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A Generalized CNN Model with Automatic
Hyperparameter Tuning for Millimeter Wave

Channel Prediction
Chengfang Yue, Hui Tang, Jun Yang, and Li Chai

Abstract—This paper focuses on millimeter wave (mmWave)
channel prediction by machine learning (ML) methods. Previous
ML-based mmWave channel predictors have limitations on re-
quirements of the amount of training data, model generalization
ability, robustness to noise, etc. In this paper, we propose a
CNN model with a novel feature selection strategy for mmWave
channel prediction. Automatic hyperparameter tuning (AHT)
algorithms are embedded in the training process to iteratively
optimize the predictive performance of the proposed CNN. The
diversification strategy is leveraged to enhance the robustness of
the AHT procedure against different communication scenarios.
To improve the generalization ability of the prediction model, the
input features are designed to capture the correlation between
the physical environment and the channel characteristics. In
parallel, the Cartesian coordinates of the transmitter (Tx) and re-
ceiver (Rx) are transformed into polar ones to reduce the model’s
sensitivity to coordinate noise. Numerical results demonstrate the
effectiveness of the proposed CNN model in predicting mmWave
channel characteristics in various communication scenarios.

Index Terms—Automatic hyperparameter tuning, channel pre-
diction, CNN, diversification strategy, feature selection, mmWave
communication.

I. INTRODUCTION

THE design of wireless communication systems in spe-
cific scenarios relies heavily on knowledge of the chan-

nels [1]. However, in millimeter wave (mmWave) communi-
cation systems, the implementation of hybrid analog/digital
array architecture makes it challenging to obtain the channels
directly [2]. Traditional channel modeling methodologies, such
as deterministic or stochastic, face significant challenges when
applied to mmWave channels, including high implementation
overheads, heavy computational burden, and increased data
traffic [3]. Alternatively, channels can be studied from the
perspective of parameters since channel parameters aid in the
design of mmWave communication systems. For instance, path
loss helps understand the coverage of a base station, time
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delay indicates communication latency, and angles of arrival
and departure contribute to forming highly directional beams.

Machine learning (ML) is a powerful tool for channel
modeling and parameter prediction due to its self-learning,
non-linear fitting, and big data processing capabilities [4]–[11].
For example, [5] proposed an artificial neural network (ANN)
based model to playback measured channels, where three-
dimensional coordinates of antennas and carrier frequency
were selected as input features, while cross-polarization ra-
tio (XPR), amplitude, delay, and phase were chosen as out-
put labels. [7]–[9] applied neural network (NN) [7], rele-
vance vector machine (RVM) [8], and multi-layer percep-
tron (MLP) [9] to predict the large-scale path loss (PL) and
received power (RP), respectively. In [7]–[9], the height of
Tx and Rx antennas, the distance of Tx and Rx antennas,
carrier frequency, and diffraction loss were selected as input
features to learn and predict PL and RP. The RVM model
was utilized to estimate the angle of arrival (AoA) [10]. The
procedure was to estimate the rough positions of the signals
by sparse RVM and then to obtain the precise estimated angles
by searching the preset spatial grid. In [11], CNN was used
to predict mmWave channel parameters using coordinates of
transmitters (Txs) and receivers (Rxs), highlighting the effect
of data acquisition methods on prediction performance.

The generalization ability of most state-of-the-art channel
prediction models is inadequate, which hampers the avail-
ability of ML-based channel prediction methods. Specifically,
deploying a trained channel prediction model in new com-
munication systems necessitates conducting repeated channel
soundings to extract channel parameters and build new training
databases. However, channel sounding is both costly and chal-
lenging to implement, particularly for mmWave communica-
tion systems. To reduce the labeling overhead associated with
channel sounding and facilitate ML-based channel prediction,
one approach is to devise a model that is adaptable to diverse
communication scenarios.

On the other hand, it is well-known that the empirical
performance of ML models relies significantly on hyperpa-
rameters, which should be carefully tuned. However, manual
hyperparameter tuning is a challenging and tedious task that
often leads to suboptimal solutions [12]. To address this
issue, various automatic hyperparameter optimization (AHT)
techniques were proposed, such as random search, Bayesian
optimization, and Gaussian process [12]–[17]. In the field
of ML-based channel prediction, the robustness of the AHT
process over different datasets is relatively under-researched.
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Coordinates of Txs and Rxs were commonly se-
lected as input features for channel modeling and predic-
tion [5], [11], [18]. In situations where the positions of
antennas fluctuate dynamically (e.g., antennas mounted on
drones and unmanned surface vehicles), coordinate noise can
not be ignored. However, these problems have not been well
addressed in existing literature.

This paper introduces an automatic hyperparameter tuning
algorithm-assisted CNN model (AHT-assisted CNN) to predict
various channel parameters. Our work aims to address the
challenges of reducing offline training efforts, improving the
applicability of the prediction model to different commu-
nication systems with less channel sounding overhead, and
enhancing the robustness of the framework to coordinate noise.
The main contributions of this study can be summarized as
follows:

• The AHT-assisted CNN model proposes the integration
of AHT algorithms into the CNN training process to
optimize the hyperparameters in an iterative manner by
considering the tuning process as an optimization prob-
lem of the unknown black-box function [13], [14]. The
AHT procedure is limited by inherent vulnerability, which
means a single tuning algorithm might converge rapidly
for one database but then perform poorly for another [17].
To overcome this limitation, we take advantage of the
diversification strategy to make the AHT procedure robust
across different databases, thus saving offline training
effort.

• We save the labeling overhead associated with channel
sounding by improving the generalization ability of the
CNN model and reducing the amount of training data
required. To achieve this purpose, the input features are
designed according to the mmWave propagation mech-
anism to capture the intrinsic interaction between the
physical environment and the corresponding channel.
Consequently, the input features are determined as the
received power, azimuth mean angle of departure, ele-
vation mean angle of departure, and coordinates of Txs
and Rxs, which allows us to predict the path loss, azimuth
mean angle of arrival, elevation mean angle of arrival, and
delay mean. Numerical results show that such a feature
selection strategy improves the generalization ability of
the channel prediction model and requires less training
data to achieve satisfactory prediction accuracy.

• The recorded Cartesian coordinates of the Txs and Rxs
antennas are transformed into polar ones to enable the
model to be robust to coordinate noise. We demonstrate
that the featured polar coordinates are less sensitive to
coordinate noise, which improves the predictive per-
formance of the model in situations where the actual
coordinates of the antennas fluctuate.

To create simulation datasets, the ray tracing software Wire-
less InSite [19] is utilized. Ray tracing is a well-established
deterministic technique that is commonly used for modeling
radio propagation. This technique is based on the principles
of geometrical optics (GO) and the uniform theory of diffrac-
tion (UTD). Various interactions between rays and objects,

TABLE I
ABBREVIATIONS AND CORRESPONDING FULL NAMES OF CHANNEL

PARAMETERS.

ABB PL RP
FN Path loss Received power
ABB AoA AoD
FN Angle of arrival Angle of departure
ABB AMAoA EMAoA
FN Azimuth mean AoA Elevation mean AoA
ABB AMAoD EMAoD
FN Azimuth mean AoD Elevation mean AoD

such as reflection, transmission, scattering, and diffraction, can
be categorized using this approach. Numerical results show
that the presented AHT-assisted CNN can achieve state-of-
the-art performance in various aspects, including less train-
ing efforts, smaller training datasets, stronger generalization
ability, and robustness to coordinate noise. We present the
abbreviations (ABB) and corresponding full names (FN) of
the involved channel parameters in Table I to avoid confusion.

II. SYSTEM MODEL

We consider an mmWave communication system with K
randomly distributed Rxs and the same number of Txs, where
both Txs and Rxs are equipped with a single antenna. The op-
erating frequency is 100 GHz. M Tx-Rx pairs are established,
where M equals K ×K. Then the received signal of the mth
Tx-Rx pair can be written as

ym = hm (f)x+ nm,m = 1, 2, · · ·,M, (1)

where x denotes the transmitted signal, nm ∼ CN
(
µ, σ2

)
is the additive white Gaussian noise at user m, σ2 denotes
the variance of noise, hm (f) represent the channel for the
mth Tx-Rx pair. Let f represent the carrier frequency, αml,
τml, βml, ϕml, and θml refer to the attenuation, time delay,
phase shift, azimuth AoAs, and elevation AoAs associated
with the lth path on the mth channel, respectively. Let L be
the number of paths, and am (ϕml, θml) be the mth antenna
response vector. As in [20], the channel for the mth Tx-Rx
pair is defined as

hm (f) =

L∑
l=1

αmle
−j2πfτml+jβmlam (ϕml, θml) , (2)

where m = 1, 2, · · ·,M . By denoting the path loss (PL),
azimuth mean angle of arrival (AMAoA), elevation mean
angle of arrival (EMAoA), and delay mean (DM) of the mth
channel by ρm, ϕ̄m, θ̄m, and τ̄m, respectively, we define the
mapping from hm (f) to channel characteristics according
to (2) as follows,

F : hm (f)→
[
ρm, ϕ̄m, θ̄m, τ̄m

]
,m = 1, 2, · · ·,M. (3)

It is worth noting that we choose the mean arrival angles and
mean time delay to define the above mapping function because
the time delay and angles of each path are difficult to obtain
and process during the model training procedure.Alternatively,
statistical channel characteristics such as angle spread and
delay spread can be used to model channels instead of mean
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Fig. 1. Illustration for multipaths distribution.

angles and mean delay. Similarly, the mean values of the
departure angles (AMAoD and EMAoD) are used in this
paper. The phase shift βi is not considered in (3) because
multipath phases of the channel are immeasurable inpractice
and are assumed to be uniformly distributed in the range
[0, 2π) [21].

The channel hm (f) in a certain communication scenario is
affected by the distribution of multipaths, which is determined
by the environment and antenna coordinates. As illustrated in
Fig. 1, different multipaths are distinguished by AoDs, AoAs,
and RP. In view of this, we choose coordinates, AoDs, AoAs,
and RP as environment factors and define another mapping be-
tween the environment factors and the corresponding channel
as

F∗ :
[
Cm, φ̄m, ϑ̄m, pm

]
→ hm (f) , (4)

where Cm denotes the vector of Cartesian coordinates of the
mth Tx-Rx pair, that is Cm=

[
xm

T , ym
T , xm

R, ym
R
]
, while

φ̄m, ϑ̄m, and pm represent AMAoD, EMAoD and RP of the
mth Tx-Rx channel, respectively. By combining (3) and (4),
we obtain the mapping between the environment factors and
the channel parameters as

F̃ :
[
Cm, φ̄m, ϑ̄m, pm

]
→

[
ρm, ϕ̄m, θ̄m, τ̄m

]
. (5)

As the mapping F̃ indicated, the channel parameters vector[
ρm, ϕ̄m, θ̄m, τ̄m

]
is closely related to the environment factors[

Cm, φ̄m, ϑ̄m, pm
]
.

When designing practical communication systems in dif-
ferent scenarios, important properties such as base station
coverage, antenna orientation, and communication latency,
can be investigated with the knowledge of path loss, arrival
and departure angles, and time delay instead of repeatedly
estimating or sounding channels. Our goal is to obtain such
channel parameters from a new perspective in situations
where channels are difficult to estimate or repeatedly sound.
Specifically, we aim to construct a generalized CNN model
which can predict channel characteristics for various different
communication scenarios by learning the mapping F̃ from
datasets. Furthermore, the model is robust to coordinate noise.

III. CNN-BASED CHANNEL PREDICTION

The mapping F̃ defined in Section II represents the in-
teraction between the communication scenario and the cor-
responding channel parameters. F̃ includes various aspects of

the communication process, such as the scenario geometry,
materials, reflection, etc. Therefore, it is difficult to find an
analytical model of F̃ .

In this section, we propose a CNN model for learning
the mapping F̃ . We first introduce the procedure of the
feature selection and preprocessing, and how it contributes to
improving the model’s generalization ability and robustness to
coordinate noise. Afterwards, we explain the motivation and
architecture of the CNN.

A. Feature Selection and Preprocessing

The correlation between features and labels is considered
to be highly relevant to the predictive performance of the
model. One focus of this paper is to construct highly correlated
input features and output labels according to the mmWave
communication mechanism. In particular, it is well known
that path loss is related to received power. The antenna
response between the mth Tx-Rx pair A (Ψm,Θm) is defined
as follows,

A (Ψm,Θm) = aR (ϕm, θm)aT
∗ (φm, ϑm) , (6)

where ϕm and θm are the azimuth and elevation AoAs of
the mth Tx-Rx pair, respectively, while φm and ϑm refer
to the azimuth and elevation AoDs of the mth Tx-Rx pair,
respectively [22]. Based on the fact that the AoD and AoA
enjoy reciprocity [23], an intuitive inference from (6) is that
the AoAs (ϕm and θm) are coupled with AoDs (φm and ϑm).
In addition, the coordinates indicate the positional relationship
between the Tx and the corresponding Rx, which affects the
distribution of channels. In summary, the environment factors[
C, φ̄, ϑ̄, p

]
are coupled with the channel characteristic vector[

ρ, ϕ̄, θ̄, τ̄
]
.

Hence, different from the existing literature, we choose[
C, φ̄, ϑ̄, p

]
and

[
ρ, ϕ̄, θ̄, τ̄

]
as the input features and output

labels, respectively, to enable the model to exploit the corre-
lation between the featured and labeled channel parameters.
The communication scenario (geometry, scattering, commu-
nication settings, etc.) determines the featured environment
factors. Thus the ML model can learn the mapping between
the environment information and the corresponding labeled
channel parameters, allowing the model to adapt to different
scenarios.

It is necessary to clarify the reasonableness of the proposed
feature selection strategy as follows. Although the path loss
can be directly obtained via power calculation, we still predict
the path loss using the received power for the following
considerations. As depicted in Fig. 1, the received power is
a metric of both the propagation distance and the scattering
distribution. Specifically, multipath L1, L2, and L3 experience
different propagation distances and scatters, where L1 is a
reflective path, L2 is a non-LoS path, and L3 is an LoS path.
The received powers resulting from the three paths (RP1, RP2,
and RP3) are different, which means that we can distinguish
one multipath from the other based on the received power. In
other words, the received power is an indicator of the distribu-
tion of multipath. In addition, the received power is relatively
easy to measure directly in practical communication systems.
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Fig. 2. Schematic layout of the AHT-assisted channel prediction CNN model. (Hyperparameters are not included in the figure for simplicity.)

Fig. 8 shows that the featured received power contributes to
not only accurately predicting the path loss but also improving
the adaptivity of predicting the AoAs and time delay. Thus,
RP is a reasonable featured environment factor.

By the same token, elevation and azimuth angles of de-
parture are chosen as environment factors. In this way, the
proposed model can predict AoAs from known AoDs instead
of jointly extracting AoAs and AoDs from the channel impulse
response. For practical applications, the proposed model can
be used to predict AoAs by certain predefined AoDs for
mmWave communication systems equipped with directional
antennas, which helps to arrange or adjust the direction of the
receiving antennas in real time.

Inspired by the wide application of polar coordinates in
antenna theory, we transform the Cartesian coordinates of Txs
and Rxs Cm=

[
xm

T , ym
T , xm

R, ym
R
]

to the polar coordi-
nates Pm=

[
rm

T , rm
R, δTm, δRm

]
by the following equations,

rTm =
√

(xT
m)2 + (yTm)2

rRn =
√
(xR

m)2 + (yRm)2

δTm = arctan
yT
m

xT
m

δRm = arctan
yR
m

xR
m

. (7)

It is widely known that PL and DM depend on the distance d
between Tx and Rx, which is given by

d =
[
CmCT

m − 2(xT
mxR

m − yTmyRm)
] 1

2 , (8)

or

d =
[
(rTm)2 + (rRm)2 − 2rTmrRm cos

(
δTm − δRm

)] 1
2 . (9)

In (8), the distance is calculated by Cartesian coordinates.
When xT

mxR
n − yTmyRn = 0, d relates to 4 variables. The

distance d calculated by polar coordinates in (9) depends on
only 2 variables under the condition that δTm−δRn = 0. In other
words, the labeled channel parameters are determined by fewer
featured coordinate variables in situations where the mobile
antennas move to abnormal positions, making the model less
sensitive to coordinate noise.

B. The Motivation and Architecture of CNN

We propose a CNN rather than a regular fully-connected
neural network (FCN) model for the following reasons. First,
as discussed in Subsection III-A, the featured environment
factors are coupled with the labeled channel parameters. With
this in mind, the convolutional layers are leveraged to extract
the correlation. In parallel, considering the characteristic of the
feature dimension, CNN is a straightforward choice because
of the ability to compress redundant channel data [11]. Specif-
ically, the dimension of the training data is M ×N , where M
is the total number of Tx-Rx pairs, which is 90000 for the
park and square scenarios and is 60000 for the lab scenario as
detailed in Subsection IV-B. N denotes the number of input
features.

The schematic layout of the proposed model is presented
in Fig. 2. The first convolutional layer filters the 1×N input
vector with ω2 kernels. The output of the first convolutional
layer is fed to the second convolutional layer and filtered with
ω3 kernels. The third convolutional layer processes the output
of the second convolutional layer with ω4 kernels. The kernel
size is 1 × S. The output of the third convolutional layer is
then connected to three dense layers with ω5, ω6, ω7 neurons,
respectively. To speed up the convergence rate, the learning
rate ω1, the activation function F , and the batch size Nbs are
adjusted during the training process.
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TABLE II
HYPERPARAMETERS AND CORRESPONDING SEARCHING RANGE.

Hyperparameters Notations Searching range
Learning rate ω1 10−9–10−1

Filter number in convolutional layers ω2 ∼ ω4 1–200
Neuron number in dense layers ω5 ∼ ω7 1–200

Activation function F relu, sigmoid, tanh
Batch size Nbs 1000–10000
Filter size S 1–9

IV. AHT-ASSISTED TRAINING PROCESS

In this section, we first highlight the procedure of AHT,
followed by introducing the generation of training databases.
Then, we describe in detail the training process of the proposed
CNN.

A. AHT Algorithms

1) Formulation of AHT: As shown in Fig. 2, AHT algo-
rithms are incorporated into the CNN training process to adjust
hyperparameters to improve the training efficiency and obtain
optimal solutions. To formulate the AHT-assisted training
process, we first define a function ∆ to represent the mapping
between the hyperparameters and the validation loss. This
function can be written as

LossΩ = ∆(Ω) , (10)

where Ω = [ω1, ω2, · · ·, ω7, F,Nbs, S] is the hyperparameter
vector. The procedure of finding optimal hyperparameters
Ωopt can be viewed as an optimization problem defined as

Ωopt
∆
= argmin

Ω∈χ
∆(Ω) , (11)

where χ denotes the search space of hyperparameters. The
search space χ in this paper is investigated according to the
experience of hyperparameter tuning and is given in Table II.
It is worth noting that the search range can be arbitrarily
modified for different application scenarios. The optimization
problem in (11) is non-convex [17] and is solved by AHT
algorithms instead of the tedious hand-tuning method.

2) Procedure of AHT: There are two components to the
AHT-assisted training algorithm. The first component is the
probabilistic surrogate model, which includes a prior distribu-
tion and an observation model. The prior distribution describes
our beliefs about the behavior of the target black-box function.
The observation model captures the interaction between the
hyperparameters and resulting validation loss [14]. The second
one is called the acquisition function, which evaluates the
candidate hyperparameters for the next observation.

The AHT procedure is integrated with the diversification
strategy to overcome the vulnerability of AHT algorithms
to different databases. One of the popular diversification
strategies is called ensemble, which enploys a set of learned
models rather than apply a single model [24]. The proposed
AHT procedure adopts diversification at model level as in
the ensemble to produce optimal convergence under different
scenarios.

Algorithm 1 AHT-assisted training algorithms
Require: black-box function ∆,

parameter space χ,
surrogate models M = (M1,M2, · · ·,MT ),
acquisition function ∆̃

Ensure: optimal hyperparameters combination
1: for t = 1, 2, · · ·, T do
2: for n = 1, 2, · · ·, N do
3: Integrate out true function by the surrogate model Mt

4: Given observations Ht ← (Ωn, LossΩn)
5: Calculate posterior belief with Ht

6: Select Ωn+1 according to (12) from χ
7: Evaluate LossΩn+1 ← ∆(Ωn+1)
8: Augment Ht ← Ht ∪ (Ωn+1, LossΩn+1)
9: Update probabilistic surrogate model

10: Check for early stopping criteria
11: end for
12: Record the optimal observation Ht for the tth surrogate

model
13: end for
14: H ← H1 ∪H2, · · ·,∪HT

Specifically, we combine three surrogate models into the
AHT algorithms, i.e., Gaussian processes (GP), gradient-
boosted regression trees (GBRT), and random forests (RF),
to create three AHT algorithms, including GP-based
Bayesian optimization (BO-GP), GBRT-based sequential
model-based optimization (SMBO-GBRT) and RF based
SMBO (SMBO-RF). Considering the trade-off between the
training time and performance, we employ three different
models in this paper. However, additional surrogate models
can be conveniently added to our AHT algorithms for more
complicated situations. Random search (RS) is employed as a
baseline instead of grid search because the latter is very time-
consuming.

The acquisition function is based on the expectation im-
provement (EI) strategy. Let µn(Ω), σn(Ω), ΦC(·), and ΦP (·)
be the posterior mean function, posterior variance function,
cumulative distribution function (CDF) and probability density
function (PDF), respectively. Denote ∆̃∗

n as the best observa-
tion. The acquisition function is written as

∆̃n (Ω) =


(
µn(Ω)− ∆̃∗

n

)
ΦC (Γ)

+ σn(Ω)ΦP (Γ) ,
σn(Ω) > 0

0, σn(Ω) = 0

, (12)
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TABLE III
DIELECTRIC CONSTANTS OF DIFFERENT MATERIALS AT 100 GHZ.

Material Dielectric constant
Concrete 6.3

Brick 6.5
Wood 3.3

Foliage 9.3
Glass 5.7
Water 81

Bookshelf 4.7
Electronic devices 4.0

where

Γ =
µn(Ω)− ∆̃∗

n

σn(Ω)
. (13)

a) Pseudocode for AHT: Pseudocode for the AHT-
assisted training algorithms is shown in Algorithm 1. During
the training process, surrogate models are adopted in turn
thanks to the sequential nature of the proposed AHT algo-
rithms. The prior belief and the current observation Ht are
prescribed by the probabilistic surrogate model. The observa-
tion set Ht consists of hyperparameters and the corresponding
validation loss. For each surrogate model, the AHT algorithms
incorporate prior belief to estimate ∆̃(Ω). The prior distribu-
tion is updated by observing the performance of the model
under the current hyperparameters to obtain the posterior
distribution. The posterior distribution is then substituted into
the EI-based acquisition function in (12) to determine the
next hyperparameters Ωn+1. Then evaluate ∆(Ωn+1) with
the real black-box function ∆, followed by updating the
set of observations Ht. The probabilistic surrogate model is
then updated with the posterior distribution and the set of
observations and iterates sequentially until the early stopping
criterion is met. In this paper, the stopping criterion is to end
the iteration when no performance improvement is achieved
for 10 consecutive calls. The observations Ht obtained by all
T models are recorded in H. The validation loss in each Ht

is compared, and the final output of the AHT algorithm is the
hyperparameter combination corresponding to the minimum
validation loss.

B. Training Data Generation

To generate the training data, we build an outdoor scenario
(a virtual park) and an indoor scenario (a virtual lab) in the
accurate ray-tracing simulator. The layouts of the park and
the lab are shown in Fig. 3. The park is 400 × 400 m2 and
consists of a lake, a fountain, trees, grass, pavements, and
constructions. The lab is furnished with tables, cabinets, and
office furniture (bookshelf, electronic devices), and occupies
an area of 30 × 30 m2. In the outdoor scenarios (the park
and the square), the constructions are made of concrete, and
the pavement is constructed using bricks. For the indoor
scenario (the lab), wooden tables, chairs, and cabinets are
used, while the ceiling, floor, and walls are made of concrete.
The dielectric constants of the materials used in the study,
including concrete, brick, wood, foliage, glass, office furniture
(bookshelves and electronic devices), and water, are given in
Table III [25]–[27]. The simulation frequency and bandwidth

(a) The lab scenario

(b) The park scenario
Fig. 3. Layouts of the park and lab.

are set to 100 GHz and 2.5 GHz, respectively. A maximum
of two orders of reflection and one order of diffraction
are simulated due to the significant attenuation of mmWave
propagation. Scattering due to surface roughness is neglected
for the sake of the simplicity of simulation. The channel
characteristics involved are calculated by

τ̄m =
∑L

l=1 τm,l

L

φ̄m =
∑L

l=1 φm,l

L

ϑ̄m =
∑L

l=1 ϑm,l

L

ϕ̄m =
∑L

l=1 ϕm,l

L

θ̄m =
∑L

l=1 θm,l

L

, (14)

where l is the index of the propagation path and L denotes the
total number of paths. We set the reference point at the lower
left corner of each simulated communication area to obtain the
2-D relative coordinates of both Txs and Rxs. The coordinates
are assumed to be calculated by highly accurate positioning
techniques (e.g., via [28]).

We randomly locate 300 Txs and 300 Rxs within the park
to create 90000 Tx-Rx pairs and collect 90000 input features[
Cm, φ̄m, ϑ̄m, pm

]
and output labels

[
ρm, ϕ̄m, θ̄m, τ̄m

]
. Due

to the inherent sparsity of mmWave propagation, a maximum
of 5 paths are considered. Each Tx (Rx) is equipped with a
single half-wave dual-polarization antenna.
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TABLE IV
DATABASES AND CORRESPONDING SCENARIOS.

Databases Scenarios Coordinates type Remarks

Database i The park Cartesian Original scenario
Database ii The park Polar Original scenario
Database iii The park Cartesian Add coordinates noise
Database iv The park Polar Add coordinates noise
Database v The square Polar Generalization validation
Database vi The lab Polar Generalization validation

The scenarios and the resulting databases are described in
Table IV. The original scenario is the virtual park, where
database i is collected, and then database ii is generated by
transforming the Cartesian coordinates in database i to polar
coordinates. We add coordinates noise equally to database i
and database ii to generate database iii and database iv, respec-
tively, while keeping the actual antenna positions unchanged
to validate the robustness of the model to coordinate noise. A
virtual square is then built as a similar environment for the
park to generate database v. The only difference between the
park and the square is the distribution of scatterers. The virtual
indoor environment (the lab) is constructed as a different
scenario from the park to obtain database vi. 300 Txs and
300 Rxs are randomly placed in the lab scenario to create
90000 Tx-Rx pairs. 60000 sets of valid featured and labeled
channel data are collected. Both database v and database vi
are built to validate the generalization ability of the model.

When features and labels are highly correlated, the model
can more easily learn the correlation between them, resulting
in better prediction performance with a smaller sample of
data [29]. To verify that the proposed feature selection strategy
can reduce the amount of training data, the percentage of
the training set varies from 10 percent to 70 percent at
intervals of 10 during the training stage. The test and validation
proportions are set equal.

C. Training Process

The Adam optimizer is applied to the training of the network
with a learning rate of ω1. The maximum iteration epoch is
set to 3000, and early stopping with patience 100 is adopted to
avoid overfitting. Also, the learning rate ω1 decays by a factor
of 0.5 whenever the validation loss no longer diminishes for
a consecutive 100 epochs.

The CNN is trained to minimize the loss function formu-
lated as

Loss =
1

4NBS

4∑
i=1

NBS∑
j=1

(p̂ij − pij)
2
, (15)

where Nbs is the batch size, p̂ij and pij are the jth predicted
and true values of the ith channel parameter (one of ρ, ϕ̄, θ̄,
and τ̄ ), respectively. During the network training process, the
hyperparameters listed in Table II should be tuned repeatedly
until the validation loss is satisfactory.

V. NUMERICAL RESULTS

We train three models with AHT algorithms to make com-
parisons, i.e., the enhanced CNN, the standard CNN, and a six-
hidden-layer FCN without convolutional layers. The standard
CNN is fed with Cartesian coordinates of Tx and Rx, which
is the same as the model proposed in [11], while the enhanced
one is the model presented in this paper, which is enhanced by
the coordinate transformation and feature selection strategy.
The input features and output labels of the FCN are the
same as those of the enhanced CNN. We utilize a computer
with an Intel Core i7-9700k central processing unit and an
NVIDIA RTX 2070 graphics processing unit to train the
network.The training time for each surrogate model amount
to approximately 2 hours, while the average training time for
a full model consisting of 3 surrogate models is less than 6
hours.

A. AHT Procedure Analysis

We train the enhanced model by database ii and database vi
respectively, with the assistance of AHT algorithms and plot
the convergence traces of:

• GP as the surrogate model for BO (BO-GP),
• GBRT as the surrogate model for SMBO (SMBO-GBRT),
• RF as the surrogate model for SMBO (SMBO-RF), and
• RS.
The plots given as Figs. 4 and 5 show the value of the

determination coefficient R2 (y-axis) between the predicted
and true channel parameters as a function of the number of
iterations (x-axis). R2 is an indicator of the prediction accuracy
calculated by

R2 = 1−
∑

i (p̂ij − pij)
2∑

i (pij − p̄i)
2 . (16)

R2 varies in the range of [0,1]. In (16), p̂ij and pij are the jth
predicted and true values of the ith channel parameter (one
of ρ, ϕ̄, θ̄, and τ̄ ), respectively, and p̄i denotes the average
value of the ith output channel parameter, calculated by
p̄i =

∑V
v=1 p̄iv/V , with V denoting the total number of the

ith labeled channel parameters pi in the validation set. The
resulting R2 scores of all predicted channel parameters are
averaged with uniform weight to obtain the final R2.

The convergence rates and optimization performances of
each tuning algorithm used vary for different databases, as
shown in Figs. 4 and 5. This validates the necessity of the
diversification strategy, which helps to determine the optimal
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Fig. 4. Convergence plot of AHT algorithms for the indoor scenario. (One
iteration is defined as one call.)

Fig. 5. Convergence plot of AHT algorithms for the outdoor scenario. (One
iteration is defined as one call.)

Fig. 6. Fitting plots for predicted channel parameters. The x-axis represents the number of samples.
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Fig. 7. Robustness analysis. Fig. 8. Validation of generalization ability.

TABLE V
OPTIMAL HYPERPARAMETERS OBTAINED BY AHT ALGORITHMS FOR THE

PARK SCENARIO.

Hyperparameters Notations Solutions

Learning rate ω1 0.0021
Filter numbers ω2 ∼ ω4 187,106,73

Neuron numbers ω5 ∼ ω7 97,76,111
Activation function F relu

Batch size Nbs 3526
filter size S 8

AHT algorithm for different communication scenarios. Fur-
thermore, due to its fast convergence rate and satisfactory
accuracy, the proposed AHT procedure is suitable for embed-
ding in the training process of the channel prediction CNN.
This contributes greatly to saving training effort and improving
prediction performance.

Table V presents the optimal hyperparameters obtained by
the AHT algorithms for the park scenario. The resulting CNN
model is used to plot the fitting curves between the predicted
and real channel parameters, as shown in Fig. 6. From this
plot, it is evident that the predicted values fit the real ones
well.

B. Impact of the Size of the Training Set and Robustness
Analysis

The standard CNN model is trained by the database i,
whereas both the enhanced CNN and FCN are trained using
the database ii. Afterward, the trained models are tested on
database iii (the standard CNN) and database iv (the enhanced
CNN and FCN), respectively, to validate the robustness of
the model against coordinate noise. The figure presented in
Fig. 7 illustrates the relationship between the coefficient of
determination and the size of the training data. The results
indicate that the enhanced AHT-assisted CNN is capable of
achieving a decent R2 value (higher than 0.8) with less training
data compared to the standard CNN. This characteristic of
the enhanced model makes it more robust to data size, which

is highly advantageous for practical applications where data
collection can be challenging.

Additionally, both the enhanced model and the FCN exhibit
significantly higher accuracy. This improved performance is
attributed to the feature selection and preprocessing procedure
employed in the enhanced model. Furthermore, the enhanced
CNN exhibits robustness to coordinate noise, while the stan-
dard CNN is completely unreliable under such conditions.
This robustness allows the proposed enhanced model to detect
changes in communication scenarios when coordinate fluctu-
ations occur.

C. Generalization Ability of the Proposed Model

In this subsection, we eveluate the generalization ability of
the enhanced and standard models by testing the trained mod-
els on database v (the square scenario) and database vi (the lab
scenario), respectively. Numerical results are given by Fig. 8.
The enhanced CNN shows adaptability to communication
scenarios, indicating that the proposed model can accurately
predict channel parameters when the scenario dynamically
changes to a similar one. Consequently,our proposed model
can be deployed in similar communication scenarios without
the need for re-training.

As for the indoor scenario, all models require offline re-
training. Nevertheless, the enhanced AHT-assisted CNN offers
two significant advantages. Firstly, the AHT algorithms aid in
the efficient and convenient re-training of the enhanced model
by eliminating the need for hand-tuning hyperparameters.
Secondly, as shown in Fig. 8, the enhanced model remains
more accurate than the standard model when generalized
to completely different mmWave communication scenarios,
making it more reliable. In conclusion, the proposed model
enhanced by the feature selection strategy produces higher
accuracy and stronger generalization ability than the standard
model. What’s more, we can see from Figs. 7 and 8 that the
enhanced CNN outperforms the FCN in terms of both accuracy
and generality as well, suggesting that CNN is a better choice.
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VI. CONCLUSION

In this paper, we propose a generalized AHT-assisted CNN
model for mmWave channel prediction under different com-
munication situations. We integrate the AHT procedure into
the training process to simultaneously save training effort and
improve predictive performance. The diversification strategy
is applied to enhancing the stability of the hyperparameter
optimization process under different databases. Moreover, we
use a novel feature selection strategy to make the model
generalizable to different communication scenarios, which
contributes to avoiding repetitive channel sounding. In parallel,
coordinate transformation is utilized to reduce the sensitivity
of the model to coordinate noise. Numerical results show that
the enhanced model achieves desirable performance, including
being convenient to train, less training data required, robust to
coordinate noise, and strong generalization ability. Channel
sounding in mmWave communication is of great importance
for channel modeling but it is difficult in practical implemen-
tations. In this context, our proposed model can serve as an
alternative approach to channel modeling for different com-
munication systems with limited channel sounding overhead.
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parameter optimization,” in Proc. NeurIPS, 2011.

[13] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” Advances Neural Inf. Processing
Syst., vol. 25, no. 01, pp. 1–12, 2012.

[14] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proc. IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[15] L. Kouhalvandi and L. Matekovits, “Hyperparameter optimization of
long short-term memory-based forecasting DNN for antenna modeling
through stochastic methods,” IEEE Antennas Wireless Propag. Lett.,
vol. 21, no. 4, pp. 725–729, 2022.

[16] A. Xie, F. Yin, Y. Xu, B. Ai, T. Chen, and S. Cui, “Distributed Gaussian
processes hyperparameter optimization for big data using proximal
ADMM,” IEEE Signal Process. Lett., vol. 26, no. 8, pp. 1197–1201,
2019.

[17] H. Cho, Y. Kim, E. Lee, D. Choi, Y. Lee, and W. Rhee, “Basic enhance-
ment strategies when using Bayesian optimization for hyperparameter
tuning of deep neural networks,” IEEE Access, vol. 8, pp. 52 588–52 608,
2020.

[18] C. Huang, G. C. Alexandropoulos, C. Yuen, and M. Debbah, “Indoor
signal focusing with deep learning designed reconfigurable intelligent
surfaces,” in Proc. IEEE SPAWC, 2019.

[19] Remcom, “Wireless Insite.” [Online]. Available: http://www.atm.com
[20] Y. Yang, F. Gao, G. Y. Li, and M. Jian, “Deep learning-based downlink

channel prediction for FDD massive MIMO system,” IEEE Commun.
Lett., vol. 23, no. 11, pp. 1994–1998, 2019.

[21] F. Gomez-Cuba and A. J. Goldsmith, “Sparse mmWave OFDM channel
estimation using compressed sensing,” in Proc. IEEE ICC, 2019.

[22] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel
estimation for beamspace mmWave massive MIMO systems,” IEEE
Wireless Commun. Lett., vol. 7, no. 5, pp. 852–855, 2018.

[23] H. Xie, F. Gao, S. Zhang, and S. Jin, “A unified transmission strategy for
TDD/FDD massive MIMO systems with spatial basis expansion model,”
IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3170–3184, 2016.

[24] T. G. Dietterich, “Ensemble methods in machine learning,” in Proc.
MCS, 2000.
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