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On Collaborative Multi-UAV Trajectory Planning
for Data Collection

Shahnila Rahim, Limei Peng, Shihyu Chang, and Pin-Han Ho

Abstract—This paper investigates the scenario of the Internet
of things (IoT) data collection via multiple unmanned aerial ve-
hicles (UAVs), where a novel collaborative multi-agent trajectory
planning and data collection (CMA-TD) algorithm is introduced
for online obtaining the trajectories of the multiple UAVs without
any prior knowledge of the sensor locations. We first provide
two integer linear programs (ILPs) for the considered system by
taking the coverage and the total power usage as the optimization
targets. As a complement to the ILPs and to avoid intractable
computation, the proposed CMA-TD algorithm can effectively
solve the formulated problem via a deep reinforcement learning
(DRL) process on a double deep Q-learning network (DDQN).
Extensive simulations are conducted to verify the performance of
the proposed CMA-TD algorithm and compare it with a couple
of state-of-the-art counterparts in terms of the amount of served
IoT nodes, energy consumption, and utilization rates.

Index Terms—Collaborative UAVs, data collection, deep rein-
forcement learning, energy efficiency, IoT coverage, trajectory
planning.

I. INTRODUCTION

DATA collection is one of the major applications of
Internet of thing (IoT) systems, and its design is subject

to many challenges, particularly in the event that each thing is
under stringent capacity constraints related to power consump-
tion, computation, and communication ranges. It has been an
emerging application by using UAVs as aerial access points for
data collection where the terrestrial telecommunication infras-
tructure, such as mobile data services, is unavailable [1]–[3].
There are numerous advantages to using UAVs for IoT data
collection in the aspects of cost-effectiveness, adaptation to the
environment, ad hoc network access of UAVs, as well as the
possibility of a line-of-sight (LoS) transmission link thanks to
the high altitude of the UAVs [4]–[6].

Despite the numerous advantages of employing UAVs in
IoT data collection, a number of issues arise and need to
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be addressed before the considered scenario can be readily
launched. The most critical one is to cope with the ex-
cessive energy consumption by the UAVs to support their
cruising/hovering in the course of data collection [7], which
could seriously impair the operational efficiency and applica-
bility. An energy-efficient resource allocation strategy has been
considered essential in achieving satisfactory performance for
UAV-based data collection [8]. In [9], a multi-dimension
search space was proposed to enhance the energy efficiency
of a single battery-power-limited UAV in data collection
scenarios.

A. Literature Review

Extensive research has been conducted on the topic of UAV-
assisted data collection for IoT systems. In [15], the authors
optimized the data offloading with minimum power usage by
formulating and solving a non-convex problem. The authors
in [17] and [18] considered using multiple UAVs for data col-
lection, and they attempted to achieve an optimized trajectory
design via clustering and cluster-heads formation to minimize
the total power consumption, where the clustering is performed
based on prior knowledge of the environment. In [19], the
authors examined the power efficiency of a single UAV where
hovering points were predefined and considered the fly-hover-
communication design to optimize hovering points and flight
duration.

Until now, very few studies have been reported to deal
exclusively with the UAV trajectory design problem by con-
sidering the partially observed networking environment and
unexpected mobility/locations of the IoT devices. In [20], the
authors introduced a model-based deep reinforcement learn-
ing (DRL) UAV path planning algorithm for data collection,
where a device localization mechanism was used by dividing
the ground nodes into either known or unknown locations.
Nonetheless, they made the assumption that the UAVs are
given predetermined targets and the IoT nodes are static with
complete location information. In [10], the authors proposed
a novel approach named meta-TD3 that integrates DRL with
meta-learning to control a UAV for tracking uncertain moving
targets in various scenarios. Moreover in [12] and [13], the au-
thors focused on single-UAV trajectory design and considered
radio resource allocation in their optimization.

It is clear that launching multiple UAVs can achieve much
better efficiency and economic effectiveness compared to its
single-UAV counterpart, where multiple UAVs are managed
to cover the given geographic area and collect information,
e.g., taking photos, from different perspectives simultaneously.

1229-2370/23/$10.00 © 2023 KICS
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Table I
COMPARISON BETWEEN THE PROPOSED SOLUTION AND EXISTING WORKS.

Ref Collaborative UAVs Unknown environment Dynamic environment Adaptive beamwidth Energy efficiency Trajectory Optimization RL IoT nodes coverage maximization

[10] ✓ ✓ ✓

[9] ✓ ✓ ✓

[6]

[11] ✓ ✓ ✓

[12] ✓ ✓ ✓ ✓

[13] ✓ ✓ ✓

[14] ✓ ✓ ✓

[7] ✓ ✓

[15] ✓ ✓

[16] ✓ ✓

Proposed work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In spite of its apparent advantage, the multi-UAV scenario is
subject to a number of challenges that need to be addressed
before making such a scenario in reality [21]. The authors
in [2] investigated an online multi-UAV age-of-information-
aware planning process where the mobility of IoT devices
is randomly generated. Nonetheless, it was stated that the
majority of the proposed policies related to the UAV-enabled
optimizations are just for a single UAV while the collaboration
among the multiple UAVs is not fully explored and thus cannot
take full advantage of the multi-UAV collaboration [2], [22]. A
multi-UAV-assisted wireless system was studied in [16] with
the aim of maximizing the minimum throughput amongst all
the ground nodes. In [23], the mobility and deployment of
multi-UAVs were studied to collect data from IoT nodes such
that the transmitted energy of the IoT node is minimized.
However, the collaboration among the UAVs and overall
system utilization by using multiple UAVs were not discussed.
Authors in [11] optimize resource allocation and trajectories
with multiple UAVs using multi-agent RL and a distributed
learning framework to enhance the overall fairness and system
throughput.

It is notable that all the above studies designed the UAV
trajectory in an offline manner, which may not be feasible due
to the ideal assumptions that all the environmental conditions
and parameters, such as the locations of the sensors and the
amount of data to be collected, are available. Instead, an intel-
ligent solution without prior knowledge of the predetermined
targets is desired. As such, people have resorted to solutions
based on reinforcement learning (RL), which does not require
historical data for training, while serving as an excellent
complement to the conventional offline optimization solutions
thanks to its superb ability to learn unknown environments
in a trial-and-error manner [24]–[26]. Nevertheless, model-
free RL algorithms, e.g., Q-learning, generally consider a
large number of states and actions and thus require a large
amount of memory to obtain the optimal policy. To reduce the
computational complexity, a combination of neural networks
and RL, namely DRL, is exceptionally suitable for high-
dimensional problems with complex state space and time-
varying environments, where a deep neural network (DNN)

is used to guide decision-making for satisfying performance
with even zero domain knowledge [14], [27].

With DRL, the authors in [14] proposed a trajectory plan-
ning algorithm for a single UAV on an IoT data harvesting
mission maximizing energy efficiency. The solution proposed
there was to try to maximize the fairness of communication
coverage. In [8], the authors designed a UAV-aided IoT system
relying on the shortest flight route of the UAV while maximiz-
ing the volume of data collected from the IoT nodes. After that,
they applied a DRL-based method for optimal path discovery
and throughput maximization in a particular coverage region.

B. Motivation and Contributions

From the existing literature, we find some serious issues
not well addressed. Firstly, the previously reported studies are
mostly based on an impractical assumption that the environ-
mental information is fully observable by each UAV. Secondly,
the previously reported studies do not allow UAVs to learn
online. Even though some existing works considered artificial
intelligence, but may fail to incorporate the unknown environ-
ments in the trajectory planning and IoT node communication
with minimum energy consumption.

Thus, the paper attempts to resolve the above-mentioned two
aspects by investigating a novel DRL-based scheme, namely
the CMA-TD algorithm, which is characterized by employing
a double deep Q-learning network (DDQN) for online training.
The contributions of this paper are summarized as follows:

• We formulate two optimization problems into integer
linear programs (ILP) for maximizing the coverage of
IoT nodes and minimizing the required total energy by
considering a wireless communication channel and a set
of UAV parameters.

• To avoid intractable computation complexity in solving
the ILPs, the proposed DRL-based CMA-TD algorithm
serves as an effective online framework for tackling
dynamic multi-UAV environments.

• Extensive simulation is launched to evaluate the perfor-
mance of the proposed DRL-based CMA-TD algorithm in
terms of the number of successfully served IoT nodes, en-
ergy consumption, and utilization rate. We also compare
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Table II
LIST OF PARAMETER NOTATIONS.

Parameters Values

I Set of IoT nodes

m× n Number of unit cells

H Flying altitude of UAV (m)

Tmax Maximum flying time

Ej,max Maximum power of the UAV j (W )

U Set of UAVs

SPj Starting position of UAV j

Pf Final position of UAVs

Qt
j = (xt

j , y
t
j , H) Coordinates of UAV j at time t,

G Antenna gain (dB)

Ecomm Communication related energy (W )

Eprop Propulsion energy (W )

Ehover Hovering energy (W )

EDC Power consumed by data collection (W )

ξ0 Blade profile

ξ1 Induced power of UAV

v0 Rotor induced velocity (m/s)

µtip Tip of the rotor blade (m/s)

z0 Fuselage drag ratio (m2)

τ Rotor solidity

κ Air density (kg/m3)

A Rotor disc area (m2)

B Bandwidth

Et Total power consumption (W )

dmin Minimum distance between UAVs (m)

α Path-loss exponent

σ Noise variance

Yi,j ∈ {0, 1} Binary variable, 1 if UAV j can successfully
serve IoT node i, and 0 otherwise.

the proposed scheme with two previously reported online
learning algorithms, namely distributed multi-agent Q
learning (DMA-QL) [28] and deep Q network-based
trajectory and data collection optimization (DQN-TDCO)
[8] in designing the multi-UAVs trajectories. Our simu-
lation results demonstrate that the proposed DRL-based
CMA-TD algorithm outperforms its counterparts under
various dynamic environments and wireless channels.

C. Organization
The rest of this paper is organized as follows. Section

II presents the system model which includes the network
architecture, energy consumption model, and reinforcement
learning fundamentals employed in this study. Section III
presents the problem formulations in ILP and a DRL process
for the multi-UAV data collection scenario considered in this
study. Section IV presents the proposed DRL-based CMA-
TD algorithm. Simulation results are presented in Section V.
Section VI concludes the paper.

Fig. 1. System architecture.

II. SYSTEM MODEL

A. Network Architecture

We consider a UAV-assisted IoT network with a set of IoT
nodes I = {1, · · ·, I}, distributed randomly in the area of
interest (AoI). A set of UAVs U = {1, · · ·, U} are launched
for data collection from the IoT nodes without the assistance
of any terrestrial communication infrastructure. Let the AoI
be divided into m × n equal-sized square grid cells where
m,n ∈ N. Let the coordinates of the grid cells be denoted
by cx,y , where cx,y = {c1,1, c1,2, · · ·, cm,n}. Without loss of
generality, let the UAVs be flying over the AoI at altitude H
and attempting to maximize the number of served IoT nodes
within the given serving time period STmax. We assume the
UAVs do not have any prior knowledge regarding the locations
of the IoT nodes, while they can communicate with each other
and share their coordinates to avoid collisions.

Let the UAVs start their mission at the initial starting
positions, denoted as SPj , where j ∈ U . The current location
of UAV j, at time step t is defined as Qt

j = (xtj , y
t
j , H), where

t ∈ T = {0, 1, 2, · · ·, T}, where T is the final time step and H
is the altitude of UAV j. Let the resting location of the UAVs
be denoted as Pf as shown in Fig. 1.

Fig. 2 illustrates that the collaborative UAVs start their
mission and plan their trajectories for coverage maximization
while avoiding collision with each other. We assume that each
UAV is equipped with a directional antenna of adjustable
beamwidth for data collection, and another set of antennas
for inter-UAV communication.

For simplicity, we assume that the azimuth and elevation
half-power beamwidths of the UAVs antenna are equal, where
both angles are measured as 2ϑ in radian for ϑ ∈ (0, π2 ) [29].
Furthermore, the corresponding antenna gain in direction (θ, δ)
is approximately modeled as

G(θ, δ) =

{
G0

ϑ2 , −ϑ ≤ θ ≤ ϑ,−ϑ ≤ δ ≤ ϑ,
g ≈ 0, otherwise.

, (1)

where G0 = (30000/22) × (π/180)2 ≈ 2.2846; θ and δ are
azimuth and elevation angle, respectively [29]. Note that, in
practice g satisfies 0 < g << G0/ϑ

2, and for simplicity we
assume g = 0. The beamwidth angle is adjusted according to
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Fig. 2. An illustration of collaborative UAV-enabled wireless communication
with dynamic beamwidth.

the number of IoT nodes detected. As exemplified in Fig. 2,
UAV j at time t has detected a number of Nj,t IoT nodes.
To strengthen the received signal, UAV j changes the antenna
angle to narrow the lobe until at least Nj,t/2 IoT nodes are
in the range.

With a non-observable environment, the UAVs have no prior
knowledge of the IoT node locations. Moreover, when data of
a node is collected by one of the UAVs, the node is then
marked as collected to avoid double collection by another
UAV. In a large area of certain parameters and grid sizes,
we are interested in the minimal number of collaborative
UAVs required to accomplish a given target of data collection
provided with minimum total energy consumption.

B. Reinforcement Learning
This study applies a reinforcement learning method to

solve the proposed CMA-TD problem which is modeled as
a Markov decision process (MDP), denoted by a 4-element
tuple, i.e., M = (S,A,R, Pa). Here, A, S, and R represent
the action, the state, and the reward function, respectively;
Pa is the probability of transiting from state s to state s′. A
policy π in RL is a mapping from state s to action a. However,
the policy controls the agent’s action and, consequently, the
rewards it obtains. The agent in the MDP learns from scratch
in a trial-and-error manner by taking time-discrete actions to
interact with the environment [22], [30]. Specifically, the state
observed by the agent in each time slot t, denoted by st ∈ S,
takes action at ∈ A and gets a negative or positive reward
rt ∈ R. As the process iterates, the agent propagates to the
new state st+1 according to the policy π. The reward at time
step t, i.e., Rt, is expressed as follows,

Rt =

T∑
t=1

γt−1rt, (2)

where γ is the discount factor ranging from 0 to 1, and a
larger γ value indicates the significance of future rewards. T
is the final time step. Specifically, the agent seeks behavior
policy π that can maximize the cumulative expected reward,
also known as the Q function, given as:

Qπ(st, at) = argmaxE[Rt|st, at]. (3)

This study employs the double deep Q-network (DDQN)
technique [31] with the target value given by:

Y DD
t = rt+1 + γQθ̃(st+1, argmax

at+1
Qθ(st+1, at+1)), (4)

and the corresponding loss function is expressed as:

LDD(θ) = E[(Qθ(st, at))− Y DD
t )2]. (5)

With DDQN, two parameters θ and θ̃ are introduced, which
are used to suppress any possible overestimation of the action
values and estimate the value of that action, respectively. When
calculating LDD(θ), the target value is taken and thus the
back-propagating gradient is stopped before Y DD

t .

C. Energy Consumption Model

There are two main parts for the UAV power consumption:
(i) Propulsion power, and (ii) communication-related power.
The communication-related power is utilized when the UAVs
send, process, and receive signals, denoted by Ecomm(j) for
UAV j. The propulsion power is consumed while hovering and
flying, which is formulated as a function of its speed [19]:

Eprop(j) = ξ0

(
1 +

3v2

µ2
tip

)
+ ξ1

(√
1 +

v4

4v20
− v2

2v20

) 1
2

+

(
1

2
z0τκAv

3

)
,

(6)
where ξ0 and ξ1 are constant parameters that denote blade
profile and induced power, respectively. While the UAV is at its
hovering state, µtip represents the tip of the rotor blade and we
use v0 to represent the induced rotor velocity during hovering.
Furthermore, κ, τ , z0, and A are parameters representing air
density, rotor disc area, rotor solidity, and fuselage drag ratio,
respectively.

To calculate the energy consumed by UAV j during hover-
ing, we take v = 0 in (6), then the hovering energy can be
expressed as:

Ehover(j) = ξ0 + ξ1. (7)

When a UAV collects data from an IoT node, it hovers above
the IoT nodes and consumes communication-related power.
Thus, the total power consumed during data collection by
UAV j is denoted by EDC(j) and given as:

EDC(j) = Ehover(j) + Ecomm(j), (8)

Whereas, the total power consumed by UAV j at time t can
be calculated as:

Et
j = Et

DC(j) + Et
prop(j). (9)

During the flying period, the trajectory of UAV j is ex-
pressed by a series of kj cells that are visited by the UAV,
denoted as îj = [̂ij1, î

j
2, ..., î

j
kj
], is the vector which includes

the cells UAV j has visited and served the IoT nodes and
kj represents the last cell visited by UAV j. In each move,
a UAV can take either one of the discrete four directions
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Fig. 3. Trajectory of UAV.

from its current position, i.e., north, south, east, and west.
Fig. 3 shows an example of the trajectory of UAV 1 in
the AoI that is expressed as the cells visited during the
mission, i.e., î1 = [1, 2, 7, 8, 13, 14, 9, 10, 15, 20]. The total
energy consumption by UAV j in the mission defined by îj is
composed of the components due to UAV cruising, hovering,
and data collection given in (9), which is denoted as F̃ (̂ij):

F̃ (̂ij) =
∑
t∈T

(Et
DC(j) + Et

prop(j)). (10)

D. Channel Model and Data Collection Rate

A UAV operated at a sufficiently high altitude tends to
establish LoS links with the ground IoT nodes. However, it
also experiences small-scale fading caused by the presence of
rich scattering in the environment [32]. For the up-link channel
between UAV and IoT node, we use the rician fading channel
[33]. The channel model between UAV j ∈ U and IoT node
i ∈ I at time t ∈ T can be expressed as:

htj,i =
√
βj,igj,i, (11)

where gj,i is the small-scale fading co-efficient and βj,i is
the average channel power gain accounting for signal attenu-
ation, including both shadowing and path loss, which can be
expressed as:

βj,i = β0d
−α
j,i , (12)

where dj,i denotes the horizontal distance between UAV j and
IoT node i at height H . β0 is the average channel power gain
at the reference distance of d0 = 1 m and α is the path loss
exponent that usually has a value between 2 and 6 [33].

The small-scale fading of the LoS path can be modeled by
rician fading as:

gj,i =

√
κj,i

κj,i + 1
g +

√
1

κj,i + 1
g̃, (13)

where g represents the deterministic LoS channel component
with |g| = 1. The variable g̃ denotes the randomly scattered
component, which follows a zero-mean unit-variance sym-
metric complex gaussian distribution random variable [32].
The parameter κj,i represents the rician factor of the channel
between IoT node i and UAV j.

In the considered scenario, UAV j has detected N IoT nodes
for communication at time t using the directional antenna by
adjusting the beam width. When each of the N IoT nodes is
detected, a data communication link is established and UAV j

starts to collect data from the N IoT nodes. Let the achievable
rate between the IoT node i and UAV j be expressed as:

Kt
j,i = B log

(
1 +

ρtGt|htj,i|2

σ2

)
, (14)

where B is the bandwidth of the channel, ρt is the transmitted
power of the IoT node at time t, Gt is the antenna power gain
of the ground (IoT node) to the flying UAV link at time t, and
σ is the noise variance. We define Γ as ρtGt|htj,i|

2
/σ2, which

is signal-to-noise-ratio.

III. CMA-TD PROBLEM FORMULATION

We formulate the proposed CMA-TD problem into two ILPs
and a DRL process, respectively, which are presented in this
section.

A. ILP-based Formulations

The CMA-TD problem is first formulated into two ILPs
with respective targets. The first is to maximize the total
number of served IoT nodes within the flight time T . To serve
IoT node i, its data Di should be completely collected by UAV
j within a given time constraint. Let Yi,j ∈ [0, 1], ∀i ∈ I,
j ∈ U , be a binary variable that is equal to 1 if UAV j can
successfully serve IoT node i, and 0 otherwise. The formulated
optimization problem for maximizing the overall served IoT
nodes is expressed as:

max
Y

∑
j∈U

∑
i∈I

Yi,j (15a)

s.t. STi ≤ STmax,∀i ∈ I, (15b)

Q0
j = SPj , Qj = Pf,∀j ∈ U , (15c)∑

j∈U

∑
i∈I

Yi,j = 1, (15d)

Yi,j ∈ {0, 1},∀i ∈ I,∀j ∈ U , (15e)

F̃ (̂ij) ≤ Ej,max,∀j ∈ U ,∀i ∈ I (15f)

Constraint (15b) guarantees that each served IoT node
uploads the data at a given serving time STmax. (15c) defines
the initial and final position of UAV j. In (15d), Yi,j is set to
1 if IoT node i is assigned to UAV j, and 0 otherwise. (15e)
guarantees Yi,j can be either 0 or 1 at time t. (15f) ensures that
the energy consumed by UAV j when following a trajectory
îj must be less than the maximum energy of UAV j.

The second ILP formulation aims to minimize the total
power consumed by collaborative UAVs which is given as
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follows:

min
Y

∑
j∈U

∑
t∈T

Et
j (16a)

s.t. Et
j ≤ Ej,max,∀j ∈ U ,∀t ∈ T , (16b)

Qt
j ≤ ψ,∀j ∈ U ,∀t ∈ T , (16c)

Q0
j = SPj , Qj = Pf,∀j ∈ U , (16d)

F̃ (̂ij) ≤ Ej,max,∀j ∈ U ,∀i ∈ I, (16e)∑
j∈U

∑
i∈I

Yi,j ≥Mj . (16f)

Constraints (16b) and (16c) guarantee that UAV j energy
consumption at time t should be less than the maximum power
and fly inside the AoI, i.e., ψ. (16d) defines the initial and final
position of UAV j. (16e) stipends that the energy consumed
by UAV j for following a sequence to detect and serve IoT
nodes must be less than the maximum energy of UAV j. (16f)
ensures that UAV j must cover at least a number of Mj IoT
nodes.

B. DRL-based Formulation

Solving the above ILPs could lead to serious scalability
issues and hardly be feasible in a large network environment.
Accordingly, we are motivated to resort to a DRL-based
approach, namely the CMA-TD algorithm, that is expected
to not only achieve efficient path planning and energy man-
agement but also better scale with the problem size. Given
multiple identical UAVs collaboratively working as agents
with a similar set of states and actions, the goal of the proposed
DRL-based CMA-TD algorithm is to jointly optimize the
number of served IoT nodes as well as the overall power
consumption.

The state and action of the proposed DRL-based CMA-TD
problem are given as follows:

1) State space: The state st at time t is a five-element tuple
given as follows: st = (Qt

j , η
t
j , φ

t
j , σ

t
j , χ

t
j),

• Qt
jQ
t
jQ
t
j is the cell that UAV j is located at time slot t.

• ηtjη
t
jη
t
j is the set of cells in the range of UAV j at time
t.

• φt
jφ
t
jφ
t
j is the remaining power of UAV j at time t.

• σt
jσ
t
jσ
t
j is the remaining time for completing the data

collection of IoT node i at time t
• χt

jχ
t
jχ
t
j is the remaining data to be collected of IoT node
i at time t

Note that the value ηtj is a variable subject to beam
width parameters.

2) Action space: An agent may take one of the
five moving actions at each state, denoted as
A = {+x,+y,−x,−y, 0} to represent the action,
where −y, +y, −x, or +x indicates that UAV j makes
a change of its states by moving downwards, upwards,
right, or left, respectively. Contrarily, 0 represents that
UAV j is hovering for data collection.

3) Reward function: The purpose of the proposed DRL-
based CMA-TD problem is to maximize the expected
reward by UAV j on completing a single mission from
its initial to the final position. The trajectory reward is
defined as

rtj =

{
+z, if Qt

j = Pf ,

−1, otherwise,
, (17)

where a positive reward z is received when UAV j
reaches the final destination, otherwise negative 1
penalty is received for taking a step and not completing
the mission. Further, with (15), (16), and (17), we design
a reward function by using parameters ζ and ξ, which
encourages the UAVs to maximize the reward by serving
the IoT nodes with minimal energy consumption. The
combined reward of UAV j at time t is defined as

Rt
j = ζ

Yi,j
Et

j

+Kt
j,i + ξrtj , (18)

where Yi,j and Et
j are defined according to (15) and

(16), respectively. The total reward after the mission
completion of UAV j can be formulated as below:

REj = ζ
Y

E
+K + ξr, (19)

where Y =
∑U

j=1

∑I
i=1 Yi,j and E =

∑T
t=0

∑U
j=1E

t
j ,

K =
∑T

t=0K
t
j,i and r =

∑T
t=1 r

t
j .

The total reward of the episode including all UAVs can
be calculated as:

Rtotal =

U∑
j=1

REj . (20)

IV. PROPOSED CMA-TD ALGORITHM

To solve the DRL-based formulation, we introduce a novel
CMA-TD algorithm given in Algorithm 1. The input of CMA-
TD are the state of UAVs, replay memory Mr, as well as
other parameters including learning rate α, discount factor γ,
and epsilon probability ϵ. The output is the optimal policy
π∗. In the training phase, we first initialize the evaluation and
target network, and other parameters (lines 3–4). In line 5,
an action space is generated according to Section (III-B). In
each training episode, a UAV flies around the AoI to serve
the IoT nodes and reach the resting place. Particularly, the
environment is reset at the beginning of each episode (line 8).
At each time step t, each UAV makes its own observation of
the environment and takes action randomly with probability ϵ
using the ϵ-greedy policy, and otherwise selects an action with
the maximum Q-value (lines 10–12) that can be obtained by
(3).

After the execution of the selected action, the UAV receives
a reward Rt

j from the environment according to (18), observes
the new state, and adjusts the beamwidth according to Sec-
tion II-A (lines 16–18). In line 19, the transition tuples, i.e.,
(st, at, rt, st+1), are stored in a shared replay memory Mr. To
train the evaluation network θ, a mini-batch of tuples Bm can
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Algorithm 1: Collaborative multi-agent for trajectory
planning and data collection

1 Input: replay memory Mr, epsilon probability
ϵ ∈ [0,1], states, learning rate α ∈ [0,1], discount
factor γ ∈ [0,1]

2 Output: The optimal policy π∗

3 Initialize current network parameter θ and the target
network θ̃;

4 Initialize current network Q(st, at, θ) with weights θ
and the target network Q(st, at, θ̃) with weights θ̃;

5 A ← sampleActionSpace();
6 while ⌉ ≤ Total Episodes do
7 t← 0;
8 δ ← resetEnvironment();
9 while (Qt ̸= Pf ) do

10 st ← observeState(δ);
11 c ← randomSample([0,1]);
12 Select action: at ← randomAction(A), if c ≤ ϵ

at ← argmaxQ(st, at, θ), Otherwise.
13 if UAV j collects data from IoT node i then
14 mark i as collected
15 end if
16 Rt

j ← obtainReward(at);
17 st+1

j ← observeNewState(at);
18 Observe st and adjust beamwidth;
19 Store the transition tuple (st, at, rt, st+1) in

common Mr;
20 Sample mini batch of Bm tuples;
21 if (st+1 = Pf ) then ;
22 Calculate target;
23 Yt = Rt+1;
24 else;
25 Y DD

t =
Rt+1 + γQθ̃(st+1, argmax

at+1
Qθ(st+1, at+1)),

26 Perform the gradient decent step;
27 Calculate the loss

LDD(θ) = E[(Qθ(st, at))− Y DD
t )2];

28 Soft update of target parameters,
29 θ̃ = (1− x̃)θ̃ + x̃θ (update factor x̃ =

[0,1]);
30 ⌉ = ⌉+ 1
31 end while
32 end while

be randomly sampled from replay memory Mr (line 20). θ
is updated by stochastic gradient descent (back-propagation)
on the sampled mini-batch, and the loss is calculated before
updating (lines 21–29). The main improvement made by
DDQN [31] is made in the sense that the action values may get
overestimated due to approximating the value of the expected
maximum value-action of the next state (see Section II-B),
where the overestimation of action values can be decreased by
choosing the best action using θ but estimating the value of

that action using θ̃. When calculating LDD(θ) the target value
is taken; thus, the back-propagating gradient is stopped before
Y DD
t . Finally, the episode ends when the UAVs arrive at their

destination. Line 7 to line 29 is repeated for Total Episodes.
After training, a policy is obtained with a well-trained DNN
that UAV can navigate in a real-time environment.

The computational complexity of the proposed technique
can be analyzed by considering various factors and compo-
nents involved. Let m × n be denoted as the grid size. We
assume a neural network with P parameters, Tep training
episodes, and a replay memory size of Mr.

During the training phase, the input complexity can be
expressed as O(m × n), representing the number of grid
elements. The complexity of the network architecture is O(P ),
reflecting the number of learnable parameters. The train-
ing iterations contribute a complexity of O(Tep). Therefore,
the overall complexity of the training phase is denoted as
O((m× n) ∗ P ∗ Tep). In the Q-learning update step, the
action space complexity is O(1), assuming a constant number
of actions denoted as A. The Q-value update has a con-
stant complexity of O(1). The replay memory complexity is
O(Mr), representing the size of the memory. Thus, the overall
complexity of the Q-learning update step can be expressed as
O(A ∗Mr).

Considering the above, the total complexity of the approach
can be summarized as O((m × n) ∗ P ∗ Tep) + O(A ∗Mr).
This highlights the significant computational requirements of
the training process, as it depends on the grid size, number
of parameters in the neural network, training iterations, action
space, and replay memory size.

V. PERFORMANCE EVALUATION

Extensive simulation is conducted to evaluate the perfor-
mance of the proposed DRL-based CMA-TD algorithm. This
section discusses the simulation settings and presents the
results and analysis.

A. Simulation Setup

We evaluate the performance of the proposed DRL-based
CMA-TD algorithm on the number of required collaborative
UAVs under various several scenarios. The DRL model is
trained using the parameters listed in Table III.

We consider a square area of 40 km, which is divided into
three different grid sizes. The details of the three scenarios are
presented below:

1) Scenario 1:Scenario 1:Scenario 1: The square area grid size is 500 × 500 cells
with 80 m size per cell and IoT nodes i.e., I = 200 and
I = 300, are randomly distributed in which 5% of IoT
nodes are moving. Whereas, 1 to 3 UAVs are deployed
to analyze the optimal number of UAVs.

2) Scenario 2:Scenario 2:Scenario 2: The square area grid size is 1000 × 1000
cells with 40 m size per cell and IoT nodes i.e., I = 500
and I = 700 are randomly distributed in which 8%
of IoT nodes are moving. Moreover, 1 to 5 UAVs are
deployed to analyze the optimal number of UAVs.
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(a) Successfully served IoT nodes. (b) Energy consumed by UAVs. (c) Overall utilization rate of the system.

Fig. 4. Comparison of the proposed DRL-based CMA-TD algorithm with existing methods in scenario 1 a) a total number of IoT nodes served successfully, b)
energy consumed while serving and flying with a varying number of ground nodes, and c) overall utilization of the proposed DRL-based CMA-TD algorithm
with 300 IoT nodes.

(a) Successfully served IoT nodes (b) Energy consumed by UAVs (c) Overall utilization rate of the system

Fig. 5. Comparison of the proposed DRL-based CMA-TD algorithm with existing methods in scenario 2 a) a total number of IoT nodes served successfully, b)
energy consumed while serving and flying with a varying number of ground nodes, and c) overall utilization of the proposed DRL-based CMA-TD algorithm
with 500 IoT nodes.

(a) Successfully served IoT nodes (b) Energy consumed by UAVs (c) Overall utilization rate of the system

Fig. 6. Comparison of the proposed DRL-based CMA-TD algorithm with existing methods in scenario 3 a) a total number of IoT nodes served successfully, b)
energy consumed while serving and flying with different numbers of ground nodes, and c) Overall utilization of the proposed DRL-based CMA-TD algorithm
with 1200 IoT nodes.

3) Scenario 3:Scenario 3:Scenario 3: The square area grid size is 2000 × 2000
cells with 20 m size per cell and IoT nodes i.e., I = 1000
and I = 1200, are randomly distributed in which 10%
of IoT nodes are moving. Additionally, 1 to 8 UAVs are
deployed to analyze the optimal number of UAVs.

A four-layer neural network architecture with 256, 300, 218,
and 118 neurons in each layer, respectively, is employed to
constitute our DRL-based model. The experimental parameters
of DRL were determined through a trial-and-error approach,
where different parameter values were tested and evaluated
iteratively to find the optimal settings. The mini-batch size,

the discount factor γ, and the learning rate α are taken
as 128, 0.85, and 0.01, respectively. Initially, ϵ is set to
0.9 and is decayed by a factor of 0.855 until it reaches
0.05. For the comparison purpose, we consider two related
works as the best representation of the state-of-the-art, namely
DMA-QL [28] and DQN-TDCO [8]. The former is based
on a multi-agent distributed Q-learning algorithm to optimize
energy efficiency and outage of ground users, while the later
employs a plain DRL process for trajectory design and data
collection optimization in a UAV-based IoT network.
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Table III
SIMULATION PARAMETERS.

Parameters Values
v 25 m/s

B 1 MHz [33]
H 100 m [29]
v0 7.2 [33]
ξ0 79.9 W
ξ1 88.6 W
µtip 200 m/s [33]
z0 0.3 m2 [33]
τ 0.05 [33]
κ, 1.225 kg/m3 [33]
A 0.79 m2 [33]
ζ 0.6
ξ 0.4
ϑ 80°– 140°
γ 0.8
α 0.01
ϵ 0.9
Optimizer Adam
Mini-batch size 128

B. Results and Analyses

We analyze the performance of the proposed CMA-TD
algorithm for trajectory design in terms of the number of
served IoT nodes. We consider the effect of the number of
collaborative UAVs and the total energy consumption.

The simulation results for scenario 1 with different numbers
of IoT nodes on the ground and different numbers of UAVs
in the air are given in Fig. 4, while DMA-QL and DQN-
TDCO employ 3 UAVs, respectively. It is clear that the
proposed DRL-based CMA-TD algorithm consistently outper-
forms DMA-QL and DQN-TDCO in terms of the number of
served IoT nodes. As shown in Fig. 4(a), the number of served
IoT nodes increases with the increment of the number of
UAVs. Compared to DMA-QL and DQN-TDCO, the proposed
DRL-based CMA-TD algorithm is improved by at least 35%
in the coverage of IoT nodes, while consuming much less
total energy when the number of UAVs increases, as shown
in Fig. 4(b). We can see that when the total number of UAVs
is three (3), the proposed DRL-based CMA-TD algorithm can
save at least 30% total energy compared to existing works. In
Fig. 4(c), we show the benefits of using multiple UAVs by
examining how much energy is saved and how many more
IoT nodes can be served by adding a UAV.

The simulation results for scenario 2 with different numbers
of IoT nodes on the ground and different numbers of UAVs
in the air are given in Fig. 5 where DMA-QL and DQN-
TDCO employed 4 UAVs. It is evident that the proposed DRL-
based CMA-TD algorithm can achieve better performance
than that of the counterparts DMA-QL and DQN-TDCO
in terms of serving maximum IoT nodes. As illustrated by
Fig. 5(a), the number of served IoT nodes increases with
the increment of the number of UAVs. Compared to DMA-
QL and DQN-TDCO, the proposed method can serve at least
twice the total number of IoT nodes. When the number of

Fig. 7. The effect of transmission distance to SNR.

Fig. 8. The effect of IoT nodes mobility to consumed energy.

UAVs is increased to five, the proposed DRL-based CMA-TD
algorithm consumes only 40% of the total energy compared
to the DMA-QL method and only 70% of the total energy
compared to the DQN-TDCO method when there are 700 IoT
nodes. When the IoT nodes are 500, the proposed DRL-based
CMA-TD algorithm only consumes at most 40% of the total
energy compared to existing DRL-based methods, as shown
in Fig. 5(b). In Fig. 5(c), it is observed that both the saved
energy and the increment of served IoT nodes can reach at
least 20% with the increment of the number of UAVs when
the total number of UAVs is less than 4.

The simulation results for scenario 3 with various numbers
of ground IoT nodes and UAVs in the air are given in Fig. 6,
while 6 UAVs are employed in the cases of DMA-QL and
DQN-TDCO. The proposed DRL-based CMA-TD algorithm
is still able to cover significantly more IoT nodes compared to
that of DMA-QL and DQN-TDCO, respectively. The number
of served IoT nodes increases with the increment of the num-
ber of UAVs, as indicated by Fig. 6(a). Notably, the number
of IoT nodes served by the proposed CMA-TD algorithm is
at least 100% and 20% more compared to that by DMA-QL
and DQN-TDCO, respectively. When the number of UAVs is
increased up to seven and the number of IoT nodes is 1000,
the proposed CMA-TD algorithm consumes only 15% and
40% of the total energy compared to that by DMA-QL and
DQN-TDCO, respectively. When the number of IoT nodes is
further increased up to 1200, CMA-TD consumes only 20%
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 9. The effect of adaptive beamwidth to the achieved data rate.

Table IV
TRAVELING COST (M).

Scenario 1 Scenario 2 Scenario 3

DMA-QL [28] 327494 649773 1043421

DQN-TDCO [8] 214372 303998 850066

DRL-based CMA-TD 38122 78950 98806

Table V
COMPARATIVE ANALYSIS OF ENERGY CONSUMPTION (W): CMA-TD

VERSUS ILP SCHEME.

10×10 Cells 15×15 Cells

ILP model 2698.22 3045.47

DRL-based CMA-TD 2831.75 3336.15

and 50% of the total energy compared to that by DMA-QL and
DQN-TDCO, respectively, as shown in Fig. 6(b). In Fig. 6(c),
we can observe that both the saved energy and the increment
of served IoT nodes can be improved with the increment of
the number of UAVs; and there is no significant performance
enhancement by further increasing the number of UAVs when
6 collaborative UAVs are already in place.

Fig. 7 shows the SNR with respect to the transmission
distance, defined as the distance between the IoT node on the
ground and the UAVs in the air. From Fig. 7, we observe that
our method is more robust than the considered counterparts
due to the higher SNR possessed by the proposed CMA-TD
algorithm.

In Fig. 8, we analyze the impact of the proportion of the
number of mobile IoT nodes to the consumed energy. We can
see that CMA-TD significantly outperforms the other DRL-
based counterparts. It is worth noting that the mobility incre-
ment introduces an increment of total energy consumption,
which is attested by the doubled energy consumption in the
presence of increased mobility of the IoT nodes from 10% to
30%.

Fig. 9 shows the achievable data rate by the fixed beamwidth
and adaptive beamwidth schemes at the UAVs where the
proposed CMA-TD algorithm is deployed. The antenna angle

varies from degree 80 to 140, which will affect the data rate
when serving the IoT nodes. Figs. 9(a), 9(b), and 9(c) show the
achievable rates for scenario 1 (200 IoT nodes and 3 UAVs),
scenario 2 (500 IoT nodes and 4 UAVs) and scenario 3 (1000
IoT nodes and 6 UAVs), respectively. It is observed that the
adaptive beamwidth scheme can provide significantly higher
data rates in all three scenarios than the other. The main
reason is that the adaptive beamwidth scheme can change its
beamwidth angle during the mission. Such adaptation to the
IoT environment is at the expense of higher computation and
hardware complexity.

Table IV compares the traveling cost of each scheme, which
is defined as the total distance traveled by all UAVs. This table
shows that launching a larger number of UAVs helps to reduce
the traveling cost, where the proposed CMA-TD algorithm has
taken significantly less cost than that by DMA-QL [28] and
DQN-TDCO [8], thanks to the use of DDQN that facilitates
much faster learning and thus better performance. We have
also seen that all the schemes take higher traveling costs in
scenario 3 than that in the others because the number of cells
is the largest among all scenarios, i.e., larger cell sizes and
more steps to finish the assigned mission.

In this study, we compared the energy efficiency of our pro-
posed CMA-TD scheme with that of the ILP model. Table V
presents the results obtained from two scenarios in an area of
200 m. In the first scenario, the area is divided into 10×10 cells
with 50 IoT nodes, while the second scenario considers 15×15
cells with 100 IoT nodes. In the 10×10 cell scenario, the ILP
resulted in an energy consumption of 2698.22 W, whereas
the CMA-TD scheme consumed 2831.75 W. Similarly, in
the 15×15 cell scenario, the ILP model showed an energy
consumption of 3045.47 W, while the CMA-TD scheme con-
sumed 3336.15 W. The results confirm that the proposed
CMA-TD has the ability of achieving close performance to
an optimal one obtained by the ILP model.

VI. CONCLUSIONS

In this paper, we introduced a novel collaborative multi-
agent trajectory planning and data collection (CMA-TD) al-
gorithm to solve the data collection problem for multiple
UAVs. Notably, the proposed CMA-TD algorithm leverages
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the double deep Q-learning (DDQN) architecture, aiming at
an effective real-time learning and decision-making process
without any prior knowledge of the network environment,
where energy efficiency and coverage of the multiple UAVs
can be maximized via collaboratively sharing of the respec-
tively observed information. The extensive simulation results
verified the significant benefits of applying the proposed
DRL-based CMA-TD algorithm against a couple of state-of-
the-art representative counterparts in all the considered sce-
narios regarding SNR, achieved data rate, and traveling cost.
In future research, we intend to investigate the deployment of
a centralized system, such as aerial computing, to facilitate
seamless communication and efficient coordination among
UAVs in the 3D environment.
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