IPs
configuration changes, we introduce an intermediate service
such as Prometheus PushGateway. Then, Prometheus pulls
the metrics from the Prometheus PushGateway, whose IP
address is maintained even when topology or routing rules are
updated. Finally, an external management computer executes a
Python implementation of the predictive shortest path routing
algorithm. Its objective is to predict the shortest routing path
between the source and destination inside the topology from
the compiled metrics. Table II shows the specifications of each
component of the setup.

B. Deployment of Virtual Topologies

We have developed three components to deploy a network
topology automatically.
• Square topology matrix engine generator
• Alternative routing descriptor generator
• Routing engine generator
The square topology matrix generator is an engine which

creates a squared topology matrix with nodes (V) and
edges (E) from a given description file. This system creates the
appropriate instructions for OpenStack’s orchestration engine
to deploy a squared topology matrix of a given size.

The alternative routing descriptor generator is the
component that, when a node does not have any routing rule
in order to connect it inside the rest of the topology, creates
routing rules for that node. Once that specific routing rule
for each node has been created, the system loads it into the

URIOL et al.: PREDICTIVE PATH ROUTING ALGORITHM FOR LOW-LATENCY ... 799

Fig. 5. Experimentation setup for virtualized network topologies deployment and routing.

TABLE II
TESTBED COMPONENTS SPECIFICATIONS.

Component System specification

OSM/JUJU

OS: UBUNTU 18.04
RAM: 8 GB
vCPU: 2
OSM version: 10.0.3
JUJU version: 2.8.13

OpenStack

Version: Victoria
Intel(R) Xeon(R) Gold 6230R
26 CPUs
192 GB RAM

Grafana/Prometheus

OS: UBUNTU 18.04
RAM: 4 GB
vCPU: 2
Prometheus version: 2.2.20
Grafana version: 8.4.3

Predictive path
routing

OS: UBUNTU 20.04
RAM: 16 GB
CPU cores: 6
Python version: 3.8.10

routing engine generator to generate appropriate instructions
to OpenStack’s orchestrator to implement it. This way, all the
nodes, even when they are part of the shortest path or not
used for traffic forwarding, are still available, connected and
pushing inactivity metrics. The routing to be applied is defined
by a description file employed as the input for the routing
engine generator.

The routing engine generator is the component which
creates appropriate instructions to route traffic between nodes

Topology generator

Routing generatorAlternative Routing Engine

Orchestrator

Nodes/Edges description

Routing description

Fig. 6. Initial topology setup.

deployed into the Topology matrix of a given size. Like in
the former step, those instructions are commanded into the
OpenStack’s Orchestration engine.

This workflow allows virtual topologies to be deployed in an
initialization and reconfiguration strategy gaining flexibility for
network management experiments. A default virtual topology
is deployed in the initialization step, Fig. 6.

Accordingly, the squared topology matrix is defined and
sent to the topology generator that creates a set of instructions
for the orchestrator. An initial routing description is created
and sent to the routing generator to create another set of
instructions for the orchestrator. Based on the initial routing
description, the alternative routing engine creates a subset of
routing descriptions for the nodes excluded from the initial
routing description and sends them to the routing generator in
order to create a complete instruction set for the orchestrator.

When a virtual topology needs to be updated, as shown
in Fig. 7, the component called predictive routing path for
low-latency sends a new routing description to both the

800 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Alternative Routing Engine Routing generator

Predictive Routing Path

Orchestrator

Routing description

Fig. 7. Routing update.

Fig. 8. Client-server definition order of each monitoring VM of each node of
the topology.

router generator and the alternative routing engine. Here, the
routing generator creates a subset of instructions from the new
routing description and from the alternative routing description
produced from the alternative routing engine and sends them
to the orchestrator in order to execute new routing commands
into the OpenStack virtual network infrastructure.

C. Performance Metrics

The metrics used in the experiment are the link latencies of
all the nodes in the virtualized topology. The tool Qperf [81]
is being used in each VM of the virtualized topology to
assess the values of such metrics. Those metrics are sent
to Prometheus. The Prometheus Time Series database stores
latency metrics along the tests. Every time a network link is
created in the topology, a VM will be automatically deployed
and start measuring the performance of the link.

The configuration of Qperf command in each VM of each
node of the topology, i.e. which nodes act as servers and which
nodes act as clients which send metrics to the database, is
defined and presented below.

The order of the edges (E) for a 3×3 grid topology, as
it is shown in Fig. 8, also implies the roles meaning which
nodes act as servers and which nodes act as clients for the
automation of the metrics probing and sending to the central
database. Nodes of the first column of the file act as clients of
the edges, while nodes of the second column of the file act as
servers of the edges when configuring the Qperf setup. The
Qperf client VM sends the link latency to Prometheus every
5 seconds. Moreover, for the unequivocal processing of the
link latencies captured at each edge, usually, as some network
topologies can have more edges than nodes, both the source
and the destination of the monitored link’s metrics are also sent
to the Prometheus API. Thus, any query from the predictive

TABLE III
RMSE AND MAE OF END TO END AVERAGE LATENCY ANALYSIS FOR

SELECTING THE BEST NUMBER OF PAST SAMPLES N FOR THE PREDICTOR.

N RMSE MAE
9 0.285 ms 0.144 ms
10 0.251 ms 0.124 ms
11 0.240 ms 0.122 ms

path routing algorithm for low-latency retrieves the map of
latencies to the edges.

D. Application of Routing Update

This section presents how the predictive path routing
algorithm performs the routing update of the virtualized
topology for low latency once the virtualized topology is
deployed in OpenStack and the definition of the parameters
presented in Section IV.

As it is explained, the MAR predictor needs some past
events samples for predicting the link latencies for the next
period time 𝑡 + 1. The number of past samples 𝑁 in the
predictive routing algorithm is set to 𝑁 = 10. The predictor’s
accuracy is analyzed concerning the number of past samples
needed to forecast the link latencies in 𝑡 + 1. Suppose the
number of samples is much lower than 10, i.e. 𝑁 = 2. In that
case, the predictor is inaccurate with an RMSE of end-to-end
average latency, calculated over all possible paths, equal to
181.455 and an MAE equal to 20.13. If the same analysis is
made with 𝑁 close to 10, both the RMSE and MAE decrease
significantly, getting the results shown in Table III.

As seen in the table, setting the employed past samples
to a number higher than ten does not make any significant
difference in terms of the accuracy of the forecast. The time
parameters m and T, explained in Section IV, are now defined.
On the one hand, the window of time in seconds (m) applied in
the predictive path routing algorithm for low latency is defined
as ten seconds. On the other hand, the time in minutes T, which
establishes how often new routing rules are evaluated, is set to
five minutes so that, every T minutes, the algorithm is going
to compare the current route with the candidate shortest one.
It has been set to five minutes because OpenStack needs some
time to establish the routes in each router, so if every time the
optimal route does not match the current route changed, the
system would be all the time changing routes, and the system
needs to stabilize once the routing rules have been changed.
Thus, OpenStack can change the qrouter’s routing rules of
the virtualized topology correctly before evaluating both the
optimal and current routing paths again.

A comparison of different SP algorithms is now analyzed.
As described in Section IV, the SP algorithm employed in
this experiment is the Dijkstra one. The Table IV shows
the differences between other shortest path algorithms. The
computation time is the time elapsed to perform the algorithm
processing when a new evaluation over time is triggered. This
is the most important parameter to consider when deciding the
algorithm to implement in our experiments. As the Dijkstra
algorithm, is clearly the most efficient one, in terms of
computation time, is the one chosen. Furthermore, Dijkstra

URIOL et al.: PREDICTIVE PATH ROUTING ALGORITHM FOR LOW-LATENCY ... 801

TABLE IV
SHORTEST PATH ALGORITHMS COMPARISON.

SP algorithm Graph type Edge weight sign Computation time Output
Dijkstra Directed/Undirected Positive 0.05769 ms Shortest path
Bellman Ford Directed/Undirected Positive/Negative 0.12373 ms Shortest path
Floyd Warshall Directed Positive/Negative 0.20456 ms Shortest path
A* Directed/Undirected Positive 0.25916 ms Shortest path
Johnson Directed Positive/Negative 0.54250 ms Shortest path

Fig. 9. End-to-end average latency through all possible nodes prediction of
the MAR predictor.

is compliant with the graph type planned to use in the tests,
where routing of traffic can be bidirectional. This means a the
algorithm needs to work with undirected graphs, discarding
some algorithms of Table IV.

The predictive routing algorithm calculates the shortest
routing path, bringing lower latency. If the result is different
from the current route, the algorithm sends an OSM/JUJU
Day-2 action to the VNF deployed in OpenStack to change the
current route to the new one. In that OSM/JUJU Day-2 action,
the input for the routing update is the shortest routing path
calculated from the Dijkstra algorithm from the link latencies
forecasted by the MAR predictor.

E. Results

This section shows the results obtained during the
experiment for predicting low-latency path routes from a
source to a destination in different topologies.

The first results, shown in Fig. 9, are related to the accuracy
of the MAR predictor when forecasting the average end-to-end
latency across all possible paths in a given network topology.

It is observed that the predictor detects some network
saturation peaks in terms of the average end-to-end latency
of all the paths from source to destination. The predictor
cannot predict some significant changes tied to spontaneous
saturation.

Concerning the validation of the prediction, we present
another result in Fig. 10. Here, it can be observed the influence
in the network latency under edge saturation conditions when

TABLE V
END-TO-END AVERAGE LATENCY AND SHORTEST PATH LATENCY

DEPENDING ON TOPOLOGY COMPLEXITY.

Nodes Edges Average latency Lowest latency
4 4 2.4798 ms 0.1274 ms
9 12 11.0935 ms 0.5481 ms
16 24 28.5481 ms 1.5498 ms

changing the routing rules with and without prediction. This
graph shows two saturation zones in which the network suffers
a traffic injection in two different edges of the network. It can
be seen that the routing path change is more efficient when
the prediction is applied instead of changing the routing path
without prediction in bot saturation zones A and B.

The influence of adding nodes and edges in a topology in
terms of latency improvement is now analyzed. As it can be
seen in Table V, it is compared the end-to-end average latency
of all the paths from a source to a destination in the topology.
When applying the low latency paths to routing rules, shorter
paths are ensured from a source to a destination.

Fig. 11 shows the end-to-end latency improvement from
Table V. Here, the blue line is referred to the average latency
of all the paths from a source to a destination, and the black
line is referred to the end-to-end shortest path gaining low
latency.

It is observed that the higher the complexity of the topology,
i.e. higher number of nodes and edges in the topology, the
more improvement we have on calculating the shortest routing
path, based on the end-to-end latency metrics when applying
the predictive algorithm.

In terms of latency improvement, the impact of saturating
an edge in topology is discussed below. Considering a 9-node
closed square network topology with 12 edges, where each
link is limited to 3000 kbps, the link latencies determine the
weight of each edge of the network topology for constructing
the adjacency matrix at time t. If the source of the data packets
is set to node 11 and the destination is set to node 9, there
are 12 possible paths for the data packets to flow from source
to destination. One of those possible paths is the shortest one,
with the lowest end-to-end latency. In the initialization of the
topology route setup to perform the necessary tests, a routing
rule that connects 1,2,5,8,9 nodes has been set. When edge 2–5
of the topology has a traffic bottleneck due to flooding with
UDP traffic through the ffmpeg, [82] tool, both the latencies
of that edge and the adjacency edges are affected. This results
in a significant increase in the latencies of those edges. While
the edges not adjacent to the 2–5 edge are not affected by the
ffmpeg’s UDP flow, as shown in Fig. 12.

802 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Fig. 10. Network average latency in terms of changing its routing rules with or without prediction.

Fig. 11. Topology complexity influence on the end-to-end latency
improvements.

To overview all the results for mechanism stages, Fig. 13
summarizes latency performance for three different zones.

• In zone A, there is no network saturation, and the data
packets cross the nodes 1,2,5,8,9 being the end-to-end
current and shortest path latency similar.

• Zone B is affected due to the UDP flooding saturation
on edge 2–5 of the virtualized topology. Therefore, the
end-to-end latency of the current path is increased. When
the predictive routing algorithm detects the network
saturation, it selects the shortest routing path avoiding
the saturated edge of the topology. In this case, the path

Fig. 12. Affected edges due to the saturation of edge between nodes 2 and 5
of the topology.

that connects the nodes 1,4,7,8,9 is the shortest one along
the edge 2–5 is being saturated. Once the routing path of
the topology is updated, the current route and the shortest
one coincide.

• The last zone, C, represents that even when the edge 2–5
is still saturated, the current route of the topology across
the nodes 1,4,7,8,9 is not being affected by performing a
minimum end-to-end latency.

As a final result, the continuity of the network
reconfiguration is analyzed. While updating the routing rules
and applying actions and file descriptors, the virtual network
has no connectivity, but once the orchestrator completes the
configuration, the network is again forwarding packets. This
reason is a significant limitation of management technologies
of virtual networks.

URIOL et al.: PREDICTIVE PATH ROUTING ALGORITHM FOR LOW-LATENCY ... 803

Fig. 13. Comparison of end to end latency: Current and shortest path.

VI. DISCUSSION AND OPEN CHALLENGES

Monitoring systems enable advances in automated
network management, log reporting from software functions
and standard interfaces for programmed operation and
interoperable integration. It is evident that software and the
virtual nature of network functions are pushing the network
limits demanded by specific applications and specialized
scenarios. The blurred frontiers between applications and
networks brought by 5G network technologies and widely
employed software frameworks favour the progress and
breakthroughs from a bilateral perspective.

The networks target challenging application domains,
heavily dominated by multimedia streaming protocols, such
as cooperative, connected and automated mobility (CCAM)
or demanding immersive applications such as holographic and
extended reality (XR) or multi-party virtual reality, which
meta worlds expect to create. In these scenarios, mobility
and daily human life cycles can shape traffic patterns around
mutable distributions, which network topologies need to bridge
dynamically.

The network topology can mutate to accommodate a traffic
demand better [83]. However, the transition impacts the
ongoing sessions challenging to minimize or absorb, making
this option ideal for long-term traffic distribution. Instead,
for prompter reactions or quicker preventions to changeable
traffic demands, which could produce bandwidth bottlenecks
or late delivery, the automated, programmed routing policies
can make the difference.

To implement this feature, different technologies and
software frameworks can be employed. However, different
implementation limits make some technology candidates,
listed in Table I, challenging to apply dynamic and
programmable routing configurations, bringing significant
scalability overheads or lacking interoperability between them
the run out of the box. The analyzed technologies are not
able to immediately apply a new routing configuration or to
transparently and seamlessly deploy or retire virtual router
instances. So, the need to smoothly modify configurations

or allocate resources is a significant concern where artificial
intelligence algorithms trained to penalty situations that
damage QoS or require session reboot could come into play.

Our solution brings some underperformance for highly
symmetric topologies and a limited ability to forecast
situations in advance. The ability to create light and
flexible algorithms that can quickly scale for higher network
cardinality and accurately respond to previously unseen
situations is something where reinforced learning techniques
could foster the self-organizing network leap. To avoid
underperformance with some virtualized network topologies,
the network analysis performed with the predictive path
routing algorithm for low latency will focus on the affected
edges of the network.

Additionally, the measurement and monitoring systems take
too many resources as we need to actively get the link
performance even when no application traffic is there. This
implies an unnecessary overhead that could be probed directly
from the traffic if the monitoring systems would work as the
OSM and OpenStack systems promised.

The last aspect that would mean a significant feature is
reducing deployment times of routing policies and applying
the dynamic rules. The proposed solution takes time in
minutes, with equivalent scores to instantiating routers with
a specific configuration through OpenStack or Kubernetes.
However, this is mainly limited by OSM and JUJU, which
will be more easily reduced than the container lifecycle times.

VII. CONCLUSION

This paper evaluates, identifies and analyzes the different
implemented solutions to perform experiments on network
management. For this purpose, an innovative experimental
testbed and a predictive routing path algorithm are proposed.

For the evaluation of the proposed approaches, OpenStack
has been used in order to deploy virtualized topologies through
its orchestration service.

The obtained results from the proposed approaches
show that the testbed proposed using OpenStack as the
primary technology for deploying the virtualized topology
is functionally obtaining the possibility of deploying any
virtualized topology on top of it. Moreover, it can be seen
that the implementation of our Predictive Path Routing for
low latency detects the saturated edge of the topology and
calculates the shortest path to change the routing rules of the
deployed topology to improve the end-to-end topology latency.

Future lines of research should focus on the reduction in
terms of the time of both the deployment and the changing
of the topology routing rules, the introduction of real-time
traffic in order to saturate any edge of the topology, the
possibility of integrating containers instead of VMs for the
network monitorization and the improvement of the predictive
path routing algorithm for low-latency for analyzing the only
the affected part of the network.

REFERENCES

[1] H. Yu, H. Lee, and H. Jeon, “What is 5G? Emerging 5G mobile services
and network requirements,” Sustainability, vol. 9, no. 10, p. 1848, 2017.

804 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

[2] C. Bouras, P. Ntarzanos, and A. Papazois, “Cost modeling for SDN/NFV
based mobile 5G networks,” in Proc. IEEE ICUMT, 2016.

[3] E. Hernandez-Valencia, S. Izzo, and B. Polonsky, “How will NFV/SDN
transform service provider opex?” IEEE Netw., vol. 29, no. 3, pp. 60–67,
2015.

[4] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, “A survey of self
organisation in future cellular networks,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 1, pp. 336–361, 2012.

[5] D. Kreutz et al., “Software-defined networking: A comprehensive
survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[6] R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Commun. surveys tuts., vol. 18, no. 1,
pp. 236–262, 2015.

[7] ETSI, “Network functions virtualisation; ecosystem; report on SDN
usage in NFV architectural framework,” Technical report, ETSI, Tech.
Rep., 2015.

[8] N. McKeown et al., “Openflow: Enabling innovation in campus
networks,” ACM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008.

[9] R. Enns, M. Bjorklund, and J. Schoenwaelder, “NETCONF
configuration protocol,” RFC 4741, December, Tech. Rep., 2006.

[10] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
ACM HotSDN, 2014.

[11] “Opendaylight,” https://www.opendaylight.org/, [Online; accessed
03-January-2022].

[12] F. Tomonori, “Introduction to ryu SDN framework,” Open Netw. Summit,
pp. 1–14, 2013.

[13] R. Wallner and R. Cannistra, “An SDN approach: Quality of service
using big switch’s floodlight open-source controller,” in Proc. APAN,
2013.

[14] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers:
A comparative study,” in Proc. IEEE MELECON, 2016.

[15] B. Pfaff et al., “Extending networking into the virtualization layer.” in
Proc. Hotnets, 2009.

[16] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proc. NSDI, 2015.

[17] V. Gupta, K. Kaur, and S. Kaur, “Developing small size low-cost
software-defined networking switch using raspberry pi,” in Proc.
CSI-2015, 2018.

[18] E. Upton and G. Halfacree, Raspberry Pi user guide. John Wiley &
Sons, 2014.

[19] P. R. Srivastava and S. Saurav, “Networking agent for overlay L2 routing
and overlay to underlay external networks L3 routing using OpenFlow
and Open vSwitch,” in Proc. IEEEAPNOMS, 2015.

[20] O. vSwitch, “Open vSwitch docker hub,” https://hub.docker.com/r/
openvswitch/ovs, 2008, [Online; accessed 20-December-2021].

[21] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in Proc. ICCCS, 2014.

[22] H. Zhang and J. Yan, “Performance of SDN routing in comparison with
legacy routing protocols,” in Proc. CyberC, 2015.

[23] S. Sendra et al., “Including artificial intelligence in a routing protocol
using software defined networks,” in Proc. IEEE ICC, 2017.

[24] F. Benamrane et al., “An east-west interface for distributed SDN control
plane: Implementation and evaluation,” Comput. Electr. Eng., vol. 57,
pp. 162–175, 2017.

[25] H. Yu, K. Li, H. Qi, W. Li, and X. Tao, “Zebra: An east-west control
framework for SDN controllers,” in Proc, ICPP, 2015.

[26] B. Almadani, A. Beg, and A. Mahmoud, “DSF: A distributed sdn control
plane framework for the east/west interface,” IEEE Access, vol. 9,
pp. 26735–26754, 2021.

[27] ETSI, “Network functions virtualisation (NFV) release 3; management
and orchestration; Vi-Vnfm reference point - interface and information
model specification,” Technical report, ETSI, Tech. Rep., 2018.

[28] ETSI, “Network functions virtualisation (NFV) release 3; management
and orchestration; Or-Vnfm reference point - interface and information
model specification,” Technical report, ETSI, Tech. Rep., 2018.

[29] ESTI, “OpenVIM,” https://osm.etsi.org/gitweb/?p=osm/openvim.git,
[Online; accessed 03-January-2022].

[30] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: Toward an open-
source solution for cloud computing,” Int. J. Comput. Appl., vol. 55,
no. 3, pp. 38–42, 2012.

[31] “Open infrastructure foundation,” https://openinfra.dev/, [Online;
accessed 03-January-2022].

[32] T. Sechkova, M. Paolino, and D. Raho, “Virtualized infrastructure
managers for edge computing: Openvim and openstack comparison,”
in Proc. IEEE BMSB, 2018.

[33] “Open source mano (OSM),” https://osm.etsi.org/, [Online; accessed
03-January-2022].

[34] “Open network automation platform (ONAP),” https://www.onap.org/,
[Online; accessed 03-January-2022].

[35] S. Gallagher, VMware private cloud computing with vCloud Director.
John Wiley & Sons, 2013.

[36] G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-Perez,
“Benchmarking open source NFV MANO systems: OSM and ONAP,”
Comput. Commun., vol. 161, pp. 86–98, 2020.

[37] N. F. S. De Sousa, D. A. L. Perez, R. V. Rosa, M. A. Santos, and
C. E. Rothenberg, “Network service orchestration: A survey,” Comput.
Commun., vol. 142, pp. 69–94, 2019.

[38] Cisco, “Network services orchestrator data sheet - cisco,” https://
www.cisco.com/c/en/us/products/collateral/cloud-systems-management/
network-services-orchestrator/datasheet-c78-734576.html, [Online;
accessed 03-January-2022].

[39] Ericsson, “Ericsson network manager,” https://www.ericsson.
com/en/portfolio/digital-services/automated-network-operations/
network-management/network-manager, [Online; accessed 03-January-
2022].

[40] ZTE, “Cloudstudio nfvo,” https://www.zte.com.cn/global/products/core_
network/201903151447/201707261124, [Online; accessed 03-January-
2022].

[41] ZTE, “Cloudstudio VNFM,” https://www.zte.com.cn/global/products/
core_network/201903151447/201707261125, [Online; accessed 03-
January-2022].

[42] ETSI, “Network functions virtualisation (NFV); assurance; report on
active monitoring and failure detection,” Technical report, ETSI, Tech.
Rep., 2016.

[43] C. Yu et al., “Flowsense: Monitoring network utilization with zero
measurement cost,” in Proc. PAM, 2013.

[44] R. Hofstede et al., “Flow monitoring explained: From packet capture
to data analysis with netflow and ipfix,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 4, pp. 2037–2064, 2014.

[45] H. Kim, S. Yoon, H. Jeon, W. Lee, and S. Kang, “Service platform
and monitoring architecture for network function virtualization (NFV),”
Cluster Comput., vol. 19, no. 4, pp. 1835–1841, 2016.

[46] Prometheus. [Online]. Available: https://prometheus.io/
[47] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases

and influxdb,” Studienarbeit, Université Libre de Bruxelles, p. 12, 2017.
[48] C. Gormley and Z. Tong, Elasticsearch: The definitive guide: A

distributed real-time search and analytics engine. "O’Reilly Media,
Inc.", 2015.

[49] M. Chakraborty and A. P. Kundan, “Grafana,” in Monitoring Cloud-
Native Appl., pp. 187–240, 2021.

[50] Y. Gupta, Kibana essentials. Packt Publishing Ltd, 2015.
[51] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS

routing algorithms for SDN: A comprehensive survey and performance
evaluation,” IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 388–415,
2017.

[52] D. Wischik, M. Handley, and C. Raiciu, “Control of multipath TCP and
optimization of multipath routing in the Internet,” in Proc. NET-COOP,
2009.

[53] R. G. Garroppo, S. Giordano, and L. Tavanti, “A survey on
multi-constrained optimal path computation: Exact and approximate
algorithms,” Comput. Netw., vol. 54, no. 17, pp. 3081–3107, 2010.

[54] J.-C. Chen, “Dijkstra’s shortest path algorithm,” J. Formalized Math.,
vol. 15, no. 9, pp. 237–247, 2003.

[55] K. Magzhan and H. M. Jani, “A review and evaluations of shortest path
algorithms,” Int. J. Sci. Technol. Research, vol. 2, no. 6, pp. 99–104,
2013.

[56] A. Madkour, W. G. Aref, F. U. Rehman, M. A. Rahman, and
S. Basalamah, “A survey of shortest-path algorithms,” arXiv preprint
arXiv:1705.02044, 2017.

[57] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in Proc. IEEE COLCOM, 2014.

[58] M. Peuster, J. Kampmeyer, and H. Karl, “Containernet 2.0: A rapid
prototyping platform for hybrid service function chains,” in Proc. IEEE
NetSoft, 2018.

[59] P. Wette et al., “Maxinet: Distributed emulation of software-defined
networks,” in Proc. IFIP Networking, 2014.

[60] M. Peuster, H. Karl, and S. van Rossem, “Medicine: Rapid prototyping
of production-ready network services in multi-pop environments,” in
Proc. IEEE NFV-SDN, 2016.

[61] C. Rotter et al., “Using linux containers in telecom applications,” in
Proc. ICIN, 2016.

URIOL et al.: PREDICTIVE PATH ROUTING ALGORITHM FOR LOW-LATENCY ... 805

[62] “Amazon ec2,” https://aws.amazon.com/ec2/, [Online; accessed 03-
January-2022].

[63] “Google cloud compute engine,” https://cloud.google.com, [Online;
accessed 03-January-2022].

[64] “Azure,” https://azure.microsoft.com/, [Online; accessed 03-January-
2022].

[65] Prometheus. [Online]. Available: https://openstack.org/
[66] “Eucalyptus cloud,” https://eucalyptus.cloud/, [Online; accessed 03-

January-2022].
[67] “Opennebula,” https://opennebula.io, [Online; accessed 03-January-

2022].
[68] S. Yadav, “Comparative study on open source software for cloud

computing platform: Eucalyptus, openstack and opennebula,” Int. J. Eng.
Sci., vol. 3, no. 10, pp. 51–54, 2013.

[69] R. Kumar, N. Gupta, S. Charu, K. Jain, and S. K. Jangir, “Open source
solution for cloud computing platform using openstack,” Int. J. Comput.
Sci. Mobile Comput., vol. 3, no. 5, pp. 89–98, 2014.

[70] “Opennebula,” https://wiki.openstack.org/wiki/Heat, [Online; accessed
03-January-2022].

[71] J. Denton, Learning OpenStack Networking (Neutron). Packt Publishing
Ltd, 2014.

[72] O. Tkachova, M. J. Salim, and A. R. Yahya, “An analysis of SDN-
OpenStack integration,” in Proc. PIC S&T, 2015.

[73] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven SDN controller architecture,” in Proc. WoWMoM, 2014.

[74] B. Yi et al., “A comprehensive survey of network function
virtualization,” Comput. Netw., vol. 133, pp. 212–262, 2018.

[75] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle,
“Throughput and latency of virtual switching with open vSwitch: A
quantitative analysis,” J. Netw. Syst. Manag., vol. 26, no. 2, pp. 314–338,
2018.

[76] A. A. Siddiqui, OpenStack Orchestration. Packt Publishing Ltd, 2015.
[77] R. Diestel, “Extremal graph theory,” in Graph Theory. Springer, 2017,

pp. 173–207.
[78] R. Chen, H. Xiao, and D. Yang, “Autoregressive models for matrix-

valued time series,” J. Econometrics, vol. 222, no. 1, pp. 539–560, 2021.
[79] C. Butler, “Automating orchestration in the cloud with Ubuntu Juju,” in

Proc. UCMS, 2014.
[80] Prometheus. Prometheus pushgateway. [Online]. Available: https://

github.com/prometheus/pushgateway
[81] Qperf. Qperf. [Online]. Available: https://linux.die.net/man/1/qperf
[82] Ffmpeg. Ffmpeg. [Online]. Available: https://ffmpeg.org/
[83] A. Martin et al., “Network resource allocation system for QoE-aware

delivery of media services in 5G networks,” IEEE Trans. Broadcast.,
vol. 64, no. 2, pp. 561–574, 2018.

Juncal Uriol is with the Department of Digital
Media, Vicomtech. She received the Electronic
Communications Engineering degree and the M.
Sc. in Telecommunication Engineering in 2017
and 2019, respectively, in TECNUN University of
Navarra. She is a Research Assistant at Vicomtech,
where she works on projects concerning 5G
virtualized networks.

Juan Felipe Mogollón is with the Department
of Digital Media, Vicomtech, Spain. He received
his Telecommunication Engineering degree in 2006
from Universidad de Cantabria, Spain. Former
developer at Zitralia Security Solutions (October
2006 - June 2008). Currently, he is working
at Vicomtech in multimedia services and 5G
infrastructures projects.

Mikel Serón is with the Department of
Digital Media in Vicomtech. He received his
Telecommunications Engineering B. Sc and M. Sc.
from University of the Basque Country in 2016
and 2022 respectively. He worked as an Internship
Researcher (2018) in Telefónica R+D and as a
System Engineer (2018-2021) in Talio Solutions.
Since 2021 he is Research Assistant at Vicomtech,
where he works on projects concerning 5G, MEC,
virtualized networks and infrastructures.

Roberto Viola is with the Department of Digital
Media, Vicomtech. He received his advanced degree
in Telecommunication Engineering in 2016 from
University of Cassino and Southern Lazio and his
PhD degree in 2021 from University of the Basque
Country. He is Research Associate at Vicomtech,
where he works on projects concerning multimedia
services and network infrastructures.

Ángel Martín is with the Department of Digital
Media, Vicomtech. He received his PhD degree
(2018) from UPV/EHU and his engineering degree
(2003) from University Carlos III. He developed in
Prodys an standard MPEG-4 AVC/H.264 codec for
DSP (2003-2005). He worked in media streaming
and encoding research (2005-2008) in Telefónica.
He worked in the fields of smart environments and
ubiquitous and pervasive computing (2008-2010) in
Innovalia. Currently, he is on Vicomtech working in
multimedia services and 5G infrastructures projects.

Mikel Zorrilla is head of the Digital Media
department, Vicomtech. He received his
Telecommunication Engineering degree (2007) from
Mondragon Unibertsitatea, and an advanced degree
(2012) and PhD degree (2016) in Computer Science
from UPV/EHU. He has participated in many
international research projects, such as MediaScape
or Hbb4All European Projects. Previously he
has held positions at IK4-Ikerlan as an Assistant
Researcher (2002-2006) and at Deusto Business
School (2014) as an Associate Professor in media.

Jon Montalbán received the M.S. Degree
(2009) and PhD (2014) in Telecommunications
Engineering from the University of the Basque
Country (UPV/EHU). Since 2009 he is part
of the TSR (Radiocommunications and Signal
Processing) research group at UPV/EHU, where
he is a Postdoctoral Researcher involved in several
projects in the Digital Terrestrial TV broadcasting.
His current research interests include digital
communications and digital signal processing
for mobile reception of broadband wireless

communications systems in 5G.

