
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 5, OCTOBER 2023 585

AoI Analysis and Optimization in Systems with
Computations-Intensive Updates

Saeid Sadeghi Vilni, Mohammad Moltafet, Markus Leinonen, and Marian Codreanu

Abstract—We consider a status update system consisting of
a sampler, a controller, a processing unit, a transmitter, and
a sink. The sampler generates a sample upon receiving a
request from the controller and the sample requires further
processing before transmission, hence is computation-intensive.
This is mathematically modeled by a server called process server.
After processing the sample, the status update packet is generated
and sent to the transmitter for delivery to the sink. This is
mathematically modeled by a server called transmit server.
The service time of each packet at the transmit and process
servers follow geometric distributions. Moreover, we consider
that the servers serve packets under the blocking policy, i.e.,
whenever a server is busy at the arrival time of a new packet,
the new arriving packet is blocked and discarded. We analyze
the average age of information (AoI) for two fixed policies,
namely, 1) zero-wait-one policy and 2) zero-wait-blocking policy.
According to the former policy, the controller requests sampling
when there is no packet in the system. According to the zero-wait-
blocking policy, the controller requests a sample whenever the
process server is idle. Furthermore, we develop an optimal control
policy to minimize the average AoI using the tools of Markov
decision process (MDP). In numerical results, we evaluate the
performance of the policies under different system parameters.
Moreover, we analyze the structure of the optimal policy.

Index Terms: AoI, computation-intensive status update,
Markov decision process, optimal status update control.

I. INTRODUCTION

EMERGING real-time applications, e.g., autonomous ve-
hicles, wireless industrial automation, and health moni-

toring, in the upcoming generation of wireless communications
rely heavily on the timely delivery of status updates [1], [2].
The age of information (AoI) [1], [2] is a metric used to evalu-
ate the freshness of information in status update systems. AoI
is the difference between the current and generation times of
the last received status update packet at the destination [1], [2].
Each status update packet contains a timestamp representing
the time when the sample was generated and the measured

Manuscript received May 15, 2023; revised August 16, 2023; approved for
publication by Yin Sun, Guest Editor, August 20, 2023.

This research has been financially supported by the Infotech Oulu, the
Academy of Finland (grant 323698), and 6G Flagship program (grant 346208).
The work of Markus Leinonen has also been financially supported in part by
the Academy of Finland (grant 340171).

S. S. Vilni and M. Leinonen are with the CWC-RT, University of Oulu,
90014 Oulu, Finland. e-mail: {Saeid.SadeghiVilni, Markus.Leinonen}@oulu.fi.

M. Moltafet is with the Department of Electrical and Computer Engineer-
ing, University of California at Santa Cruz, Santa Cruz, CA 95064 USA.
e-mail: mmoltafe@ucsc.edu.

M. Codreanu is with the Department of Science and Technology, Linkoping
University, Sweden. e-mail: marian.codreanu@liu.se.

S. S. Vilni is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2023.000040

value of the monitored process. At time instant t, denoting the
timestamp of the last received status update packet by U(t),
the AoI, ∆(t), is defined as ∆(t) = t− U(t) [1]–[4].

In some services with low latency requirements, e.g., au-
tonomous driving, anomaly detection, and augmented re-
ality (AR), the status updates need pre-processing before
transmission. These systems are typically referred to as
computation-intensive status update systems [5]–[7]. In these
cases, in addition to the sampling and transmission, the
processing time of each update also affects the information
freshness [8]. Emerging techniques, such as edge, fog, or
cloud computing, can be utilized to leverage the computing
resources at the network [9]. However, enabling large-scale
and distributed computing sources among heterogeneous de-
vices requires the ability to pool their computing resources
and computing resource management [10].

In this work, we consider a discrete-time status update
system consisting of a controller, a sampler, a processing unit,
a transmitter, and a sink (see Fig. 1). The sampler monitors a
physical phenomenon and each sampled data needs to be pro-
cessed before being transmitted. We mathematically model the
processing and transmission processes of packets as servers,
which are referred to as process server and transmit server,
respectively. Upon receiving a request from the controller,
the sampler generates a new sample which is then sent to
the process server. The processed sample is turned into a
status update packet and sent to the transmit server to be
transmitted to the sink. After successfully receiving the packet,
the sink sends an acknowledgment (ACK) to the transmit
server, which is also overheard by the controller. The sampling
time marks the beginning of the packets’ age. We consider
that the servers operate according to the blocking policy, i.e.,
if a new service requests arrive while the servers are busy
(e.g., processing a previous sample at the process server or
transmitting a previous status update at the transmit server),
the newly arriving request is discarded. We assume that the
service time of each packet at the transmit and process servers
follow geometric distributions. We assume that the controller
has global knowledge of the system, i.e., it can track the
occupancy status of both processing and transmit servers.

The considered system model may represent a status update
system providing health monitoring [11], [12]. In such a
scenario, some data are generated by different sensors, in
which the embedded information in data is not available
until being processed. To this end, the data is uploaded to
a process server, a pool of edge computing nodes, or a cloud
computing node and then sent to a destination via a commu-
nication network for monitoring [13]. As the measured data

1229-2370/23/$10.00 © 2023 KICS

586 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 5, OCTOBER 2023

are changed dynamically, the generated data needs different
CPU cycles for processing [14]. In addition, each user uses
shared computing and communication resources. Therefore,
each packet encounters random delays for processing and
transmission.

In the first part of the paper, we analyze the average AoI
for two fixed policies, namely, 1) zero-wait-one policy, i.e., the
controller takes a sample whenever the process and transmit
servers are idle, and 2) zero-wait-blocking policy, i.e., the
controller takes a sample whenever the process server is idle.
We derive the closed-form expressions of the average AoI
under these policies.

In the second part of the paper, we develop an optimal
control policy to minimize the average AoI by finding the
optimal sampling times. We cast the problem as a Markov
decision process (MDP) problem and solve it numerically
via the relative value iteration algorithm (RVIA) [15]. In
numerical results, we evaluate the performance of the policies
under different system parameters. Moreover, we analyze the
structure of the optimal control policy.

The main contributions of the paper are summarized as
follows:

• We consider a discrete-time computation-intensive status
update system and study the AoI under a blocking policy.

• We derived closed-form expressions of the average AoI
for two fixed policies: 1) zero-wait-one policy and
2) zero-wait-blocking policy.

• We develop an optimal control policy to minimize the
average AoI using the relative value iteration algorithm.

• We investigate the structure of the optimal policy and
show that zero wait policies are not necessarily age-
optimal. Though counterintuitive, this shows that under
certain circumstances (e.g., right after a status update
was processed and delivered significantly faster than the
average time) it is beneficial to insert idle slots instead
of starting processing a new update whenever the system
is empty. This phenomenon was first time pointed out
in [16], and it was further investigated in [17], [18] under
a different system setup.

A. Related Work

In this section, first, we review the works with a focus on
AoI analysis or optimization in discrete-time status update
systems. Then, the most related works with a focus on the
computational-intensive status update system are presented.
Finally, we present the main differences between our work
and the most related works.

Prior works on the AoI in discrete-time status update
systems can be categorized into two groups, namely, i) the
works where the sampling process cannot be controlled and
thus, the AoI is analyzed under fixed status update policies,
e.g., [19]–[23], and ii) the works where the sampling pro-
cess can be controlled and thus, the main goal is to deter-
mine the sampling time to optimize the system performance,
e.g., [24]–[36]. These works use mathematical models such
as MDP or Lyapunov technique to solve their optimization
problem.

The authors of [19] studied the average AoI in a multi-
source status update system with Bernoulli arrivals and a geo-
metrically distributed service time. In [20] the authors derived
closed-form expressions of average AoI in a random access-
based status update system under different packet management
policies. In [21], the authors derived a closed-form expression
of the average AoI in a single-source rely-assisted status
update system using the concept of Markovian jump linear
systems. The authors of [22] analyzed non-linear functions of
the AoI in a single-source status update system. In [23] the
authors analyzed the stationary distribution of the AoI in a
single-source status update system with Bernoulli arrivals and
a generally distributed service time.

In [24], the authors proposed a power control policy to
minimize the average AoI under an average power constraint.
The authors of [25] proposed a near-optimal scheduling policy
to minimize the average AoI in a two-way delay status update
system. The work [26] studied a status update system under a
two-way delay. Besides deriving the closed-form expressions
of the average AoI for two fixed policies, they proposed an
optimal control policy to minimize the average AoI. In [27],
the authors proposed a transmission policy to minimize the
AoI in a hybrid automatic repeat request (HARQ) based
system with a non-orthogonal multiple access technique. The
authors of [28] studied the freshness in a HARQ-based status
update system in space–air–ground-integrated networks. They
considered both HARQ Type I and Type III protocols and pro-
posed a transmission policy for each protocol. The work [29]
studied a multi-source status update system with an energy-
harvesting-aided monitor which can request status updates
from sources. The sources monitor the same physical process
with different packet arrival rates. They proposed a scheduling
policy to minimize AoI in the system. In [30], the authors stud-
ied the weighted sum AoI minimization problem in a multi-
source status update system where the monitor decides which
source sends the update. The AoI of the source is partially
observable for the monitor. Using the partially observable
MDP, they provided a scheduling policy to solve the problem.
The authors of [31] studied a multi-user multi-sensor status
update system, where the energy-harvesting sensors send an
update by the users’ demand. They proposed a control policy
to minimize the average on-demand AoI. In [32], the authors
considered a multi-user HARQ-based status update system
with a generate-at-will source. They proposed several control
policies to minimize the average AoI under an average number
of transmissions constraint. The work [33] studied the average
transmit power minimization with an average AoI constraint.
They proposed a dynamic control policy to solve the problem,
determining the power allocation, sampling times, and sub-
channel assignment. The authors of [34] considered a system
in which one energy-harvesting time-critical node and one
data buffering node send packets over a shared channel to
a destination. They proposed a control policy to minimize
the average AoI of the time-critical node while keeping the
average number of buffered packets less than that of the
other node. In [35], the authors considered a status update
system in which the forward and backward (for feedback)
channels experience random delays. They proposed an optimal

VILNI et al.: AOI ANALYSIS AND OPTIMIZATION IN SYSTEMS WITH... 587

sampling policy that minimizes functions of the AoI subject
to a constraint on the sampling rate. In [36], the authors
studied a HARQ-based status update system with a random
arrival source. They proposed several transmission scheduling
policies for known and unknown environments.

The aforementioned works, i.e., [19]–[36], did not study the
computational-intensive status updating. In the following, we
review the most related works that study AoI minimization in
computational-intensive status update systems.

The works [5]–[7], [37]–[39] studied the computation-
intensive status update system in a continuous-time system
for different queueing models with random arrivals. In [37],
the authors studied a multi-source system. They calculated the
moment-generating function of AoI under two different packet
management policies using the stochastic hybrid systems tech-
nique. The AoI minimization in an IoT-based cellular network
is studied in [38]. Each IoT device has a local processor
and transmitter. They derived the closed-form expressions of
the average AoI and an energy efficiency metric and then,
minimized the expressions by finding the packet generation
and compression rates. The work [39] considered a status
update system where the IoT devices generate and offload
data as a task to the edge or fog servers to extract the IoT
devices’ status updates. They modeled the task offloading
as a two-stage tandem queue. They derived the closed-form
expressions of the average AoI for different fixed policies.
Moreover, using the closed-form expression of the average
AoI, they proposed an optimal scheduling policy determining
the packet generation rate, channel allocation, and computation
resource allocation. In [5], the authors studied the status update
system under three processing node models. They derived
the closed-form expressions of the average AoI for a fixed
policy under each processing node model. The author of [6]
considered a two hops status update system. The buffer-
assisted processing node receives the packets according to
a Poisson process, and after processing, packets are sent to
a sink via a buffer-assisted transmitter. They derived closed-
form expressions of the average AoI and peak AoI (PAoI)
for different fixed policies. The work in [7] studied a status
update system where a source sends packets to an edge node.
The communication and computing delays are modeled as two
queues in tandem. They derived the distribution of the PAoI
under different queueing models.

In contrast to the previous works, we consider a discrete-
time computation-intensive status update system. Moreover,
previous works on computation-intensive status update sys-
tems studied AoI when the sampling process can not be
controlled, i.e., they considered systems with random arrivals
and derived closed-form expressions of the average AoI or
PAoI, whereas, in this paper, in addition to AoI analysis, we
develop AoI optimal control policy for the system.

B. Organization
The rest of this paper is organized as follows. The system

model is presented in Section II. In Section III, we analyze
the AoI for the two fixed policies. The optimal control policy
is presented in Section IV. Numerical results are presented in
Section V. Finally, concluding remarks are made in Section VI.

Fig. 1. The considered computation-intensive status update system model.

II. SYSTEM MODEL

We consider a status update system consisting of a con-
troller, a sampler, a (pre)processing unit, a transmitter, and a
sink, as shown in Fig. 1. The processing and transmission
components are modeled as servers and referred to as the
process and transmit servers, respectively. The sampler moni-
tors a random process and can generate a sample at the con-
troller’s request. The generated sample is sent to the process
server, and the processing procedure starts. Upon finishing
processing a sample, the process server generates a status
update packet which is sent immediately to the transmit server.
Whenever the sink receives successfully a packet, it feedbacks
an acknowledgment (ACK) to the transmit server and it is
also overheard by the controller. Note that, depending on the
specific control policy, it is possible for a server to receive a
new task while still serving the previous one. In such cases, we
assume a blocking strategy, i.e., the new request is blocked and
discarded whenever a server is busy. We assume the controller
knows the utilization status of the process server, i.e., busy
or idle. In addition, the controller knows the sink’s reception
status (i.e., receives a packet or not) and the utilization status of
the transmit server via feedback. Therefore, the controller has
a global knowledge of the system’s status, i.e., the utilization
status of the servers and the sink reception status. We consider
a discrete-time system with unit time slots t ∈ {0, 1, 2, · · ·}.

At the beginning of each slot, the controller decides whether
to generate a new sample or not. Let a(t) ∈ {0, 1} denote
the controller action at slot t, where a(t) = 1 indicates that
the controller commands the sampler to generate a sample,
otherwise sampler remains idle.

Let g(t) ∈ {0, 1} denote the availability of the process
server to start processing a new sample at the beginning of
slot t, where g(t) = 1 indicates that the process server is
available (i.e., it is idle), and g(t) = 0 otherwise. Note that,
due to the discrete nature of time, if the server is idle at the
beginning of slot t, (i.e., g(t) = 1), and a new sample is
taken at slot t, the value of the server availability indicator
is not changed at slot t, i.e., g(t) = 1 for the entire duration
of slot t. We model the service times of the process server
as independent and identically distributed geometric random
variables with mean 1/γ.

Let y(t) ∈ {0, 1} denote the availability of the transmit
server at the beginning of slot t, where y(t) = 1 indicates that
the transmit server is available to send a new status update
packet, and y(t) = 0 otherwise. We assume that the packet
transmission times are independent and identically distributed
and are modeled via a geometrically distributed service time
with mean 1/p.

588 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 5, OCTOBER 2023

III. AVERAGE AOI ANALYSIS

In this section, we derive closed-form expressions of aver-
age AoI for two fixed policies, namely: 1) the zero-wait-one
policy, where a new sample is taken just after the previous one
was successfully delivered to the sink (i.e., when the system
is empty) and 2) the zero-wait-blocking policy, where a new
sample is taken whenever the process server becomes idle.
Note that under the zero-wait-blocking policy, the transmit
server may receive a new status update packet while serving
the previous one; the new one is blocked and discarded
whenever this happens.

Let ∆(t) denote the AoI at the sink at slot t, defined
as the time elapsed since the sample associated with the
most recently received packet was taken. Let U(t) denote the
sampling time of the most recently received packet (i.e., the
time stamp), then, the AoI is given by ∆(t) = t − U(t). An
example of AoI evolution over time is shown in Fig. 2. Let ti
denote the sampling time of the ith received packet at the sink.
The processing of the packet is completed at time slot t

′

i, and
the transmission of the packet is completed at time slot t

′′

i .
Let ∆̄τ denote the average AoI until time slot τ , which is
given as

∆̄τ =
1

τ

τ∑
t=1

∆(t). (1)

Let L(τ) = max{i : t
′′

i ≤ τ} denote the number of
successfully received updates until time slot τ . The average
AoI is equal to the area under the AoI evolution curve depicted
in Fig. 2. The area is a sum of disjoint areas determined by
polygons Q, {Qi}L(τ)

i=2 , and Q. Thus, ∆̄τ is calculated as

∆̄τ =
Q+Q

τ
+

L(τ)− 1

τ

1

L(τ)− 1

i=L(τ)∑
i=2

Qi. (2)

To analyze the AoI, we use a transition between the dis-
crete AoI process and the AoI process. The AoI process is
equivalent to the discrete AoI process, except that the age
increases continually during a slot. To this end, let Q+, Q+

i ,
and Q

+
denote the trapezoids associated with Q, Qi, and

Q, respectively, as illustrated in Fig. 2. Using the trapezoid
versions of Q, {Qi}L(τ)

i=2 , and Q add a triangle of area 1/2 at
each slot to the area under ∆(t), thus, ∆̄τ is derived as

∆̄τ =
Q+ +Q

+

τ
+

L(τ)− 1

τ

1

L(τ)− 1

L(τ)∑
i=2

Q+
i − 1

2
. (3)

Let Ii = ti − ti−1 denote the time interval between the
sampling of packets i − 1 and i, delivered to the sink. Let
Ti = ti − t

′′

i denote the total service time (i.e., process and
transmit servers service times) of packet i. According to Fig. 2,
Q+

i is calculated as

Q+
i =

1

2
(Ti + Ii)

2︸ ︷︷ ︸
I

− 1

2
(Ti)

2︸ ︷︷ ︸
II

=
1

2
I2i + IiTi, (4)

where part I in (4) represent the triangle with sides Ii+Ti, and
part II represent the triangle with sides Ti. The long-term time

average AoI is defined as ∆̄ = limτ→∞ ∆̄τ . Thus, the term
(Q+ +Q

+
)/τ of (4) goes to zero when τ → ∞. We use the

common assumption (see, e.g., [1], [4], [26]) that {(Ii, Ti)}i≥1

is a stationary ergodic random process, i.e., limτ→∞
L(τ)−1

τ

and limτ→∞
1

L(τ)−1

∑i=L(τ)
i=2 Q+

i converge to their stochastic
average as 1/E{Ii} and E{Q+

i }, respectively. Therefore, the
average AoI is given as

∆̄ =
1

E{Ii}
E
{1

2
I2i + IiTi

}
− 1

2
. (5)

A. AoI Analysis for Zero-wait-one Policy

Let Gi ∼ Geo(γ) denote the process server service time of
the ith received packet and Yi ∼ Geo(p) denote the transmit
server service time of the ith received packet. AoI evolution
under the zero-wait-one policy is illustrated in Fig. 3. Recall
that under the zero-wait-one policy, the controller takes a sam-
ple whenever there is no packet in the system. Thus, processing
of a new status update starts immediately after the previous
one was successfully delivered (i.e., there are no slots where
both process and transmit servers are idle simultaneously).
Consequently, Ii and Ti are given as Ii = Gi−1 + Yi−1 and
Ti = Gi + Yi.

The mean of the inter-sampling time between two delivered
packet i and i− 1, E{Ii}, is given as

E{Ii} = E{Gi−1}+ E{Yi−1}

=
1

γ
+

1

p
, (6)

where (6) follows from the fact that the mean service times of
the process and transmit servers are 1/γ and 1/p, respectively.

In order to derive the second moment of the inter-sampling
time i, E{I2i }, we first derive the second moment of the
servers’ service time, where E{G2

i } is given as

E{G2
i } =

∞∑
j=1

j2Pr(Gi = j)

(a)
=

∞∑
j=1

j2γγ̄j−1

=
γ

γ̄

∞∑
j=1

j2γ̄j

(b)
=

γ

γ̄

γ̄(1 + γ̄)

γ3

=
2− γ

γ2
, (7)

where the equality (a) comes from Pr(Gi = j) = γγ̄j−1, and
the equality (b) follows since

∑∞
j=1 j

2lj = l(l + 1)/(1 − l)3

for all |l| < 1. Following the same step, the second moment
of the transmit server service time for packet i is given as

E{Y 2
i } =

2− p

p2
. (8)

Using (7) and (8), the second moment of the inter-sampling
time i, E{I2i }, is given as

E{I2i } = E{(Gi−1 + Yi−1)
2}

VILNI et al.: AOI ANALYSIS AND OPTIMIZATION IN SYSTEMS WITH... 589

Fig. 2. An example of the evolution of the AoI.

Fig. 3. AoI as a function of time under the zero-wait-one policy.

(a)
= E{G2

i−1}+ E{Y 2
i−1}+ 2E{Gi−1}E{Yi−1}

=
2− γ

γ2
+

2− p

p2
+

2

γp
, (9)

where the equality (a) comes from independence of Gi−1 and
Yi−1. The value of E{IiTi} is given as

E{IiTi} = E{(Gi−1 + Yi−1)(Gi + Yi)}
= E{Gi−1Gi}+ E{Yi−1Yi}

+ E{Gi−1Yi}+ E{Yi−1Gi}
(a)
= E{Gi−1}E{Gi}+ E{Yi−1}E{Yi}

+ E{Gi−1}E{Yi}+ E{Yi−1}E{Gi}

=
1

γ2
+

1

p2
+

2

γp
, (10)

where the equality (a) follows from independence of Gi−1,
Gi, Yi−1, and Yi.

Finally, substituting (6), (9), and (10) into (5), the average
AoI is given as

∆̄ =

1

2
(
2− γ

γ2
+

2− p

p2
+

2

γp
) +

1

γ2
+

1

p2
+

2

γp
1

γ
+

1

p

− 1

2
.

Fig. 4. An example of the evolution of the AoI under the zero-wait-blocking
policy.

B. AoI Analysis for Zero-wait-blocking Policy

Recall that under the zero-wait-blocking policy, the con-
troller takes a sample whenever the process server is idle. If
the transmit server receives a new packet while still serving the
previous one, the newly arrived packet is blocked and dropped.
Let ti,j denote the sampling time of the jth packet blocked at
the transmit server by the (i−1)th transmitted packet. Let t

′

i,j

denote the time instant that the blocked packet is generated
by the process server. An example of the evolution of the AoI
under the zero-wait-blocking policy is illustrated in Fig. 4.

Let Gi,j denote the process server service time of the jth
packet blocked by (i− 1)th served packet. Let Ỹi−1,k denote
the transmit server residual service time of the (i−1)th packet
at the sampling time of the kth packet, it could be a blocked
packet or a served packet. Let Di represent the event where
the packet i starts to be served at the transmit server, i.e., Di

happens if {Gi > Ỹi−1,i}. Note that in the case that there
is no blocking event between two served packets i − 1 and
i, we have Ỹi−1,i = Yi−1, and subsequently Di happens if
{Gi > Yi−1}. Let Bi,j represent the event where packet j
is blocked at the transmit server by transmitted packet i − 1,
i.e., Bi,j happens if {Gi,j < Ỹi−1,j}. Since the processing
of the new status update starts immediately after the previous

590 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 5, OCTOBER 2023

one was processed, and a processed packet could be blocked
by the transmit server, the inter-sampling time between two
delivered packets i−1 and i is the process server service time
of packet i−1, Gi−1, and the summation of the process server
service time of the blocked packets by transmitted pack i− 1.
Let N denote a random variable representing the number of
blocked packets at the transmit server by transmitted packet
i− 1. Then, the inter-sampling time is given as

Ii = Gi−1 +Gi,1 + · · ·+Gi,N . (11)

The total service time for ith packet is given as

Ti = Gi + Yi. (12)

The mean of the ith inter-sampling time, E{Ii}, is derived
as

E{Ii} = E{E{Ii | N = n}}

=

∞∑
n=0

E{Gi−1 +

n∑
k=1

Gi,k}Pr(Bi,1, · · ·, Bi,n, Di)

(a)
=

∞∑
n=0

n+ 1

γ
Pr(Bi,1, · · ·, Bi,n, Di), (13)

where (a) comes from the fact that the service time of
packets in the process server are independent and identically
distributed with mean 1/γ. Note that n = 0 represents the
case that blocking does not happen, i.e., {Gi > Yi−1}. The
remaining task is to characterize Pr(Bi,1, · · ·, Bi,n, Di).

Due to the memoryless property of the geometric random
variables, the residual service times have the same distribution
as Yi−1 and are independent of each other. Consequently,
events Di, Bi,1, · · ·, Bi,n become independent of each other.
Thus, we have

Pr(Bi,1, · · ·, Bi,n, Di) = Pr(Bi,1)· · ·Pr(Bi,n)Pr(Di).

In the following lemma, we derive the probability of event
Bi,j .

Lemma 1. Let p̄ = 1−p and γ̄ = 1−γ, then, the probability
of event Bi,j , Pr(Bi,j), is given as

Pr(Bi,j) =
γp̄

1− γ̄p̄
. (14)

Proof. Let z1 denote the processing time of the jth blocked
packet. The probability of event Bi,j = {Gi,j < Ỹi−1,j} is
calculated as

Pr(Bi,j) =

∞∑
z1=1

Pr(Gi,j < Ỹi−1,j | Gi,j = z1)Pr(Gi,j = z1).

The probability that the processing time takes z1 slots is
given as Pr(Gi,j = z1) = γγ̄z1−1, and the probability that the
residual transmission time takes more than z1 slots is given as
Pr(Ỹi−1,j > z1) = p̄z1 . Thus, we have

Pr(Bi,j) =

∞∑
z1=1

p̄z1γγ̄z1−1 (15)

(a)
=

γp̄

1− γ̄p̄
,

where (a) follows since
∑∞

z1=1 l
z1 = l/(1− l) for all |l| < 1.

Following the same steps as for the proof of Lemma 1,
one can show that Pr(Di) = 1 − γp̄/(1− γ̄p̄). As Pr(Bi,j)
and Pr(Di) are the same for different i and j, hereinafter, for
simplicity of presentation, we use PB = Pr(Bi,j), ∀i, j, and
PD = Pr(Di), ∀i.

Using Lemma 1 and equation (13) the mean of the ith inter-
sampling time is derived as

E{Ii} =

∞∑
n=1

n

γ
PD

(
PB

)n−1

(a)
=

PD

γPB

PB

P 2
D

=
1

γPD
, (16)

where (a) follows since
∑∞

z1=1 z1l
z1 = l/(1 − l)2 for all

|l| < 1, and PD = 1− PB .
Using (11), the second moment of the inter-sampling time

is derived as

E{I2i } = E{E{I2i | N = n}}

a
=

∞∑
n=0

E{
(
G2

i−1 + 2Gi−1

n∑
k=1

Gi,k +

n∑
k=1

G2
i,k

+ 2

n∑
k=1

k−1∑
z1=1

Gi,kGi,z1}PDPn
B

b
=

∞∑
n=1

n
2− γ

γ2
PDPn−1

B +

∞∑
n=1

n(n− 1)

2

2

γ2
PDPn−1

B

c
=

2− γ

γ2

1

P 2
D

PD

+

∞∑
n=1

n2

γ2
PDPn−1

B −
∞∑

n=1

n

γ2
PDPn−1

B

d
=

2− γ

γ2PD
+

PD

PBγ2

P 2
B + PB

P 3
D

− PD

PBγ2

PB

P 2
D

=
2− γ

γ2PD
+

PB + 1

γ2P 2
D

− 1

γ2PD

=
1− γ

γ2PD
+

PB + 1

γ2P 2
D

, (17)

where (a) follows since (
∑∞

n=1 ln)
2 =

∑∞
n=1 l

2
n +

2
∑∞

n=1

∑n−1
z1=1 lnlz1 , (b) follows since

∑Z
z1=1

∑z1−1
z2=1 l =

lZ(Z − 1)/2, (c) follows since
∑∞

z1=1 z1l
z1 = l/(1− l)2 for

all |l| < 1, (d) follows since
∑∞

z1=1 z
2
1 l

z1 = l(l + 1)/(1− l)3

for all |l| < 1.
The value of E{IiTi} is given as

E{IiTi}
a
= E{Ii}E{Gi + Yi}

=
1

γPD
(
1

γ
+

1

p
)

=
1

PDγ2
+

1

PDpγ
, (18)

where (a) holds because Ii, Gi, and Ti are independent.

VILNI et al.: AOI ANALYSIS AND OPTIMIZATION IN SYSTEMS WITH... 591

Finally, by substituting (16), (17), and (18) in (5), the
average AoI for zero-wait-blocking policy is derived as

∆̄ =

1

2
(
1− γ

γ2PD
+

PB + 1

γ2P 2
D

) +
1

γ2PD
+

1

PDpγ
1

γPD

− 1

2

=
1

2
(
1− γ

γ
+

PB + 1

γPD
) +

1

γ
+

1

p
− 1

2
.

IV. OPTIMAL CONTROL POLICY

In this section, we propose an optimal control policy.
Specifically, we consider the expected long-term time average
AoI, given as

lim sup
T→∞

1

T

T∑
t=1

E{∆(t)},

and find the optimal action, a(t), at each slot to minimize the
average AoI. Note that we use lim sup instead of lim to ensure
the limit exists. We formulate our problem as a MDP problem
and solve it with the RVIA.

A. AoI Model

For the purpose of deriving an optimal control policy, we
use the common assumption (see, e.g., [32], [33], [40]) that
the age of the packets in the system can be upper bounded
by a value ∆max, i.e., ∆(t) = min{t−U(t),∆max}. Besides
making the problem tractable, this also models the fact that
once the available information about the process of interest
becomes excessively stale (i.e., age reached ∆max), further
increasing the age would be irrelevant.

In order to characterize the evolution of AoI at the sink,
it is useful to define the age of the under-serving packet at
each server. Let ∆s(t) denote the age of the under-processing
sample at the process server at time t. In the following, we
elaborate on the evolution of the age of packets at the servers.

Suppose first the process server is busy at slot t, i.e.,
g(t) = 0; in the next slot, there are three possible cases:
1) the server remains busy at the next slot, g(t + 1) = 0,
and the age of the under-processing sample at the next slot
becomes min{∆s(t) + 1,∆max}, 2) at the next slot the server
becomes idle, g(t+1) = 1, and the controller takes a sample,
a(t+ 1) = 1; then the age of the under-processing sample at
the next slot becomes zero, and 3) at the next slot the server
becomes idle, g(t+1) = 1, and the controller does not request
a new sample, a(t+ 1) = 0; in this case, the server is empty
and the age is undefined.

Consider now the case that at slot t, the process server is
idle, g(t) = 1, and the controller takes a new sample, a(t) = 1;
in the next slot there are three possible cases: 1) the process
server does not finish the service, g(t+1) = 0, and, therefore,
the age of the under-processing sample at the next slot
becomes one, 2) the server finishes the service in one slot (i.e.,
slot t) and the process server becomes available, g(t+1) = 1,
and the controller takes a new sample, a(t+ 1) = 1, then the
age of the under-processing sample at the next slot becomes

zero, and 3) as before, the server finishes the service at slot t
and become available at slot t + 1, g(t + 1) = 1, but the
controller does not request a new sample, a(t+1) = 0; in this
case the server is empty and, therefore, the age is undefined.
Note that, in general, if the process server is available and the
controller does not request a new sample at a slot, the age is
undefined at the slot. For the sake of conciseness, we introduce
the short notation Is(t) = (g(t), a(t), g(t+ 1), a(t+ 1)). The
evolution of ∆s(t) is given as

∆s(t+ 1) =

min{∆s(t) + 1,∆max}, Is(t) = (0, ∗, 0, ∗)
0, Is(t) = (0, ∗, 1, 1)
1, Is(t) = (1, 1, 0, ∗)
0, Is(t) = (1, 1, 1, 1)

∗, Is(t) = (∗, ∗, 1, 0),
(19)

where the notation ∗ means that either 1) the variable’s value
does not affect the age value, or 2) the age value is undefined
(i.e., the server is empty).

Let ∆x(t) denote the age of the under-transmitting packet at
the transmit server at time t. Let n(t) be an indicator of a new
packet arrival at the transmit server, i.e., n(t) = 1 indicates
that a new packet arrived at the transmit server at slot t, and
n(t) = 0 otherwise.

Suppose first that the transmit server is busy at slot t,
y(t) = 0; at the next slot, there are three possible cases: 1) the
transmit server remains busy, y(t+1) = 0, then the age of the
under-transmitting packet becomes min{∆x(t) + 1,∆max},
2) the server becomes available, y(t + 1) = 1, and receives
a new packet, n(t + 1) = 1, then the age of the under-
transmitting packet becomes min{∆s(t) + 1,∆max}, and
3) the server becomes available, y(t+1) = 1, and receives no
packet, n(t+1) = 0, then as the transmit server is empty the
value of the age becomes undefined.

Now consider the case that the transmit server is available
at slot t, y(t) = 1, there are five possible cases: 1) the transmit
server receives a new packet at slot t, n(t) = 1, and becomes
busy at the next slot, y(t+1) = 0, then the age of the under-
transmitting packet becomes min{∆x(t) + 1,∆max}, 2) the
transmit server receives a new packet at slot t, n(t) = 1,
becomes available at the next slot, y(t+ 1) = 1, and receives
a new packet at the next slot, n(t+ 1) = 1, then the age of the
under-transmitting packet becomes one, 3) the transmit server
receives a new packet at slot t, n(t) = 1, becomes available
at the next slot, y(t + 1) = 1, but it does not receive a new
packet at the next slot, n(t+ 1) = 0, then the age of the under-
transmitting packet becomes undefined, 4) the transmit server
receives no packet at slot t, n(t) = 0, remains available at
the next slot, y(t + 1) = 1, and receives a new packet at the
next slot, n(t+ 1) = 1, then the age of the under-transmitting
packet becomes min{∆s(t) + 1,∆max}, and 5) the transmit
server receives no packet at slot t, n(t) = 0, becomes available
at the next slot, y(t + 1) = 1, and receives no packet at the
next slot, n(t+ 1) = 0, then the age of the under-transmitting
packet becomes undefined. In general, if the transmit server is
available and does not receive a new packet at a slot, the age
is undefined at the slot. For the sake of brevity, we introduce

592 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 5, OCTOBER 2023

the short notion Ix(t) = (y(t), n(t), y(t+ 1), n(t+ 1)). The
evolution of ∆x(t) is given as

∆x(t+ 1) =

min{∆x(t)+1,∆max}, Ix(t) = (0, ∗, 0, ∗)
min{∆s(t)+1,∆max}, Ix(t) = (0, ∗, 1, 1)
min{∆x(t) + 1,∆max}, Ix(t) = (1, 1, 0, ∗)
1, Ix(t) = (1, 1, 1, 1)

min{∆s(t) + 1,∆max}, Ix(t) = (1, 0, 1, 1)

∗, Ix(t) = (∗, ∗, 1, 0).
(20)

Having defined ∆s and ∆x, we now characterize the AoI
at the sink. Let r(t) be an indicator of a new packet arrival
at the sink at slot t, where r(t) = 1 indicates that the sink
receives a new packet at slot t, and r(t) = 0 otherwise.
If the sink receives a new packet at slot t, AoI becomes
min{∆x(t− 1) + 1,∆max}, otherwise AoI is incremented by
one up to ∆max. The evolution of ∆(t) is given as

∆(t+ 1) =

{
min{∆x(t) + 1,∆max}, r(t+ 1) = 1

min{∆(t) + 1,∆max}, r(t+ 1) = 0.
(21)

B. MDP Model

An MDP is defined by a tuple {S,A,P, C} of four ele-
ments: State space, action space, state transition probabilities,
and an (immediate) cost, which are elaborated below:
State: Let s(t) ∈ S denote the state of the system at slot t,
where S is the the state space. The state of the system is given
as s(t) = {g(t),∆s(t), y(t),∆x(t),∆(t)}.
Action: The action at slot t is defined as a(t) ∈ A = {0, 1},
where A is the action space.
Immediate cost: The immediate cost is the AoI, i.e.,
C(t) = ∆(t).
State transition probabilities: Let Pss′(a) = Pr(s′ | s, a)
denote the probability of moving from current state s to a
next state s′ under action a. Recall that we assume a blocking
strategy, i.e., while the server is busy, any new request for
service is blocked and discarded. In the following, we calcu-
late the state transition probabilities for different actions and
four general states: s1 = {1, ∗, 1, ∗,∆}, s2 = {1, ∗, 0,∆x,∆},
s3 = {0,∆s, 1, ∗,∆}, and s4 = {0,∆s, 0,∆x,∆}. Let us de-
note γ̄ = 1 − γ, p̄ = 1 − p. The state transition probabilities
for different actions can be expressed as

Pr
(
{1, ∗, 1, 1,∆+ 1} | s1, a = 1

)
= γ

Pr
(
{0, 1, 1, ∗,∆+ 1} | s1, a = 1

)
= γ̄

Pr
(
{1, ∗, 1, ∗,∆+ 1} | s1, a = 0

)
= 1

Pr
(
{1, ∗, 1, 1,∆x + 1} | s2, a = 1

)
= γp

Pr
(
{1, ∗, 0,∆x + 1,∆+ 1} | s2, a = 1

)
= γp̄

Pr
(
{0, 1, 1, ∗,∆x + 1} | s2, a = 1

)
= γ̄p

Pr
(
{0, 1, 0,∆x + 1,∆+ 1} | s2, a = 1

)
= γ̄p̄

Pr
(
{1, ∗, 1, ∗,∆x + 1} | s2, a = 0

)
= p

Pr
(
{1, ∗, 0,∆x + 1,∆+ 1} | s2, a = 0

)
= p̄

Pr
(
{1, ∗, 1,∆s + 1,∆+ 1} | s3, a = 0

)
= γ

Pr
(
{0,∆s + 1, 1, ∗,∆+ 1} | s3, a = 0

)
= γ̄

Pr
(
{1, ∗, 1,∆s + 1,∆x + 1} | s4, a = 0

)
= γp

Pr
(
{1, ∗, 0,∆x + 1,∆+ 1} | s4, a = 0

)
= γp̄

Pr
(
{0,∆s + 1, 1, ∗,∆x + 1} | s4, a = 0

)
= γ̄p

Pr
(
{0,∆s + 1, 0,∆x + 1,∆+ 1} | s4, a = 0

)
= γ̄p̄, (22)

whereas the other cases are zero.

Theorem 1. The defined MDP is unichain.

Proof. An MDP is unichain if, under every deterministic
policy, it induces a single recurrent class plus a possibly
empty set of transient states [41]. It is sufficient to show
that under any feasible deterministic policy, there exists a
recurrent state, i.e., a state that is accessible from every
other states [42, Exercise 4.3]. For the case that γ ̸= 1 and
0 < p ≤ 1, the recurrent state is {0,∆max, 1, ∗,∆max}. This
is due to the fact that the process server would have a packet,
and the probability of the event of generating a packet in
∆max consecutive slots is non-zero. For the case that p ̸= 1
and 0 < γ ≤ 1, the recurrent state is {1, ∗, 0,∆max,∆max}.
This is because the probability of the event of generating a
packet at one slot and unsuccessful transmission of a packet
in ∆max consecutive slots are non-zero1. Thus, the defined
MDP is unichain for every deterministic policy.

Let π denote a policy that determines the action
taken at each state. A stationary randomized policy is
mapping from each state to a distribution over actions,
π(a | s) : S ×A → [0, 1],

∑
a∈As

π(a | s) = 1. A (stationary)
deterministic policy chooses an action at a given state with
probability one, which is a special case of the stationary
randomized policy. With a slight abuse of notation, we de-
note the action taken in state s by a deterministic policy π
with π(s). Let C̄π = lim supT→∞

1
T

∑T
t=1 E{C(t)} denote

the average AoI cost obtained under policy π. Due to the
unichain structure, the time average expected value of the cost
is independent from the initial state [43, Proposition 8.2.1].
Having defined the MDP elements, the MDP problem is given
as

minimize
π

C̄π. (23)

The optimal value of problem (23) is denoted by C∗, and an
optimal policy is denoted by π∗.

In the next subsection, we solve problem (23).

C. Optimal Control Policy

In this section, we solve MDP problem (23) using the RVIA
[41, Section 4.3]. According to [43, Theorem 8.4.3, Theorem
8.4.4], for an MDP with 1) finite state and action space and
2) unichain structure, there exists a relative value function
h(s), s ∈ S, that satisfies

C∗ + h(s) =

min
a∈A

[
C(s, a) +

∑
s′∈S

Pr(s′ | s, a)h(s′)
]
, ∀s ∈ S.

1Since in the case that γ = p = 1, the optimal policy is to sample at each
slot, we do not study this case.

VILNI et al.: AOI ANALYSIS AND OPTIMIZATION IN SYSTEMS WITH... 593

Algorithm 1: The RVIA to solve MDP problem (23)

Input: P , sref , and ϵ
Initialize: 1) i = 1, 2) set h0(s) = 1, h1(s) = 0,

Q0(s) = 0 for all s ∈ S
1 while maxs∈S |hi(s)− hi−1(s)| ≥ ϵ do
2 i = i+ 1
3 for s ∈ S do
4 Qi(s)=

mina∈A
[
C(s, a)+

∑
s′∈S Pr(s′|s, a)hi−1(s′)

]
5 hi(s) = Qi(s)−Qi(sref)
6 end
7 end
8 for s ∈ S do
9 π∗(s) =

argmina∈A
[
C(s, a) +

∑
s′∈S Pr(s′ | s, a)hi(s′)

]
10 end

Subsequently, the optimal policy, π∗, is obtained as [43,
Theorem 8.4.4]

π∗(s) = argmin
a∈A

[
C(s, a) +

∑
s′∈S

Pr(s′ | s, a)h(s′)
]
, ∀s ∈ S.

The RVIA is an iterative algorithm in which the relative
value function is updated at each iteration i ∈ {0, 1, · · ·}. Let
Qi(s) denote the value function given as

Qi(s) = min
a∈A

[
C(s, a) +

∑
s′∈S

Pr(s′ | s, a)hi−1(s′)
]
.

The relative value function is updated at each iteration as
hi(s) = Qi(s) − Qi(sref), where sref ∈ S is an arbitrarily
chosen reference state which remains unchanged throughout
the iterations.

The RVIA is presented in Algorithm 1, where ϵ ∈ (0, 1) is
a small constant for the RVIA termination criterion.

Theorem 2. For any state s ∈ S and initialization Q0(s), the
sequences {hi(s)}i=1,2,··· and {Qi(s)}i=1,2,··· converge, i.e.,
limi→∞ hi(s) = h(s) and limi→∞ Qi(s) = Q(s).

Proof. According to [41, Proposition 4.3.2], it is sufficient to
show that the MDP under every deterministic policy induces a
Markov chain that is unichain and aperiodic. In Theorem 1, it
was proven that the MDP is unichain. If an state in a recurrent
class is aperiodic then all the state in the class are aperiodic
[42, Theorem 4.2.8]. As each recurrent state can move to itself
with a non-zero probability, the MDP is aperiodic under every
deterministic policy.

V. NUMERICAL RESULTS

In this section, we evaluate the proposed optimal control
policy and the fixed control policies: 1) zero-wait-one policy
and 2) zero-wait-blocking policy. Furthermore, we numerically
analyze the structure of the optimal policy. To run Algorithm 1,
we set the maximum value of the AoI ∆max = 50 and

the stopping criterion threshold ϵ = 0.001. The rest of the
parameters are specified in each figure.

A. Comparison of the Policies

Fig. 5 illustrates the average AoI for the presented poli-
cies: 1) zero-wait-one, 2) zero-wait-blocking, and 3) optimal
control policy, versus the transmit server service rate, p, with
three process server service rates, γ. We also show the AoI
obtained by the case where the servers are able to preempt the
under-service sample/packet when they receive a new task.
Since the service times are memoryless, it is clear that the
optimal control policy is to always preempt the under-service
sample/packet whenever a new one arrives; thus, we refer to
this policy as the optimal policy preemption.

According to Fig. 5, when the servers’ service rates increase,
the average AoI decreases. This is because the controller
can update the sink more frequently with a small number
of blocking. As we expected, the optimal control policy
outperforms the fixed policies. When the service rates are large
(e.g., p = 0.9 and γ = 0.7), the zero-wait-blocking policy
performance is very close to the optimal policy. It is because
the probability of blocking a packet is considerably reduced,
and thus the zero-wait-blocking policy frequently delivers
packets to the sink. The zero-wait-one policy outperforms the
zero-wait-blocking policy for a small transmit server service
rate (e.g., p = 0.2), however, in the large service rate, the zero-
wait-blocking policy outperforms the zero-wait-one policy. It
is because in a low transmit server service rate, the probability
of blocking a packet increases, and vice versa.

B. Structure of Optimal Policy

Fig. 6 demonstrates the structure of the optimal policy in
the case that the system is empty, i.e., s1 = {1, ∗, 1, ∗,∆} by
showing the optimal action for the different values of γ and
p.

According to Fig. 6, the optimal policy in these states has
a threshold structure with respect to the AoI, ∆. For example,
when p = 0.2 and γ = 0.3, the threshold value for AoI is
∆ = 4: the optimal action for ∆ ≤ 4 is to stay idle, a = 0,
and the optimal action for ∆ > 4 is to take a sample, a = 1.
The threshold value decreases when the process server service
rate, γ, increases. This behavior is due to the fact that when
the processing time of the packet is decreased for the same
transmit server rate, the probability of blocking is increased
and puts the process server out of access. Note that the optimal
action after the threshold value remains the same. Overall,
these results show that taking a sample when the system is idle
for most of the cases is optimal. However, with low service
rates when the AoI is small, in line with [16], the optimal
action is to stay idle.

Furthermore, in Fig. 7, we analyze the optimal policy
structure for the case that the transmit server is busy and the
process server is idle, i.e., s2 = {1, ∗, 0,∆x,∆}. The results
shows that the optimal policy in these states has a threshold
structure with respect to the AoI at the transmit server, ∆x.
For example, when p = 0.4 and γ = 0.5, the threshold value
for the AoI at the transmit process is ∆x = 3: the optimal

594 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 5, OCTOBER 2023

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4

6

8

10

12

14

16

(a) γ = 0.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3

4

5

6

7

8

9

10

11

12

(b) γ = 0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9

2

3

4

5

6

7

8

9

10

(c) γ = 0.7

Fig. 5. Average AoI for different policies and the process server service rate
with respect to the transmit server service rate with ϵ = 1e− 3.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

3

4

5

6

7

8

9

10

(a) γ = 0.7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

3

4

5

6

7

8

9

10

(b) γ = 0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

3

4

5

6

7

8

9

10

(c) γ = 0.3

Fig. 6. Structure of the optimal policy for state s1 = {0, ∗, 0, ∗,∆} with
respect to the AoI, ∆, and the transmit server rate, p, for three different
process server rates, γ.

action for ∆ ≤ 3 is to stay idle, a = 0, and the optimal
action for ∆ > 3 is to take a sample, a = 1. When the
process server rate, γ, decreases, the threshold value increases.
This behavior is because in a low process server rate, taking
a sample puts the process server for a bigger interval out of
access. In addition, when the transmit server rate increases, the
threshold values are decreased. It is because the probability of
blocking is reduced. The optimal action remains unchanged
for the values larger than the threshold value. Overall, it can
be concluded that taking a sample when the process server is
idle while the transmit server is busy is not optimal for the

VILNI et al.: AOI ANALYSIS AND OPTIMIZATION IN SYSTEMS WITH... 595

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

9

10

(a) γ = 0.7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

9

10

(b) γ = 0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2

4

6

8

10

12

14

16

18

20

(c) γ = 0.3

Fig. 7. Structure of the optimal policy for state s1 = {0, ∗, 1,∆x,∆} with
respect to the AoI at the transmit server, ∆x, and the transmit server rate, p,
for three different process server service rates, γ.

low service rates.

VI. CONCLUSION

We considered a time-slotted computation-intensive status
update system. We derived the average AoI expression for
two fixed policies: 1) zero-wait-one, i.e., the controller takes a
new sample whenever both servers are available, and 2) zero-
wait-blocking, i.e., the controller takes a sample whenever the
process server is idle and block any newly arrived packet to

the transmit server while it is busy. Furthermore, we proposed
an optimal control policy to minimize AoI using the MDP
technique. In numerical results, we analyze the optimal policy
structure for two different states of the system: 1) the servers
are empty, and 2) the process server is available while the
transmit server is busy. The results reveal that, in the first
state, it is not optimal to take a sample when AoI and the
service rates are small. Similarly, for the second case, it is
not optimal to take a sample when AoI at the transmit server
and the service rates are small. Furthermore, we compare
the performance of the optimal and fixed policies. It was
shown that the zero-wait-one policy outperforms the zero-wait-
blocking policy in the small service rates. However, in the
larger service rates, the zero-wait-blocking policy outperforms
the zero-wait-one policy and performs very close to the
optimal policy.

REFERENCES

[1] R. D. Yates et al., “Age of information: An introduction and survey,”
IEEE J. Select. Areas Commun., vol. 39, no. 5, pp. 1183–1210, May
2021.

[2] R. D. Yates, “The age of information in networks: Moments, distri-
butions, and sampling,” IEEE Trans. Inform. Theory, vol. 66, no. 9,
pp. 5712–5728, Sep. 2020.

[3] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age
of information in the Internet of things,” IEEE Commun. Mag., vol. 57,
no. 12, pp. 72–77, Dec. 2019.

[4] A. Kosta et al., “Age of information: A new concept, metric, and tool,”
Foundations and Trends® in Networking, vol. 12, no. 3, pp. 162–259,
Nov. 2017.

[5] Q. Kuang, J. Gong, X. Chen, and X. Ma, “Analysis on computation-
intensive status update in mobile edge computing,” IEEE Trans. Veh.
Technol., vol. 69, no. 4, pp. 4353–4366, Feb. 2020.

[6] P. Zou, O. Ozel, and S. Subramaniam, “Optimizing information fresh-
ness through computation–transmission tradeoff and queue manage-
ment in edge computing,” IEEE/ACM Trans. Netw., vol. 29, no. 2,
pp. 949–963, Feb. 2021.

[7] F. Chiariotti, O. Vikhrova, B. Soret, and P. Popovski, “Peak age of
information distribution for edge computing with wireless links,” IEEE
Trans. Commun., vol. 69, no. 5, pp. 3176–3191, Jan. 2021.

[8] A. Muhammad, I. Sorkhoh, M. Samir, D. Ebrahimi, and C. Assi,
“Minimizing age of information in multi-access edge computing-assisted
IoT networks,” IEEE Internet Things J., Dec. 2021.

[9] S. Ghosh, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Mobi-IoST:
Mobility-aware cloud-fog-edge-IoT collaborative framework for time-
critical applications,” IEEE Trans. Net. science Eng., vol. 7, no. 4,
pp. 2271–2285, Sep. 2019.

[10] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent IoT applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Jan. 2020.

[11] K. Maharatna, E. B. Mazomenos, J. Morgan, and S. Bonfiglio, “Towards
the development of next-generation remote healthcare system: Some
practical considerations,” in Proc. IEEE ISCAS, May 2012.

[12] A. H. Sodhro et al., “Power control algorithms for media transmission
in remote healthcare systems,” IEEE Acc., vol. 6, pp. 42384–42393, Jul.
2018.

[13] C. De Alwis et al., “Survey on 6G frontiers: Trends, applications, re-
quirements, technologies, and future research,” IEEE Open J. Commun.
Soc., vol. 2, pp. 836–886, Apr. 2021.

[14] L. Hu et al., “Ready player one: UAV-clustering-based multi-task
offloading for vehicular VR/AR gaming,” IEEE Network, vol. 33, no. 3,
pp. 42–48, May 2019.

[15] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., 1994.

[16] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. ISIT, Jun. 2015.

[17] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inform.
Theory, vol. 63, no. 11, pp. 7492–7508, Aug. 2017.

596 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 5, OCTOBER 2023

[18] Y. Sun and B. Cyr, “Sampling for data freshness optimization: Non-
linear age functions,” J. Commun. Netw., vol. 21, no. 3, pp. 204–219,
Jun. 2019.

[19] N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. Angelakis,
“Age of information of multiple sources with queue management,” in
Proc. IEEE ICC, Jun. 2015.

[20] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age of infor-
mation performance of multiaccess strategies with packet management,”
J. Commun. Netw., vol. 21, no. 3, pp. 244–255, 2019.

[21] M. Moradian and A. Dadlani, “Age of information in scheduled wireless
relay networks,” in Proc. IEEE WCNC, May 2020.

[22] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Non-linear
age of information in a discrete time queue: Stationary distribution and
average performance analysis,” in Proc. IEEE ICC, Jun. 2020.

[23] J. Zhang and Y. Xu, “On age of information for discrete time status
updating system with Ber/G/1/1 queues,” in Proc. IEEE ITW, Oct. 2021.

[24] D. Qiao and M. C. Gursoy, “Age-optimal power control for status update
systems with packet-based transmissions,” IEEE Wireless Commun.
Lett., vol. 8, no. 6, pp. 1604–1607, Jul. 2019.

[25] C.-C. Wang, “How useful is delayed feedback in AoI minimization — A
study on systems with queues in both forward and backward directions,”
in Proc. IEEE ISIT, Jun. 2022.

[26] M. Moltafet, M. Leinonen, M. Codreanu, and R. D. Yates, “Status update
control and analysis under two-way delay,” 2022, [Online]. Available:
https://doi.org/10.48550/arXiv.2208.06177.

[27] S. Wu et al., “Minimizing age-of-information in HARQ-CC aided
NOMA systems,” IEEE Trans. Wireless Commun., vol. 22, no. 2,
pp. 1072–1086, Sep. 2022.

[28] Y. Wang et al., “Age-optimal transmission policy with HARQ for
freshness-critical vehicular status updates in space-air-ground integrated
networks,” IEEE Internet Things J., vol. 9, no. 8, pp. 5719–5729, Apr.
2022.

[29] E. Gindullina, L. Badia, and D. Gündüz, “Age-of-information with
information source diversity in an energy harvesting system,” IEEE
Trans. Green Commun. Net., vol. 5, no. 3, pp. 1529–1540, Sep. 2021.

[30] J. Liu, R. Zhang, A. Gong, and H. Chen, “Optimizing age of information
in wireless uplink networks with partial observations,” IEEE Trans.
Commun., vol. 71, no. 7, pp. 4105–4118, Jul. 2023.

[31] M. Hatami, M. Leinonen, Z. Chen, N. Pappas, and M. Codreanu,
“On-demand AoI minimization in resource-constrained cache-enabled
IoT networks with energy harvesting sensors,” IEEE Trans. Commun.,
vol. 70, no. 11, pp. 7446–7463, Sep. 2022.

[32] E. T. Ceran, D. Gündüz, and A. György, “A reinforcement learning
approach to age of information in multi-user networks with HARQ,”
IEEE J. Select. Areas Commun., vol. 39, no. 5, pp. 1412–1426, May
2021.

[33] M. Moltafet, M. Leinonen, M. Codreanu, and N. Pappas, “Power mini-
mization for age of information constrained dynamic control in wireless
sensor networks,” IEEE Trans. Commun., vol. 70, no. 1, pp. 419–432,
Jan. 2022.

[34] Z. Chen, N. Pappas, E. Björnson, and E. G. Larsson, “Optimizing
information freshness in a multiple access channel with heterogeneous
devices,” IEEE Open J. Commun. Soc., vol. 2, pp. 456–470, Mar. 2021.

[35] J. Pan, A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimal sampling for
data freshness: Unreliable transmissions with random two-way delay,”
IEEE/ACM Trans. Netw., vol. 31, no. 1, pp. 408–420, Aug. 2023.

[36] S. S. Vilni, M. Moltafet, M. Leinonen, and M. Codreanu, “Average AoI
minimization in an HARQ-based status update system under random
arrivals,” in Proc. IEEE IoTaIS, Nov. 2022.

[37] M. Moltafet, M. Leinonen, and M. Codreanu, “Moment generating
function of the AoI in multi-source systems with computation-intensive
status updates,” in Proc. IEEE ITW, Nov. 2021.

[38] H. Hu, Y. Dong, Y. Jiang, Q. Chen, and J. Zhang, “On the age of
information and energy efficiency in cellular IoT networks with data
compression,” IEEE Internet Things J., vol. 10, no. 6, pp. 5226–5239,
Nov. 2022.

[39] X. Qin et al., “Timeliness of information for computation-intensive
status updates in task-oriented communications,” IEEE J. Select. Areas
Commun., vol. 41, no. 3, pp. 623–638, Dec. 2022.

[40] A. Maatouk, S. Kriouile, M. Assad, and A. Ephremides, “On the
optimality of the Whittle’s index policy for minimizing the age of infor-
mation,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1263–1277,
Oct. 2021.

[41] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
vol. 2, Bermont, MA: Athena Scientific, 2007.

[42] R. G. Gallager, Stochastic Processes: Theory for Applications. Cam-
bridge University Press, 2013.

[43] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., 1994.

Saeid Sadeghi Vilni (Student Member, IEEE) re-
ceived the M.Sc. (Tech.) degree in Electrical En-
gineering from the Tarbiat Modares University,
Tehran, Iran, in 2017. He is currently pursuing the
Ph.D. degree with the Centre for Wireless Communi-
cations, University of Oulu, Finland. His current re-
search interests include age of information, machine
learning for wireless applications, and radio resource
allocation and optimization in wireless networks.

Mohammad Moltafet (S’16-M’21) received the
M.Sc. degree in Communications Engineering from
Tarbiat Modares University, Tehran, Iran, in 2016,
and the Ph.D. degree in Communications Engineer-
ing from the University of Oulu, Finland, in 2021.
He was a Visiting Ph.D. Researcher at Linköping
University, Sweden, in 2019, and a Post-Doctoral
Researcher at the University of Oulu and the Tech-
nical University of Munich, Germany, in 2021 and
2022, respectively. He is currently a Post-Doctoral
Researcher with the University of California at Santa

Cruz, Santa Cruz, CA, USA. His research interests include information fresh-
ness, information theory, stochastic optimization, and reinforcement learning
for wireless applications.

Markus Leinonen (Member, IEEE) received the
B.Sc. (Tech.) and M.Sc. (Tech.) degrees in Elec-
trical Engineering and the D.Sc. (Tech.) degree in
Communications Engineering from the University
of Oulu, Finland, in 2010, 2011, and 2018, respec-
tively. He completed his master’s thesis with the title
“Power Minimization in Single-Sink Data Gathering
Wireless Sensor Network via Distributed Source
Coding” in 2011. In 2010, he joined the Centre for
Wireless Communications, University of Oulu, as a
Master’s Thesis Student. He directly continued to

work on his doctoral research resulting in the thesis title as “Distributed
Compressed Data Gathering in Wireless Sensor Networks.” He received the
Academy of Finland Post-Doctoral Researcher position for his project “Time-
Critical Communications for Internet of Things Systems” from 2021 to 2024.
In 2013, he was a Guest Researcher with the Technical University of Munich,
Germany. In 2020, he was a Visiting Post-Doctoral Researcher with the
University of California San Diego (UCSD). He was conferred the title of
Docent (Adjunct Professor) with the University of Oulu in February 2023.
He has published over 70 journal and conference papers in the area of
wireless communications. His main research interests were time-critical and
sparsity-aware wireless communications, including optimization and analysis
of information freshness in status update systems and design of sparse signal
recovery methods for channel estimation as well as for user activity detection
in massive machine-type communications. He passed away on February 4,
2023.

VILNI et al.: AOI ANALYSIS AND OPTIMIZATION IN SYSTEMS WITH... 597

Marian Codreanu (S’02-M’07) received the M.Sc.
degree from the University Politehnica of Bucharest,
Romania, in 1998, and the Ph.D. degree from Uni-
versity of Oulu, Finland, in 2007. His thesis was
awarded as the Best Doctoral Thesis within the
area of all technical sciences in Finland in 2007. In
2008, he was a Visiting Postdoctoral Researcher at
the University of Maryland, College Park, USA. In
2013, the Academy of Finland awarded him a five-
year Academy Research Fellow position. In 2019,
Dr. Codreanu received a Marie Skłodowska-Curie

Individual Fellowship and joined the Linköping University, where he is
currently an Associate Professor. Dr. Codreanu published over 150 journal
and conference papers in the areas of wireless communications and network-
ing, statistical signal processing, mathematical optimization, and information
theory. His current research focus is on information freshness optimization,
machine learning for wireless networking, and sparse signal processing.

