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Polina Kutsevol, Onur Ayan, and Wolfgang Kellerer

Abstract—With the proliferation of wireless networks as an
indispensable component for a wide range of distributed Cyber-
Physical Systems applications, the paradigm of the networking
algorithms design independent from application goals abolishes.
Thus, the control-aware design of the wireless resource manage-
ment for wireless networked control systems (WNCSs) is shown
to be more effective from the application perspective than the
conventional approaches. In WNCS, the controller monitors and
actuates the plant through the status updates received from the
sensor over the network. This work focuses on application-aware
transmission scheduling over multi-hop networks for WNCSs.
As an intermediate metric, we use age of information (AoI) that
captures the freshness of the data on the controller. Being a
widely adopted metric for real-time applications, AoI does not
consider the particular goal of control applications. Nevertheless,
AoI is tightly coupled with the estimation error at the controller
that, in turn, directly impacts control performance. We derive
the distribution of AoI in the multi-hop network that exploits a
time-varying transmission schedule. Using this distribution, we
express the expected estimation error to formulate a minimization
objective for the scheduling. We propose exact and heuristic
methods for solving the optimization and compare different
approaches to resource allocation with respect to estimation error
and control costs. The proposed scheduling algorithm improves
the control performance by at least 15% compared to the
scheduling minimizing AoI. Introducing the schedule variability
over time allows for further performance improvement by 30%
in scenarios with scarce network resources.

Index Terms—Age of information (AoI), goal-oriented net-
working, link scheduling, MAC protocol, multi-hop wireless
networked control system (WNCS).

I. INTRODUCTION

EVOLVING applications in the fields of Industrial IoT,
smart factory and smart city, telehealth, smart agriculture,

unmanned aerial vehicles [1], [2] intertwine physical and
digital worlds, representing distributed cyber-physical sys-
tems (CPS), in which digital components remotely sense and
control physical entities. The wireless network becomes an
inseparable component between the physical plant, the sensor,
and the digital controller. Together they form a feedback loop
of a wireless network control system (WNCS) as shown in
Fig. 1, where the remote sensor sends the state measurements
of the plant to the controller for further actuation. The network
task shifts from error-free data delivery at a maximum rate
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Fig. 1. Considered scenario with sensor observing the plant state and sending
the measurements over N -hop wireless network to the controller for further
actuation. The links are subject to packet losses.

to support the goals defined by control applications through
the goal-oriented management of increasingly scarce network
resources. Such use cases as wireless sensor networks, IoT,
vehicular networks, and swarm intelligence imply the multi-
hop structure of the underlying network. These applications
are characterized by increased demand for wireless resources
and amplified adverse effects of inefficient resource manage-
ment on control performance [3], [4]. Thus, the goal-oriented
scheduling of application data transmission through multi-hop
networks that considers control performance is a critical design
challenge.

The network resource allocation in the context of WNCSs is
extensively studied in existing works. Control-aware schedul-
ing and event-triggering (ET) are some of the most prominent
methods used in control theory. The control-aware schedul-
ing policies are designed with the objective of control cost
minimization [5], [6]. ET concept [7], [8] enhances resource
utilization efficiency, as the status updates are filtered based
on their importance for the control process, and only a part
of them is transmitted over the network. Even though the
control theory methods are theoretically proven to be efficient
in terms of control performance, they may underperform in
practice because they simplify or neglect the effects caused
by network imperfections. Indeed, the transmission delays and
packet losses should be considered, as they can result in the
stale information available to the controller [9] impairing the
accuracy of control decisions.

The introduction of the age of information (AoI) met-
rics [10], [11] measuring the freshness of data on the re-
ceiver captures how the communication network affects the
performance of control applications. AoI is defined as the time
elapsed since the generation of the freshest update available at
the receiver. This definition stems from real-time application
requirements for timely status updates. Simultaneously, AoI
is related to network performance since losses and delays of
updates in the network directly affect age. Thus, AoI can be
seen as a semantic metric within the semantic communication
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concept [11]–[15]. The semantic communications paradigm
states that the network should be designed in a way to assists
the application goals rather than targeting the application-
agnostic error-free transmission of bits. The definition of
metrics such as AoI and beyond that capture value or relevance
of the transmitted data and cross-layer design of network
algorithms w.r.t. application goals are vital components of
semantic communications.

AoI can be used at the medium access control (MAC)
for prioritization of data for scheduling [16] or distributed
medium access [17]. Also, the average age can be part of the
minimization objective for scheduling [16]. Such approaches
enhance the performance of radio resources management w.r.t.
application goals compared to conventional networking meth-
ods targeting throughput maximization or delays or packet loss
minimization.

Thus, pure age is often considered a metric to determine
the relevance of transmitted data within WNCSs. However, in
that case, the one-hour-old information on the drone position
is seen to be as relevant as the one-hour-old measurement
of the temperature in the office. The indifference of AoI to
the purpose of communication stipulates the introduction of
metrics beyond age, such as the age of incorrect informa-
tion [18], the value of information [19], etc. Indeed, motivated
by control theory approaches, the exploitation of application
data, such that the dynamics of the control process, the mode
of its operation, as well as the instantaneous state, can help
to emphasize the most and the least relevant information,
boosting the efficiency of network resources utilization. The
works [20], [21] show that considering cross-layer metrics
beyond age improves the control performance.

The instantaneous knowledge of the state of all the system
elements would allow for extracting the most information
regarding the relevance of the communicated data. How-
ever, in most cases, especially in multi-hop scenarios, having
such knowledge is unrealistic due to the delays and losses
associated with transmission over the network between the
components. Instead, one can consider the policies targeting
improvement of the expected performance over some time
horizon based on the average status of the receiver w.r.t.
some semantic metrics. There exists an extensive analysis of
expected AoI and AoI distribution at the receiver depending
on the system structure and average network statistics such
as packet loss rate [22]–[24]. It is worth mentioning that
many application-aware metrics beyond age, e.g., the expected
estimation error of the controller, can be defined as functions
of age and parameters of a dynamic system. For instance, the
work [25] uses the stationary distribution of AoI in a single-
hop system and derives the scheduling for multi-loop WNCSs
minimizing expected estimation error, focusing on a single-
hop network scenario. Thus, the application-aware policies that
optimize the expected performance of WNCSs can be designed
using the distribution of age.

A. Our Contribution

Our main contributions can be split into two parts. The
first one is the derivation of the age distribution over a

multi-hop network with varying loss probabilities. The second
main contribution is applying the derived distribution in the
scheduling problem.

For the first part, we extend the work [23] that considers
AoI distribution for the constant packet loss probabilities. 1 In
contrast, in our model, failure probabilities on the links of a
multi-hop network are time-varying. Our analysis represents
an important extension of the model in [23]. It enables con-
ducting the performance analysis of real-time systems relying
on the AoI distribution in more general scenarios compared
to [23]. They include the cases when the loss probability of a
single transmission is not constant or when the loss probability
in a time slot depends on the chosen transmission strategy, e.g.,
scheduling decision. The accuracy of our analytical model is
verified with the help of simulations.

For the second part, we apply the obtained AoI distribution
to design the scheduling mechanism over a multi-hop network
that minimizes the expectation of the estimation error of the
controller. We propose the exact and greedy heuristic methods
for finding the optimal transmission schedule and demonstrate
that the heuristics method shows the performance close to
optimal. We analyze the control performance of different
scheduling approaches, including age-minimizing scheduling,
and show that the proposed policies outperform all alternative
mechanisms w.r.t. application goal. Finally, we demonstrate
that the time-varying schedule achieves further control perfor-
mance improvement.

B. Related Work

The approaches to the network resource management of
WNCSs in the control theory research consider application-
defined metrics as an objective. Still, they often make un-
realistic assumptions about the communication network. For
instance, the work [26] derives central scheduling for min-
imizing the estimation error for single hop WNCSs, but it
neglects packet dropouts in the network. The authors of [27]
jointly design policies for sampling, scheduling, and control
for multi-hop WNCSs that minimizes control cost but it con-
siders negligible communication delays and no packet losses.
The work [28] considered scheduling over multi-hop that is
optimized w.r.t. control cost, but there are constant delays and
no losses from the network side.

On the other side, there exist networking algorithms for IoT
and sensor networks designed for generic networks, but they
do not consider the performance w.r.t. a particular application.
For example, time division multiple access (TDMA)-based
scheduling for multi-hop Industrial IoT and Wireless Sensor
Networks are developed in [29] and [30]. Here, the au-
thors focus on the networking metrics that are undoubtedly
important for real-time control applications, such as cyclic
delay, reliability, and energy consumption. However, these
works do not consider the application-defined performance
metrics, making the efficiency of proposed algorithms w.r.t.
applications goals unclear.

Within the concept of Semantic Communications introduced
in [11]–[15], the network algorithms should prioritize the

1Note that the work [23] does not consider any resource allocation problem.
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significance of the transmitted data for application goals.
Moreover, they should consider the application performance
to efficiently deliver end-to-end services under the constraints
posed by the communication network. Works [10], [11] discuss
AoI - the semantic metric for real-time applications that cap-
tures the timeliness of the transmitted information. It is tightly
coupled with a sampling rate defined from the application side
and with delays and losses of packets in the network. Thus,
AoI can be considered a control- and network-aware metric for
control applications, even though it does not take into account
the dynamics of particular processes.

The minimizations w.r.t. to AoI are widely exploited for
resource management of real-time systems for single-hop [16],
[22], [31], [32] and multi-hop [22], [24], [33]–[37] scenar-
ios, where the network limitations intensify. The authors
of [33], [34], [36] focus on average AoI minimization under
interference constraints. First Come First Serve queueing on
intermediate nodes is considered in [33], [36], whereas nodes
transmit the last available to them updates in [34]. It is worth
mentioning that [37] shows that preemptive last generated first
served (LGFS) buffers are age-optimal if transmission times
follow an exponential distribution. In addition, non-preemptive
LGFS is optimal among non-preemptive strategies.

Unfortunately, average AoI does not capture the actual AoI
performance for many time-sensitive applications, including
control. Indeed, short peaks in AoI can be particularly harmful
to real-time applications without influencing average age. The
works [24], [35] consider peak AoI metric. In particular,
the authors of [24] derive the bounds on average and peak
AoI depending on the network topology, and [35] considers
distributed scheduling that targets low age within the battery
limits of energy harvesting sensors. The probability distribu-
tion of AoI in a multi-hop network is derived in [23], providing
a more meaningful description of the age performance of the
system. Exploiting AoI distribution also allows inferring the
performance of the system w.r.t. to metrics beyond the age
that can be expressed as a function of AoI.

As discussed in Section I, the exploitation of applica-
tion information beyond AoI enhances the performance of
network resource management algorithms w.r.t. application-
defined metrics, with that supporting the ideas of semantic
communications. Thus, the authors of [20] show that triggering
updates based on the estimation error in combination with AoI-
based scheduling results in better control cost performance
than the system considering only AoI. Network-aware event-
triggering based on the estimation error in [21] outperforms
the age-minimizing sampling policy. New metrics beyond age,
such as age of actuation [38], age of incorrect information [18],
age of deviation [39], value of information [19] are shown
to be beneficial for control and monitoring real-time systems
compared to age-minimizing approaches in terms of control
costs, system utilization, energy efficiency, or average estima-
tion error.

Whereas all the works mentioned above consider single-
hop network setup, the studies that evaluate the application-
defined semantic metrics for network management in multi-
hop scenarios are limited. The work [40] uses the model
predictive control method and finds routes over a multi-hop

network with delays and packet losses that minimize the
control cost over some time horizon in the future. The search
for the optimal route involves the consideration of all the
channel realizations over the considered horizon, limiting the
scalability of this approach. The authors of [41] demonstrate
that triggering updates based on the estimation error combined
with the reliable broadcasting of status updates over the whole
multi-hop networks allows significant energy saving. However,
the approach in [41] is designed for less demanding control
applications with slow dynamics. Finally, the authors of [42]
derive the scheduling minimizing average AoI or average
cost that can be represented as a function of AoI in multi-
hop networks with unreliable links using Lyapunov drifts.
Unfortunately, this work does not consider the potential of
considering control-defined metrics for the definition of the
cost function. In addition, the scheduling algorithm from [42]
requires instantaneous AoI knowledge over all the system
components, which can be infeasible in practical scenarios.

To the best of our knowledge, no prior works have designed
the scheduling algorithms for WNCS in multi-hop scenarios
that consider realistic network constraints and target the opti-
mization of application-defined metrics beyond age.

C. Notations

Throughout this paper, vectors and matrices are denoted
with small and capital bold symbols, e.g., v and M . vT and
MT are transposes of the corresponding vector and matrix,
and M−1 and Mp denote the inverse and pth power of the
matrix. The sign % represents a reminder of dividing one
integer by another. The set of positive integer numbers is
denoted with Z+.

II. SYSTEM MODEL

In this work, we consider a WNCS as on Fig. 1, with a
plant P , the state of which is measured by a remote sensor S.
The sensor sends the plant status updates to a controller C over
a multi-hop wireless communication network consisting of N
hops. The controller C is assumed to be co-located with the
plant P . Thus, based on the received state observations, the
controller can immediately apply the calculated control input
to the plant. In contrast, the sensor measurements must traverse
the network to reach the controller. The physical effects in
the wireless medium can potentially result in packet losses,
affecting the control decisions and the control performance.

A. Control Model

The plant is modeled in the discrete-time as a linear time-
invariant system with the following dynamic:

x[k + 1] = Ax[k] +Bu[k] +w[k], (1)

where x[k + 1] ∈ Rs is the plant state measured by the
sensor at a time step k + 1. It is affected by the state x[k] at
the previous time step, i.e., measured Ts before, through the
time-invariant state matrix A ∈ Rs×s. Here, Ts is a constant
sampling period. The control input u[k] ∈ Rg calculated by
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the controller at time step k contributes to the next state
through the time-invariant input matrix BRs×g . Disturbance
vectors w at each time step are independent and identically
distributed according to the zero-mean Gaussian distribution
with covariance matrix W ∈ Rs×s, i.e., w ∈ N (0,W ).

The set-point of the plant is 0 ∈ Rs, i.e., the controller goal
is to drive the plant to zero and herewith spend minimum
control effort. This goal is formalized with the introduction of
the linear quadratic Gaussian (LQG) cost, also referred to as
control cost that the controller should minimize:

J ≜ lim sup
T →∞

(
1

T

T −1∑
k=0

(x[k])TQx[k] + (u[k])TRui[k]

)
,

(2)
where T is a time horizon for the considered control task,
Q ∈ Rs×s and R ∈ Rg×g are weighting matrices used to
define how much the state dynamics is prioritized over the
control effort or vise versa.

If we suppose that the controller has access to the latest
state measurement, following the widely used linear quadratic
regulator (LQR) design described in [43], the control law is
derived through the minimization of the control cost (2) as:

u[k] = −Kx[k], (3)

where K ∈ Rg×s is the optimal feedback matrix. K can be
found through the solution P of discrete-time algebraic Ricatti
equation:

P = ATPA− (ATPB)(R+BTPB)−1(BTPA) +Q.
(4)

Positive semi-definite P ∈ Rs×s solving (4) is then used to
obtain the optimal feedback matrix K as:

K = (R+BTPB)−1BTPA. (5)

In our system, however, the actual plant state may not be
available at the controller because of the packet losses in
the network. Thus, the controller has to estimate the plant
state based on the available observations. Similar to [25],
the Kalman filter estimator that minimizes the mean squared
estimation error (MSE) is given as follows:

x̂[k] = A∆C [k]x[ν(k)] +

∆C [k]∑
q=1

Aq−1Bu[k − q], (6)

where ν[k] is the generation time step of the freshest update
available at the controller, and ∆C [k] = k − ν(k) is the
time elapsed since this generation expressed in the number
of sampling intervals. In other words, ∆C represents AoI at
the controller.

According to the separation principle defined in control the-
ory, for the system with Gaussian observations, the estimator
can be designed independently of the optimal feedback matrix.
Thus, the combination of LQR from (3) with the Kalman filter
from (6) leads to the following control law:

u[k] = −Kx̂[k]. (7)

Note that the estimation error does not define the control
performance but is tightly coupled with it. Indeed, faulty

estimation results in sub-optimal control inputs, resulting in
the inability of the controller to drive the plant to zero. The
deviation of the plant state from equilibrium contributes to (2).
Moreover, when the controller finally corrects its estimation,
more efforts should be taken to enforce the plant stabilization,
also increasing (2). Next, we introduce the MSE of the
controller estimation, which is, as has been discussed, a vital
metric for control applications.

First, we define an estimation error as the difference be-
tween the instantaneous state and its estimation at the con-
troller:

e[k] = x[k]− x̂[k]. (8)

The MSE is then expressed as the expectation of a square of
(8):

MSE[k] = E[e[k]Te[k]] =
∆C [k]−1∑

t=0

tr
(
(AT )tAtW

)
, (9)

where the second equality can be derived as in [25] by
subtracting (6) from (1) and taking the expectation as in the
definition of MSE. The instantaneous MSE can be expressed
as a function of age at the controller, witnessing that AoI is a
promising semantic metric for control applications.

B. Network Model

In this work, we exploit the network model from [23] with
some modifications. In particular, we consider a line network
consisting of N links that connect the sensor and the controller
through relay nodes, as illustrated in Fig. 1. In our network
model, the first node is a sensor that initiates the transmission
of every state measurement in a single data packet. The packet
should traverse N network links and N − 1 relay nodes
{R1,R2, · · ·,RN−1} to arrive to a controller representing
(N + 1)th node. Note that we do not consider the design of
the routing algorithm. That motivates the line network scenario
because the path from the source to the destination constitutes
a line network as soon as the routing decision is made.

The transmissions over intermediate nodes are subject to
potential failures due to fading in the wireless medium. We
consider the Rayleigh fading model, with losses of packets on
the given link being independent of each other. Additionally,
as the positions of nodes are fixed at different points in space,
each link is characterized by some constant loss probability.
Thus, the sequence of transmissions on the link n can be mod-
eled as a Bernoulli process with a constant failure probability
pn as shown in Fig. 1.

The interference among different links is avoided through
time division multiplexing (TDM). In particular, the time is
divided into transmission slots of a constant duration Tt, and
only a single link is granted a transmission in each slot. Each
transmission between two nodes starts at the beginning of
a transmission slot and finishes within Tt interval. In our
model, the transmission rate is higher than the sampling rate,
and Ts = mTt, i.e., there are m transmission slots within
each sampling interval. Fig. 2 shows an example sequence
of transmission slots and sampling intervals, each containing
m = 4 transmission slots.
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Fig. 2. An example schedule of the length L = 2 sampling intervals, i.e.,
the schedule repeats each 2 time steps. Each sampling interval contains m
transmission slots. The example allocation over N = 3 links, including links
from the sensor node and from two relay nodes, is shown.

A new state measurement is generated at the sensor at the
beginning of every sampling interval. The sensor attempts to
transmit this packet in every transmission slot within the next
Ts interval assigned to the link between S and R1. Simul-
taneously, each relay node Rn attempts to transmit the most
recent packet available at this node in each transmission slot,
for which the link n between Rn and Rn+1 is activated. As
one can infer from (7) and (6), only the last generated updates
available at the controller influences the control input, making
older measurements not relevant for the control process. Thus,
when a new update arrives at each relay node, it replaces the
previous packet, which is, in turn, discarded. Therefore, we
eliminate the queuing in the network, limiting the packets’
transmission times and, consequently, AoI and MSE (see (9))
at the controller, contributing to the decrease of the control
cost.

In this work, we focus on the design of the activation pat-
terns of the links in transmission slots, i.e., on the transmission
scheduling, w.r.t. the improvement of the control performance.
The scheduling algorithm assigns the periodic distribution
of transmission slots within links for L sampling intervals2.
Similar to [23], we assume that the scheduler assigns the
transmission slots to the links in the same order as they appear
along the path. With such a design, if at least one transmission
on each link is successful within a given sampling interval,
the controller would receive a fresh state update generated by
the sensor update in the end of the same time step. In this
work, we assume m > N , meaning that at least one slot can
be assigned to each link within every sampling interval. The
example schedule of the length L = 2 for N = 3 is given
in Fig. 2. Within the first scheduling slot, 2 transmission slots
are assigned to the link from the sensor S to the first relay,
and the links from R1 to R2 and from R2 to the controller
are given following two consecutive transmission slots. In the
second slot of the schedule, the activation order of links stays
the same, but now the link from R1 to R2 gets two slots, and
other links by 1 slot. The schedule is then repeated.

We aim to design a scheduler that minimizes the average
MSE of the controller estimation. As MSE can be repre-
sented as a function of the instantaneous age (see (9)), the
average MSE over the control horizon can be expressed
using the distribution of instantaneous age as in [25]. Given

2If the schedule length is L, the allocation of slots is repeated periodically
after each L sampling intervals.

Fig. 3. Example AoI dynamics on the receivers of 3 consecutive links, i.e.,
on R1 (n = 1), R2 (n = 2) and controller (n = 3). Age evolves in discrete
time steps, with the step size equal to the sampling interval. Ticks and crosses
represent successful transmissions and failures on the corresponding links.
Age on each node levels to the age on the previous node if the transmission
to the current node has been successful in the last time step. Otherwise, age
is incremented by 1. Thus, the age on the next node along the path is not less
than the AoI on the previous node.

the constant loss probability on the link within a sampling
interval, the age distribution in the similar multi-hop network
scenario is derived in [23]. The introduction of the schedule
of the length L greater than one sampling interval leads to
the non-constant failure probability on the link3. In this work,
we extend the analysis from [23] to the case when the loss
probability on the link is not constant but follows a periodic
pattern.

III. AOI DISTRIBUTION OVER MULTI-HOP NETWORK

We consider the distribution of AoI in the multi-hop network
where the length of the schedule is L sampling intervals. That
means that the sensor and each relay node are assigned with
rln, l ∈ {1, 2, · · ·, L} transmission slots in lth sampling interval
of the schedule 4. Here n = 0 denotes the sensor node S, and
otherwise n refers to the relay node Rn. If pn is the constant
loss probability on the link n of the single transmission in a
single transmission slot, the probability P l

n of a failure in the
lth sampling period of a schedule can be expressed as:

P l
n = p

rln
n , (10)

i.e., the failure on the link n occurs if all rln transmissions
fail, and the independence of the outcomes of the consecutive
transmissions on one link is used.

Note that each transmission slot should be assigned to a
maximum of one link, such that the interference is avoided,
i.e.:

N−1∑
n=0

rln <= m ∀l ∈ {1, · · ·, L}. (11)

3This is due to the varying number of transmission slots assigned to a link
within different sampling intervals of a schedule.

4In the following discussion, under the assigning a transmission slot to the
node n we mean giving it to the link starting at node n. Also, the schedule
with the sequence number l refers to the assignment in the lth sampling
interval of the schedule.
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Without loss of generality, assume that in the first time step
k = 0, each link is initialized with the first schedule r1n. Thus
the schedule with the sequence number k%L+1 is employed
at the time step k.

Let ∆n[k], n ∈ {1, 2, · · ·, N} denote the age at the relay
node Rn in the sampling interval k after the transmission on
the link n−1. Recall that ∆N [k] is AoI at the receiver, i.e., at
the controller. The dynamics of AoI can be expressed in the
following way:

∆n[k] =

{
∆n−1[k], if γn−1[k] = 1

∆n[k − 1] + 1, if γn−1[k] = 0,
(12)

where γn−1[k] = 1 if at least one transmission on the link
n−1 has been successful in kth sampling interval, i.e., the nth
node has received a new update at time step k. We denote with
∆0[k] the age at the transmitter side, i.e., at the sensor. Since
the sensor always has access to the most recent observation,
∆0[k] = 0 ∀k. The example AoI evolution for N = 3 is
given in Fig. 3. Like the control dynamics, AoI changes in
the discrete time steps of Ts. If an outcome on the link n− 1
is successful within the kth time step (denoted with a tick),
the node n receives the update that has been available on the
node n − 1 and ∆n[k] equalized to the age ∆n−1[k] on the
previous link at the end of kth sampling interval. Otherwise,
the information on the node n ages by 1 sampling interval,
i.e., it is incremented by one.

Similarly to [23], we derive AoI at the controller recursively.
First, consider the aging process ∆1[k] at the first relay
node R1. If ∆1[k] = δ1, that means that there has been a
successful transmission on the link from the sensor that has
resulted in a drop of AoI to zero δ1+1 sampling periods ago,
followed by δ1 unsuccessful sampling periods incrementing
∆1. The probability of such a sequence depends on the loss
probabilities P l

0 at each time step, which is, in turn, defined
by the sequence number l of each slot in the schedule. Since
the first schedule is employed at k = 0, the schedule with a
sequence number k%L+1 is used in the kth sampling interval.
This results in the following expression of AoI:

Pr[∆1[k] = δ1] =

(1− P
(k−δ1)%L+1
0 )

k∏
d=k−δ1+1

P d%L+1
0 , (13)

where we iterate from the slot k − δ1 with the successful
transmission with the probability 1 − P

(k−δ1)%L+1
0 through

further δ1 slots with failures with probabilities P d%L+1
0 till

the current slot k.
Next, we define the probability of AoI at the nth node being

σn given the age at the node n−1 as σn−1 at a time step when
the nth node has received its the freshest update. Analogously
to (13), provided that δn ≥ δn−1, the AoI reaches δn on
the node n, if there has been a successful transmission on
the link n − 1 at the time step k − (δn − δn−1) followed
by δn − δn−1 failures on the same link. Thus, we get the

following expression:

Pr[∆n[k] = δn |∆n−1[k − (δn − δn−1)] = δn−1]

= (1− P
(k−(δn−δn−1))%L+1
n−1 )

k∏
d=k−(δn−δn−1)+1

P d%L+1
n−1 .

(14)

Summing over all possible δn−1, according to the law of total
probabilities, we get:

Pr[∆n[k] = δn]

=

δn∑
δn−1=0

Pr[∆n[k] = δn |∆n−1[k − (δn − δn−1)] = δn−1]

× Pr[∆n−1[k − (δn − δn−1)] = δn−1]. (15)

To calculate the age distribution on the node n at a given
time step k, one starts with (15) that depends on the condi-
tional probabilities (14) and the distributions on the previous
link n− 1. Thus, the distribution is defined recursively.

Further, we would like to obtain an expression for the aver-
age AoI distribution over the control horizon, i.e., independent
from the time step k. Note that (15) does not depend on the
particular k but rather on the sequence number of a kth time
step within a schedule, i.e., on k%L+1. We denote (15) for all
k, s.t. k%L+ 1 = l, with Pr[∆n = δn](l), where we omitted
the dependence on k. The distribution of AoI averaged over
the infinite horizon reads as:

Pr[∆n = δn] = lim sup
T →∞

1

T

∞∑
k=0

Pr[∆n[k] = δn | k]

=

L∑
l=1

1

L
Pr[∆n = δn](l), (16)

since 1
L part of the time steps over the infinite horizon is

assigned with lth schedule ∀l ∈ {1, · · ·, L}.

IV. PROBLEM FORMULATION

Using the AoI distribution (16) and instantaneous MSE
expression (9), we can define the global average expected
MSE over infinite time horizon as:

C(P ) = lim sup
T →∞

1

T

T −1∑
k=0

MSE[k]

=

∞∑
δN=1

Pr[∆N = δN ]

δN−1∑
t=0

tr
(
(AT )tAtW

)
, (17)

where P is a matrix denoting loss probabilities of all
the links in each sampling interval of the schedule,
i.e., P = {{P 1

0 , P
2
0 , · · ·, PL

0 }, {P 1
1 , P

2
1 , · · ·, PL

1 }, · · ·, {P 1
N−1,

P 2
N−1, · · ·, PL

N−1}}. Since P l
n is defined by the slot allocation

rln as in (10), the average estimation error (17) can be
written as a function of {r0, r1, · · ·, rN−1}, where rn =
{r1n, r2n, · · ·, rLn} is the schedule for nth link.
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The optimization problem for the scheduling problem, i.e.,
allocation of transmission slots to N links over L sampling
intervals, can be formulated as:

min
r1,r2,···,rN

C(r0, r1, · · ·, rN−1)

s.t.
N−1∑
n=0

rln ≤ m ∀l

rln ∈ Z+ ∀n ∀l.

(18)

Here, the first constraint ensures that each transmission slot is
allocated at most to a single link at a time. We enforce that
each link should be allocated with at least one slot within a
sampling interval, i.e., rln ≥ 1.

A. Optimal Solution

The optimization in (18) represents a non-linear integer
problem (NLIP) since the variables are integers, and the proba-
bility distribution (16) involves the exponential functional from
these variables. We use an IPOPT solver within the GEKKO
optimization suite for Python [44] to obtain the optimal
solution. Note that the optimization problem is not guaranteed
to be convex for any set of parameters. Thus, the gradient
descent method can result in finding the local minimum that is
not globally optimal. We repeat the optimization with random
initialization values to ensure that the solver does not terminate
in the local minimum.

The objective of the optimization is a recursive function
with a time complexity of O((σN+1)NL). Thus, the solution
time using GEKKO solver sharply increases for larger prob-
lems. As an alternative, we present a greedy heuristic approach
that is more scalable.

B. Heuristic Approach

The distribution of the transmission slots within a schedule
implies that when an additional slot is assigned to some link
within some sampling interval, there is a lower probability of
losing the packet on this link within a given time slot. This
leads to a lower probability of having high age at the receiver
and decreases total MSE (17).

For the greedy approach, we use the fact that in total m ·L
slots should be distributed, and assigning each slot reduces the
minimization objective.

As specified in Algorithm 1, in the beginning, in each
sampling interval l of a schedule, each link n is allocated
with rln = 1 transmission slot. Each scheduling slot’s residual
budget bl is m − N . Then, for each transmission slot that is
to be scheduled, the algorithm probes the resulting MSE if
this slot would be assigned to every sampling interval lt of a
schedule that still has available slots in the budget and to every
link nt. The intermediate allocation ρln ∀n ∈ {0, · · ·, N − 1} ,
∀l ∈ {1, · · ·, L} that minimizes the average MSE is saved
into rln. The budget of available slots for this scheduling
interval l∗ is decremented accordingly. The next allocation
that includes the probing of the next slot is built on top of
the new rln. The procedure is repeated until m slots for each

Algorithm 1 Greedy scheduling

Require: m,L
rln ← 1 ∀n ∈ {0, · · ·, N − 1} ∀l ∈ {1, · · ·, L}
bl ← m−N ∀l ∈ {1, · · ·, L}
while

∑L
l=1 bl > 0 do

ρln ← rln ∀n ∈ {0, · · ·, N − 1} ∀l ∈ {1, · · ·, L}
ζln ← rln ∀n ∈ {0, · · ·, N − 1} ∀l ∈ {1, · · ·, L}
Θ← C(ρ0, · · ·,ρN−1)
for all lt ∈ {1, · · ·, L} do

if blt == 0 then
continue

end if
for all nt ∈ {0, · · ·, N − 1} do

ζltnt
← rltnt

+ 1
if C(ζ0, · · ·, ζN−1) < Θ then

ρltnt
← ζltnt

Θ← C(ρ0, · · ·,ρN−1)
l∗ ← lt

end if
end for

end for
rln ← ρln ∀n ∈ {0, · · ·, N − 1} ∀l ∈ {1, · · ·, L}
bl∗ ← bl∗ − 1

end while
return rln ∀n ∈ {0, · · ·, N − 1} ∀l ∈ {1, · · ·, L}

TABLE I
SETS OF BLOCKING PROBABILITIES.

n S1 S2 S3

0 {0.7, 0.4, 0.5} {0.7, 0.4, 0.5} {0.7, 0.4, 0.5}
1 {0.3, 0.2, 0.1} {0.8, 0.7, 0.5} {0.8, 0.7, 0.5}
2 {0.1, 0.7, 0.4} {0.1, 0.7, 0.4} {0.9, 0.7, 0.9}
3 {0.8, 0.8, 0.1} {0.8, 0.8, 0.1} {0.8, 0.8, 0.1}
4 {0.3, 0.1, 0.1} {0.7, 0.9, 0.3} {0.7, 0.9, 0.3}

of L sampling intervals are distributed. Note that ρln and ζln
∀n ∈ {0, · · ·, N − 1} ,∀l ∈ {1, · · ·, L} are temporal variables
storing currently the best allocation and the allocation being
probed for a given transmission slot, respectively. To calculate
the average MSE for each allocation, ρln or ζln are stacked
to vectors ρn or ζn to derive cost C from (18).

V. NUMERICAL RESULTS

In this section, we validate the analytical derivation of the
AoI distribution with the help of the simulator. Furthermore,
we present an analysis of the proposed scheduling schemes and
a comparison with other approaches. The parameters chosen
for the control system and the network are the following. The
sampling period Ts = 100 ms consists of m = 10 transmission
slots, each by TT = 10 ms 5. The probabilities pn of the single
transmission failure on each of N = 5 links are varied in
different experiments. We consider the scalar control system,
with state and input matrices in (1) being scalars and having

5The transmission slot of 10 ms is an option within the numerology of many
communication standards for CPS, including WirelessHART, IEEE 802.15.4,
etc. [1]
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Fig. 4. Theoretical and simulated PMFs for the AoI distribution over the multi-
hop network with varying packet loss probabilities per sampling period. The
values for S1, S2, and S3 are in the Table I. The distribution shifts towards
higher age values when more links experience higher loss probabilities. The
right axis shows an exponential growth of MSE with age.

Fig. 5. Expected and simulated MSE for varying distribution of m = 10
transmission slots over links, where the loss probability of a single transmis-
sion over links is fixed to p1 from Table II. The list of scheduled slots per
link is given along the x-axis.

the following values: A = 1.4, B = 1. In addition, W = 1.
The weights of the state deviation and control effort in the
control cost (2) are equal: Q = R = 1.

First, we present a theoretical and simulated probability
mass function (PMF) of AoI for the varying loss probabilities
per link per sampling interval. Table I gives three sets of values
S1, S2, and S3, for which the PMFs in Fig. 4 are shown.
Three values for each link n and each set represent the loss
probability over three consecutive slots in the schedule. Thus,
there are two links with high loss probabilities (n = 0 and
n = 3) for the first set S1, two more links (n = 1 and n = 4)
have high loss probabilities in §2, and all links are lossy in
S3.

Fig. 4 shows that the derived PMF coincides with the
simulation results for all sets of probabilities, witnessing the
accuracy of the analytical distribution from (16). Note that for
each set, we performed 100 simulation runs each by 10000
time steps. The resulting bars represent the average relative
frequency for given ∆n over these 100 runs. The PMFs
shift towards higher age values when the failure rates over
links increase. Note that long tails of the AoI distribution
imply a non-negligible probability of facing high age at
the controller and significantly contributing to the resulting

TABLE II
SINGLE TRANSMISSION BLOCKING PROBABILITIES.

n p1 p2 p3

0 0.1 0.7 0.85
1 0.25 0.3 0.35
2 0.3 0.3 0.35
3 0.3 0.2 0.35
4 0.4 0.1 0.1

estimation error (17), where the MSE terms exponentially
grow with age as illustrated with the right axis on Fig. 4. To
prevent drastic control performance degradation, the scheduler
should distribute the resources over links in a way to eliminate
the chances of significant age growth at the controller. Thus,
the exact AoI distribution is critical for analyzing the control
performance, especially in scenarios with constrained network
resources and higher loss probabilities.

With Fig. 5, we demonstrate how the particular distribution
of transmission slots over links influences the estimation error
of the controller. The constant loss probabilities on the links
are set to p1 from Table II, i.e., p0 = 0.1, p1 = 0.25,
and so on. The schedule length L is one, i.e., the slots
distribution is the same for all sampling intervals. Fig. 5
contains both theoretical expectation and simulation results,
with the boxplots representing average MSE recorded in
100 runs each by 10000 time steps. The expected MSE is
calculated according to (8), whereas the simulated MSE is
calculated as:

C̄ = 1

T

T −1∑
k=0

(x[k]− x̂[k])2, (19)

where T is the total duration of one experiment measured in
sampling intervals, i.e., T = 10000.

Note that the expected MSE matches the simulation results.
If most transmission slots are assigned to the link from the
sensor with the highest success probability, more lossy links
do not get enough resources. This results in the worst MSE
performance of such allocation, almost 20 times worse than
the optimal. Assigning more resources to the link 4 with the
highest failure rate also shows poor performance. It is nearly 7
times worse than the optimal. Indeed, assigning the link 4 with
6 transmission slots results in a very low loss probability over
the time step on the 5th link, i.e., P 1

4 = 0.46 ≈ 0.004. At the
same time, the loss probability on other links stays relatively
high, negatively affecting the MSE performance. Among the
considered options, the allocation [1, 2, 2, 2, 3] results in the
best MSE. One can conclude that appropriate scheduling is
vital for control performance.

As discussed in Section IV-A, we derive the optimal slots
allocation via solving (18), i.e., MSE minimization problem,
with the help of the GEKKO optimization suite. Further, we
compare the control performance of the optimal allocation for
different schedule lengths L with other approaches, including
the greedy heuristic that also targets (18). Also, we consider
the scheduling approaches minimizing average AoI and the
end-to-end packet loss probability. The latter represents a
conventional networking approach agnostic to the application
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(a) Expected and simulated MSE

(b) Simulated LQG costs

Fig. 6. The control performance of different scheduling strategies.

goal. Finally, with the self of the simulation, we analyze the
performance of the random allocation of slots to infer how
much improvement the proposed control-aware methods can
bring.

In the next evaluations, apart from MSE, we demonstrate
the simulated LQG cost performance of the control loop,
which is the ultimate performance metric of control applica-
tions. We calculate the average LQG cost similar to (2) for
the limited time horizon:

J̄ =
1

K

K−1∑
k=0

(
(x[k])TQx[k] + (u[k])TRui[k]

)
. (20)

Fig. 6(a) shows the performance of different scheduling
approaches in terms of MSE for varying error rates of a
single transmission per link that are given in Table II. In
particular, p1 represents the most reliable network. Drop rates
are moderate for p2 and the highest for p3, representing
the most challenging scenario. From Fig. 6(a), we conclude
that random allocation results in poor estimation performance
for any network configuration, but the degradation is more
significant for higher loss probabilities p3

6. For p1, all other
methods result in the same allocation and same performance.
However, for p2, the estimation performance of the minimum
AoI and minimum loss probability methods is 15% worse than
the performance of the optimal solution minimizing MSE and
a greedy heuristics for L = 1. Increasing the schedule length
to L = 2 improves performance by 2%, which is a minor gain.
Note that the heuristic is effective since it finds the allocation

6The results for random allocation for p3 are not shown due to high
magnitude.

that results in the same MSE performance as the optimal
solution for all the considered scenarios.

The relative performance degradation of the methods not
taking MSE into account increases for p3. The minimum
AoI approach shows 2.5 times worse performance than the
optimum solution and heuristics for L = 1. Indeed, as
witnessed by Fig. 4, the PMF of AoI shifts towards higher
values for higher loss probabilities. This introduces exponen-
tially increasing terms in (8) corresponding to high age and
contributing to resulting MSE. The approach of minimizing
average AoI does not weigh this tail of the distribution as
much as the optimal solution.

Interestingly, for L = 2, the scheduler has more degrees
of freedom, and the optimal allocation gives a further 25%
improvement of the MSE. It is worth mentioning that al-
though AoI minimizing scheduling does not minimize MSE,
its performance is more than 13 times better than the approach
minimizing loss probability over the path. Thus, freshness
minimization is a promising approach in case it is not feasible
to consider application-related aspects such as the particular
control model and expected MSE.

An important observation is that the simulation results
confirm the theoretical values. For higher MSE values, the
simulation shows slightly smaller results than expected. This
is explained by the fact that the tail of the AoI distribution
contributes a lot to MSE. However, these high AoI values
have a very low probability, and there are not enough samples
in the simulation corresponding to these high-AoI time steps.

The result that the scheduling minimizing MSE leads to the
lowest MSE is expected. Further, we analyze the LQG cost
performance of the proposed scheduling approaches, which is
the ultimate metric for control applications. Fig. 6(b) shows the
simulated LQG cost for the same parameters as on Fig. 6(a).
When comparing the control cost for different approaches, we
see a similar trend for LQG cost as for MSE. In particular,
for p1, all the methods show similar control cost performance,
except for the random allocation that performs 2.3 times
worse. For p1 and p3, the heuristic approach shows the same
results as the minimum MSE scheduler, outperforming the
second best-performing approach minimizing AoI by 10% and
by 100%, respectively. Thus, control-aware scheduling shows
the best performance in terms of control costs among all the
considered methods.

Further, we analyze how much control performance im-
provement can be achieved if the schedule length L increases.
Note that increasing the schedule length increases the size of
the optimization problem (18). Using the GEKKO scheduler
is infeasible for large problems due to its scalability issues.
However, as the heuristic has proven its efficiency, we can
obtain the MSE-minimizing allocations for higher L with
the greedy method. Since for p1 all the approaches show the
same performance, and increasing L from 1 to 2 does not bring
any benefits, we can conclude that the obtained allocation for
L = 1 is the best performing. Fig. 7 and 8 show how the MSE
and LQG performance vary with increasing schedule length for
more challenging networks with blocking probabilities p2 and
p2. For comparison, we also show the performance of the age-
minimizing approach at a larger scale than in Figs. 4 and 6(b).
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(a) Expected and simulated MSE

(b) Simulated LQG costs

Fig. 7. The control performance of the greedy heuristics for different schedule
lengths for p2.

Fig. 7 demonstrates that for p2, the schedule with L = 3 shows
the best performance, with the improvement of 3% and in
MSE and LQG cost compared to L = 1. The gains stagnate
for higher schedule length. More significant improvements can
be achieved for p3 as seen in Fig. 8. In particular, L = 3
achieves more than 30% gain in MSE and the control cost.
Therefore, the additional scheduling flexibility is especially
beneficial for lossy networks. The reason is that the AoI
distribution has a longer tail towards higher age values for a
more challenging network. Thus, a smaller decrease in the high
AoI probability significantly changes overall MSE and LQG
cost. This again proves that efficient resource management
w.r.t. application goals is crucial for scenarios with more
significant adverse effects from the network side. Thus, the
comprehensive analysis of the influence of the actual network
on the achievement of the application goals and adaptation
of network resource management algorithms w.r.t. these goals
enhance the efficiency of the network utilization.

VI. CONCLUSION

In this work, we demonstrated the benefits of the
application-oriented design of networking algorithms for the
use-case of control. In particular, we consider the transmission
scheduling over a multi-hop network that connects the WNCS
components. We derived the distribution of AoI on the receiver
node for a time-varying scheduling pattern. Using AoI distri-
bution, we formulated the optimization problem of minimizing
global average controller estimation error that is tightly cou-
pled with the control cost. Our approach shows at least 15%
improvement in the estimation error and at least 10% in control
cost compared to AoI-minimising allocations. More degrees
of freedom in the time-varying scheduling enabled further
estimation error and control cost improvement by up to 30%

(a) Expected and simulated MSE

(b) Simulated LQG costs

Fig. 8. The control performance of the greedy heuristics for different schedule
lengths for p3.

in the scenarios with low network resource availability. Thus,
application-aware design of the network resource management
enhances the efficiency of the network resources utilization
under the constraints dictated by application goals, which are
the ultimate objective of the current networks.
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[23] O. Ayan, H. M. Gürsu, A. Papa, and W. Kellerer, “Probability analysis
of age of information in multi-hop networks,” IEEE Netw. Lett., vol. 2,
no. 2, pp. 76–80, 2020.

[24] S. Farazi, A. G. Klein, and D. R. Brown, “Fundamental bounds on
the age of information in multi-hop global status update networks,” J.
Commun. Netw., vol. 21, no. 3, pp. 268–279, 2019.

[25] O. Ayan, A. Ephremides, and W. Kellerer, “Age of information: An
indirect way to improve control system performance,” in Proc. IEEE
INFOCOM, 2021.

[26] K. Kiekenap and A. Klein, “Optimum sensor value transmission schedul-
ing for linear wireless networked control systems,” in Proc. IEEE VTC,
2020.
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