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Low-Complexity IRS Beamforming Based on
Sphere Decoding and Tabu Search

Seraphin Kimaryo and Kyungchun Lee

Abstract—The real-time reconfiguration of intelligent reflecting
surface (IRS) is one of the crucial, yet challenging tasks required
to exploit the benefits of IRS. In this paper, we study an IRS-aided
multiple-input single-output (MISO) wireless network, where a
coarsely quantized (few resolution bits) IRS is reconfigured to
help the point-to-point communication between a multi-antenna
access point (AP) and a single-antenna user. Specifically, the
transmit precoders at the AP and the reflecting discrete phase
shifters at the IRS are jointly optimized to maximize the signal-
to-noise ratio (SNR) at the user. The optimization is studied
in two practical wireless propagation environments. First, we
consider an environment where the direct AP–user link is in
deep fade, which enables the relaxation of the optimization
problem such that it can be optimally solved by the proposed
sphere-decoder (SD) algorithm. Second, a normal propagation
environment for all links is considered, wherein we propose the
tabu search (TS) algorithm to solve the joint active and passive
beamforming problem with low complexity. The proposed TS
algorithm is shown to work well, even in deep-fade AP–user link
scenarios. The presented numerical results confirm the validity
of our analysis and demonstrate the effectiveness of the proposed
schemes over the benchmark schemes on different system setups
and propagation environments.

Index Terms—Beamforming, complex sphere decoder, intel-
ligent reflecting surfaces, MIMO, phase shift, sixth generation
(6G), tabu search.

I. INTRODUCTION

IT is expected that by 2026, more than half of the global
data traffic will be carried by 5G networks [1]. This

inevitable growth of mobile data traffic on wireless networks
is not only accelerated by improvements in device capabilities,
but also the emergence of and increase in data-intensive
content, such as virtual reality (VR), augmented reality (AR),
and video gaming. To accommodate this huge increase in
data traffic, some revolutionary techniques, especially at the
physical layer, must be deployed. The multiple-input multiple-
output (MIMO) system is one of the key technologies, which
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has been extensively studied to cater for this increase in data
traffic. The MIMO system has superbly managed to provide
both higher spectral efficiencies and higher spatial diversity
gains by exploiting multiple antennas at the transmitter and
receiver. Nevertheless, it suffers from significantly high power
consumption, complexity, and hardware cost, which reduce
its suitability for the envisioned simple, low-complexity, and
cost-effective wireless communication [2].

In contrast, intelligent reflecting surface (IRS), which is
planar array consisting of a massive number of nearly passive
reflecting elements, has recently gained much attention in both
industry and academia for its ability to improve and control
wireless environments. Each IRS element can be indepen-
dently configured to modify the characteristics (amplitude and
phase) of the impinging electromagnetic waves. It is therefore
possible to leverage the independent configuration of each
element to collaboratively beamform the impinging signals.
Several use cases of this newly emerging technology have
been reported. For example, IRS can be used to boost signal
strength at the desired receiver by either reinforcing signals
from other directions or suppressing the interfering signals
from nearby users [3]. In addition, IRS can be used to cancel
genuine signals at unintended users by sending a matching-
magnitude opposite-phase signal toward an eavesdropper, thus
enhancing communication secrecy [4]–[6]. By varying the
reflection pattern of its elements, IRS can also be used to
transfer information by a technique popularly called reflecting
modulation [7] or IRS-based information transfer [8].

Unlike its closest competitor, half-duplex (HD) decode-
and-forward (DF) relaying [9], which requires a separate
power source to process and relay information from an access
point (AP) to the user, IRS is full-duplex [9] and nearly
passive. Following its passive nature, which is due to the
absence of expensive and power-greedy radio frequency (RF)
chains, IRS reflections are free of thermal noise. The absence
of RF chains makes IRS not only passive, but also lightweight
and compact in size [10]. This simple structure is another
highly attractive feature of IRS, as it can be deployed flexibly
in various places, including shopping malls, stadiums, and
airports.

Therefore, IRS is considered one of the top candidate link
layer technologies to enable forthcoming wireless commu-
nication standards, such as sixth-generation (6G) networks.
However, there are several challenges remain to be solved to
achieve such applications. For example, IRS is highly disad-
vantaged by its inability to estimate its associated channels.
It is generally assumed that the entire channel-estimation task
is performed by the AP. This can lead to prolonged channel-
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estimation time, which poses a threat to the application of
IRS in fast-fading channels. Another predominant challenge,
of which solution will unlock several applications, is the
beamforming based on discrete phase shifts. Most of the
envisioned IRS applications to date, regardless of whether they
boost signal strength or mitigate interference, unanimously
require proper IRS phase-shift configurations to achieve their
desired goal. The study of discrete IRS phase shifts is therefore
of vital importance. In this work, motivated by the above, we
particularly focus on the optimization of discrete IRS phase
shifts in both favorable and unfavorable wireless propagation
environments.

A. Related Works

The paradigm for IRS phase-shift optimization can be
described in two general ways. First, the optimization can
be performed with continuous phases, where each element is
allowed to take any phase in the range between 0 and 2π. Some
early works on IRS adopted this strategy [9], [11]–[13]. For ex-
ample, [9] and [11] both applied semidefinite relaxation (SDR)
and alternating optimization (AO) to solve the joint active
and passive beamforming problem to minimize transmit power
at the AP and maximize signal strength at the receiver,
respectively. In [12] and [13], the sum rate of the IRS-aided
multiple-input single-output (MISO) network was maximized.
Whereas the former used fractional programming to tackle the
resulted nonconvex problem, the latter deployed alternating
maximization with majorization-minimization. Owing to the
hardware constraint at the IRS, the continuous-phase solutions
provided by this strategy are not highly practicable, even
though they can provide the foundation to tackle the more
realistic problem, i.e., discrete IRS phase-shift optimization.

In [14], an IRS with a finite number of reflecting units,
each with discrete phase shifts, was investigated to improve
the energy efficiency (EE) of an outdoor cellular network
by applying sequential fractional programming and conjugate
gradient search. The work presented in [15] improved upon
that in [9] by quantizing the continuous phases to their
nearest discrete phases. This technique, however, leads to high
performance loss, especially with a 1-bit IRS. A branch-and-
bound (BnB) scheme was proposed in [15] and [16] to provide
high-quality solutions; however, its high complexity, which
scales with the size of the IRS, can significantly limit its
application in large-scale IRS systems. The authors of [17]
proposed cross-entropy (CE) optimization to overcome the
performance loss due to phase discretization and gradient
projection (GP) as an alternative to high-complexity schemes
like BnB and manifold optimization (MO) [16], [18].

B. Contributions

IRS is envisioned to greatly assist the communication be-
tween the transmitter and receiver, especially when the link
between them is in deep fade or completely blocked [19]. The
most unique feature of IRS is its ability to achieve great perfor-
mance while using a very small amount of power. Although it
also provides performance gains when the direct link between
the transmitter and receiver is strong, its performance becomes

comparable to or even lower than that of other technologies,
such as DF, with the same settings [19]. Considering its
inability to estimate the channel, plus deployment in a strong
direct AP–user link, IRS is not very useful compared to DF.
Most of the proposed algorithms yield good performance when
there is a strong direct link between the AP and user. They can
also work well in unfavorable wireless propagation conditions,
albeit by increasing computational complexity. As such, the
design of spectral- and complexity-efficient algorithms is still
imperative to fully exploit the benefits of IRS. We address
this by analyzing the IRS-assisted point-to-point MISO system
with the following main contributions:

• We propose applying the sphere decoder (SD) and tabu
search (TS) to optimize the discrete phase shifts of IRS.
These two algorithms provide high performance with
low complexity in extremely unfavorable propagation
conditions. Besides, the proposed algorithms also work
well even in good wireless conditions, hence making
them a better choice for joint active (at the AP) and
passive (at the IRS) beamforming.

• Because a large portion of the complexity of AO and
CE [17] are accumulated from the computation of their
objective values, we modify the QR-TS complexity-
reduction technique proposed in [20] to work with non-
square matrices. The modification allows the deployment
of the technique in our proposed TS algorithm to ef-
ficiently compute the objective value of each neighbor,
which in turn significantly reduces the complexity.

• Average computational complexities for the proposed
algorithms and benchmark schemes are analyzed and
their analytical expressions are derived. Furthermore, the
performance is extensively evaluated to validate our anal-
ysis and demonstrate the effectiveness of the proposed
algorithms in providing an improved trade-off between
performance and complexity especially when the phase
shifts of the IRS are coarsely quantized.

Notation: Throughout this paper, R and C denote real
and complex domains, respectively. Scalars are denoted by
lowercase italic letters. The bold-face lower-case (a) and up-
percase (A) letters denote a vector and a matrix, respectively.
For any general matrix M , M i,j denotes the element at the
ith row and jth column, whereas M i and M ī denote the ith
column and row of M , respectively. MT and MH represent
the transpose and conjugate transpose of M , respectively.
IN and 0n,m ,respectively, indicate an identity matrix with a
dimension of N×N and an n×m matrix whose entries are all
zeros. For a complex-valued vector x, xi is the ith element
of x; |x| and ∥x∥ denote the absolute value and Euclidean
norm of x, respectively. E (·) denotes the expectation operator.
diag (x) means a diagonal matrix with the elements of its main
diagonal being the entries of x. arg (·) represents the phase
extraction operator, which returns the phase of each element of
its argument. card(·) is the cardinality operator, which returns
the number of member elements of a set. mod (·, ·) is the
modulus operator, which returns the remainder of the division
of the operator’s first argument by its second argument. A
circularly symmetric complex Gaussian random variable with
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Fig. 1. IRS-assisted downlink MISO system.

mean µ and variance σ2 is denoted by CN
(
µ, σ2

)
.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink MISO communication system,
which is illustrated in Fig. 1. The AP, equipped with M
transmit antennas, communicates with a user, equipped with a
single receive antenna. This communication is assisted by an
IRS comprising N nearly passive reflecting elements, which
reflect the incident electromagnetic waves from the AP in the
direction of the user by changing the phase shift of each
element such that the signals reinforce each other at the
destination. Because IRS is a passive device, which is not able
to estimate the channel by itself, in practice, it is attached with
a smart controller, which communicates with the AP through a
dedicated link to exchange the information [3]. For simplicity
of analysis, we assume that the channel state information (CSI)
of all the involved channels is available and known to both the
AP and user. Furthermore, a quasistatic flat fading model is
assumed for all the channels.

When the AP precodes the unit-power symbol s, i.e.,
E{|s|2} = 1, by a linear beamforming vector f ∈ CM×1, the
combined received signal y at the user via both the AP–user
link and AP–IRS–user link is given by

y =
√
P
(
hT
d + hT

r ΦG
)
fs+ z, (1)

where P is the maximum transmit power at the AP; hd ∈
CM×1, hr ∈ CN×1, and G ∈ CN×M denote the baseband
equivalent channels from the AP to the user, from the IRS
to the user, and from the AP to the IRS, respectively; z is a
zero-mean complex Gaussian noise signal with variance σ2;
and Φ ∈ CN×N = diag

(
η1e

jθ1 , · · ·, ηNejθN
)

is the diagonal
matrix containing the phase shifts θn ∈ (0, 2π] ,∀n = 1, · · ·, N
and reflection coefficients ηn ∈ [0, 1],∀n = 1, · · ·, N of
all IRS elements. The reflection coefficients ηn represent
the magnitude with which the impinging signal at each IRS
element is reflected. In the IRS design perspective, it is desired
to reflect signals from each element with the maximum ampli-
tude possible [9], [21]–[23]. This guarantees stronger signals
at the receiver, provided that phase shifts and interference
are properly managed. Following this, we let the reflection
coefficient of each element take the maximum possible value,
i.e., ηn = 1, ∀n = 1, · · ·, N .

IRS 

User 

AP 

Fig. 2. IRS-assisted coverage extension.

Furthermore, note that it is theoretically feasible to tune
the angles of the elements to any value in the range (0, 2π].
However, this approach is very costly in practice, especially
with a large-scale IRS system. The practical solution is to
design each element with finite quantization bits. Let Fb ≜
{0, 2π/2b, · · ·, 2π(2b − 1)/2b} denote a finite set of phase
shifts obtained by a uniform quantization of an interval (0, 2π],
where b ≥ 1 is the number of quantization bits. Consequently,
the notation of the diagonal matrix can be simplified to
Φ = diag

(
ejθ1 , · · ·, ejθN

)
, θn ∈ Fb. The signal-to-noise ratio

(SNR) at the user is expressed as

SNR =
P |

(
hT
d + hT

r ΦG
)
f |2

σ2
. (2)

B. Problem Formulation

In this paper, we aim to maximize the signal strength at
the user by jointly optimizing the active transmit precoder f
at the AP and phase shifts at the IRS under the constraint
of maximum transmit power and discrete phase shift. This
optimization is done under two practical IRS environments.

1) Severely attenuated direct AP–user link: It is a common
scenario in wireless communication that users get blocked
from the sight of an AP, or the signal reaching them is
very weak due to severe attenuation along the path. To help
improve this situation, IRS reflects the incident signal toward
the user. In its most common usage, IRS is normally deployed
within sight of an AP and in the vicinity of the user, which
ensures reception of a stronger signal at the user [3], [9].
To demonstrate this environment, consider the deployment
arrangement shown in Fig. 2, where the direct link suffers
severe attenuation when penetrating the blocking wall, thus
reaching a user with very weak strength. In this environment,
IRS can be employed to provide an alternative path to reach
the user. The maximization of the signal strength at the user
can be formulated as

(P1) : max
Φ,f

|
(
hT
d + hT

r ΦG
)
f |2, (3)

s.t. ∥f∥2 ≤ 1, (4)
θn ∈ Fb. (5)

The deep coupling of f and Φ makes (3) intractable by normal
heuristic methods [9]. However, by using the fact that for any



302 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 3, JUNE 2023

IRS phase shift matrix Φ, the optimal active precoding vector
is given by [24]

f =

(
hT
d + hT

r ΦG
)H

∥hT
d + hT

r ΦG∥
, (6)

and problem (3) can be decoupled to

max
Φ

∥hT
d + hT

r ΦG∥2, (7)

s.t. θn ∈ Fb. (8)

As shown in [9], by applying the change of variables JT =

diag (hr)G and letting v =
[
ejθ1 , ejθ2 , · · ·, ejθN

]T
, the sec-

ond inner term of (7) can be written as
(
hT
r ΦG

)T

= Jv.
Accordingly, (7) can be rewritten as

(P2) : max
v

p (v) , (9)

s.t. |vn| = 1,∀n, (10)
arg (vn) ∈ Fb,∀n, (11)

where p (v) = ∥hd + Jv∥2 is the objective function of v.
Due to severe signal attenuation over the direct link hd, it is
obvious that ∥hd∥ ≪ ∥Jv∥, which subsequently allows the
transformation of (9) to

(P3) : max
v

∥Jv∥2, (12)

s.t. |vn| = 1,∀n, (13)
arg (vn) ∈ Fb,∀n. (14)

The optimal method to solve (P3) is an exhaustive search;
however, this is highly impractical owing to its exponentially-
growing complexity in the dimension of the number of IRS
elements. Fortunately, as described in Section III, near-optimal
results can still be obtained with greatly reduced complexity
by using the SD.

2) Strong direct AP–user link: By acknowledging that IRS
is also expected to perform well in environments with a strong
direct link, we extend the previous analysis to a more general
setting. Note that most of the existing schemes have been
developed to work with this kind of setup. The additional AP–
IRS–user link not only boosts signal strength at the user, but
also increases the spatial diversity of the overall composite
channel matrix, which is crucial in enabling multistream
transmission in MIMO [9]. To account for the effect of a
strong direct link, we fall back to problem (P2). Solving this
problem optimally would again require the use of exhaustive
search. Due to the aforementioned limitations of this approach,
several works have tried to avoid it by proposing alternative
algorithms such as AO, GP, CE, etc. Although AO, GP, and
CE have been excellent alternatives, it came to our attention
that we can obtain higher performance by using TS especially
in more practical settings like coarse (1-bit phase shifters)
IRS. We therefore, in Section IV, propose and discuss the TS
algorithm to solve (P2) in lesser complexity and with improved
performance.

III. SPHERE DECODING

The SD is one of the powerful algorithms in solving
different kinds of combinatorial problems. It provides a near-
optimal solution with a great reduction of complexity. It
has been extensively explored for the detection of wireless
communication signals in MIMO systems [25], [26], and the
problems of the like. In this section we demonstrate how to
use SD to solve (P3).

A. SD Problem Formulation

Despite of being so powerful, SD is limited to solving
minimization problems only. Because (12) is a maximization
problem, the first step is to convert it to a minimization
problem. From (12), it follows that if v is constrained to
have a unit Euclidean norm, i.e., ∥v∥ = 1, the optimal
solution denoted as ṽ would simply be the singular vector
of J associated with the largest singular value δmax, i.e.,
ṽ = ϕ(δmax), where ϕ (·) denotes a singular vector extraction
operator for a given singular value. Note that ṽ does not
qualify to be the solution of problem (12) for two main
reasons. First, it does not satisfy constraint (13), hence it
cannot guarantee perfect reflection from each element. Second,
it does not agree with constraint (14), which makes it a
continuous solution rather than a practical discrete solution.
To address these problems, we start by scaling ṽ so that it has
the same Euclidean norm as v, i.e.,

v̂ = ∥v∥ṽ =
√
N ṽ. (15)

We note that v̂ is the optimal solution to (12) under the
condition ∥v∥2 = N . Although v̂ does not agree with both
constraints, we are closer to achieving that goal. Essentially,
this scaling allows the transformation of the maximization
problem (12) to its minimization problem as follows:

max
v

∥Jv∥2 = min
v

(
∥Jv̂∥2 − ∥Jv∥2

)
, (16)

= min
v

(
N∥Jṽ∥2 − vHJHJv

)
, (17)

= min
v

(
Nδ2max − vHJHJv

)
, (18)

(a)
= min

v
vH

(
δ2maxIN − JHJ

)
v, (19)

where (a) is due to the fact that vHv = ∥v∥2 = N . Note
that by adding a small number, e.g., τ = 10−25 to δ2max such
that (19) remains approximately the same, the matrix B =(
δ2max + τ

)
IN −JHJ becomes always positive definite, i.e.,

B ≻ 0. The positive definiteness of B allows its Cholesky
decomposition, which is necessary for further simplification
of (19). Let S ∈ CN×N be an upper triangular matrix obtained
after applying Cholesky decomposition on B, i.e.,

B = SHS. (20)

By using (20), the problem (19) simplifies further as follows:

min
v

vHSHSv = min
v

∥Sv∥2. (21)

Together with constraints (13) and (14), we can finally apply
SD to solve problem (21).
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Algorithm 1: SD algorithm
Input : J ,Fb, N

1 Compute the largest squared singular value δ2max of J
2 Set B =

(
δ2max + τ

)
IN − JHJ

3 Find S according to (20)
4 Solve for v in (21) by using SD

Output: v

B. Application of SD

In many applications, SD is used to solve real-valued
problems. Hence, it starts by converting the complex-valued
problems to their real-valued equivalent problems [25], [27]. In
contrast, this work solves the original complex-valued problem
as the conversion to the real-valued problem does not work
in this context. What follows until the end of this section
is the step-by-step description of the proposed SD algorithm
summarized in Algorithm 1.

At the beginning, SD computes the square of the largest
singular value of the matrix J . This can be done by straight-
forwardly applying the computational-efficient power iteration
method [28] on the Hermitian matrix JHJ , of which largest
eigenvalue is the largest squared singular value of J , i.e.,
δ2max (J) = λmax

(
JHJ

)
. In step 2, the algorithm stores the

result of the computation
(
δ2max + τ

)
IN − JHJ in the ma-

trix B. To make the problem SD-ready, the algorithm finalizes
the preparatory stage by applying Cholesky decomposition on
the positive definite matrix B as in (20). The basic premise of
solving for v in step 4 lies in the observation that the matrix-
vector product Sv forms a set of a complex lattice, where it is
required to find the suitable combination of the elements of v
from the available set Fb, which provides the smallest distance
from the origin. To tackle this complex-valued combinatorial
problem by using SD, we follow the description in [29].

Throughout this paper, we aim to optimize the performance–
complexity tradeoff of our proposed algorithms. To achieve
this goal in SD, we first apply Schnorr–Euchner (SE) enu-
meration [30]–[32] in each layer. Further, for a large number
of close-to-optimal lattice points especially when b and N
are large, the SD algorithm can demand high complexity
to determine the final solution thus negatively impacting the
performance–complexity tradeoff. To overcome this problem,
we adopt an early-termination technique, where the algorithm
is halted when it fails to reach the leaf node for a certain
number of iterations ϖ = ζN , where ζ is the constant integer
which is chosen to be greater than or equal to 2.

IV. TABU SEARCH

In this section, we demonstrate how TS can efficiently
solve (P2) in any propagation environment (favorable or
unfavorable) with low complexity. TS is an efficient search-
ing algorithm for solving discrete optimization problems. TS
iteratively searches through the domain of candidate solutions
and their neighborhood, and avoids stagnation around local
extrema by restricting itself from visiting recently visited

nodes. This cycling prevention is possible by the use of a
short-term memory structure called tabu list, which stores the
recent neighborhood moves. In doing so, it allows itself to have
a wider search space, which eventually increases its chances
of finding the global optimal point. For a full description of
TS algorithm and its variants, refer to [33]–[35].

A. Main Concept

TS needs a starting point to begin its search. This point
is generally constrained to be among the problem’s possible
candidate solutions; otherwise, neighborhood definition fails.
There are several techniques to determine the starting point,
including using the solution of a less complex algorithm or
a random choice from a set of candidate solutions. The latter
technique is simpler; hence, we adopt it in this work and define
the initial candidate solution as

c ∈ CN×1 = [ejθ1 , · · ·, ejθN ]T , θn ∈ Fb,∀n. (22)

Denote a tabu list of length L > 1 by T ∈ CN×L and set
T 1 = c, where T i denotes the ith column of T . Similarly,
let x∗ denote the overall best solution found by the algorithm,
and initialize it to c, i.e., x∗ = c. For each candidate solution,
TS requires the definition of the set of its neighbors, N (c). In
this paper, a non-tabu vector x is a neighbor of the candidate
solution c if and only if x differs with c in only one position l
such that |arg (cl)− arg (xl) | = ∆, where ∆ = 2π/2b is the
difference between two adjacent phase shifts in Fb. Therefore,
the collection of all neighbors of c is given by

N (c) = {x /∈ T , |arg (cl)− arg (xl) | = ∆},∀l = 1, · · ·, N.
(23)

The length of N (c) depends on the number of IRS elements,
as well as the number of quantization bits. For b > 1,
each element of c provides, at most, two neighbors. For
example, suppose arg (cl) corresponds to φk = ∆k in Fb

, k = 0, · · ·, 2b− 1, then the two neighbors provided by cl are

[x]1 = [c1, · · ·, cl−1, e
jφ

mod(k−1,2b) , cl+1, · · ·, cN ]

and

[x]2 = [c1, · · ·, cl−1, e
jφ

mod(k+1,2b) , cl+1, · · ·, cN ].

In contrast, when b = 1, F1 has only two phase shifts,
i.e., {0, π}, with which only one neighbor can be provided
by each element of the candidate solution c. By using the
same previous example, it is clearly seen that for k = 1, we
have φ1 = π, which implies that F1 is left with only one
phase shift 0 to define the neighborhood for cl. Note that
to this point, we have only studied the maximum number of
neighbors that a candidate may provide. However, because of
the tabooing operation, we do not always have the maximum
number of neighbors for each candidate solution at each
iteration t. The precise expression for the number of neighbors
at each iteration is complex compared to its relative importance
in this work; hence, we adopt the simplest form. In particular,
its approximate value for a given candidate vector c and
quantization bits b is given by

card (N (c)) ≤ 2N − 1 (t>1) −N (b=1),
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Algorithm 2: TS algorithm
Input : J ,hd,Fb, N .

1 Initialize c, T = 0N×L, and noImprovement = 0.
2 Set x∗ = c.
3 repeat
4 Insert c into T .
5 noImprovement++
6 Define neighbors N (c).
7 if N (c) = ∅ then
8 Re-initialize c.
9 if c ⊂ T then

10 go to 8
11 end
12 go to 4
13 end
14 Find the best neighbor x̄.
15 if p (x̄) > p (x∗) then
16 x∗ = x̄
17 noImprovement = 0
18 end
19 c = x̄
20 Pop out the oldest element in T if T is full.
21 until noImprovement > ϱ

Output: x∗

where (·) is an indicator function. The subtraction by 1 for
t > 1 is to exclude at least one of the candidate’s ancestors,
which must be tabooed.

The best neighbor x̄ in N (c) is the one with the largest
objective value, i.e.,

x̄ = arg max
x∈N (c)

p (x) . (24)

The best solution x∗ is updated to x̄ if a larger objective
value is found, i.e., p (x̄) > p (x∗). Next, the algorithm
makes a move from c to x̄, irrespective of the objective
value of x̄. We emphasize that, to avoid cycling around
the local maxima, this is a mandatory move, even when x̄
provides a smaller objective value than c, i.e., p (x̄) < p (c).
Finally, T is updated by pushing in the new candidate solution
x̄. If T is full, the oldest element in the list is popped
out. The release of vectors from a tabu list legitimize their
consideration of being neighbors of future candidates. The
steps above are then iteratively repeated until a termination
condition is met. There are several conditions to terminate
the algorithm, including termination after a certain number
of predefined iterations, termination after a certain number
of iterations without an improvement of the best solution,
or any combination of conditions. While both can work fine,
we opt to use the second criterion in this paper. Note that
when using this criterion, to avoid premature termination of
the algorithm, a noImprovement counter is reset whenever a
new best solution is found; otherwise, it is incremented. The
last x∗ is returned as the best solution of the algorithm. These
steps are summarized in Algorithm 2.

In the first step, TS randomly initializes the candidate
solution and defines the control parameters, such as T , which

is set to an all-zero matrix of appropriate dimensions, and the
termination criterion, which is set to zero. Next, the algorithm
assumes the randomly generated candidate to be the best
solution before starting its optimization. In each iteration, TS
starts by tabooing the current candidate solution so that it is
not revisited in the next L iterations. The noImprovement
counter is then incremented before finding the candidate’s
neighbors. Note that the quality of the TS solution depends
greatly on the extent of exploration over the domain of can-
didate solutions. Automatic parameter tuning [33], frequency
listing [33], and random restart [34] are some techniques that
enhance exploration of TS. To achieve the same goal, a pre-
cautionary procedure is provided in steps 7–13 of Algorithm 2,
where we partially (without resetting T and noImprovement
counter) restart the algorithm whenever the candidate solution
lacks neighbors to explore. We specifically choose this strategy
because it is less complex than a complete restart. The situation
of N (c) = ∅ occurs frequently when N is small and L
is large; thus, it is important to restart the algorithm with a
random candidate to expand its search space, which in turn
ensures that a near-optimal solution can be found.

If N (c) ̸= ∅, TS evaluates each member against the
objective function to determine the best neighbor. Whenever a
neighbor provides a larger objective value than the current best
solution, the algorithm updates the best solution and resets the
noImprovement counter, as shown in steps 14–18. In step 19,
to avoid cycling, TS moves to the best neighbor and removes
the oldest element from its tabu list to accommodate a new
vector. Step 21 indicates that at the end of each iteration, the
noImprovement control parameter is examined to determine
whether it meets the termination condition, upon which the
algorithm is terminated; otherwise, a new iteration is started.

B. Complexity Reduction

Note that a large portion of the complexity of the TS
algorithm comes from the computation of the objective value
of each neighbor. However, a close scrutiny of the working
principle of the TS algorithm, that each candidate must differ
from all of its neighbors in only one position, reveals that
N − 1 of each neighbor’s metric computations are exactly
the same as those of the current candidate. This suggests
that the computational complexity of each neighbor can be
reduced significantly by employing another memory structure,
in which the cumulative computation load of each candidate
is temporarily stored so that it can be shared by all of its
neighbors. A novel technique called QR-TS has been proposed
in [20], which serves this same purpose. Because this work
follows this technique, and for the sake of convenience, we
briefly describe it while modifying some steps to make it
compatible with our problem. By applying QR-decomposition
on the matrix J such that QR = J , where Q ∈ CM×M and
R ∈ CM×N are the unitary matrix and an upper-triangular
matrix, respectively, the expression for the objective function
can be written as p (v) = ∥QHhd + Rv∥2. The objective
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value of neighbor x of candidate c can then be given by

p (x) = ∥QHhd +Rx∥2 = ∥w −Rlξl∥2 (25)

=

n∑
i=1

|wi −Ri,lξl|2 +
M∑

i=n+1

|wi|2, (26)

where w ∈ CM×1 = QHhd + Rc; ξl is the lth and
only nonzero element of c − x = [0, · · ·, 0, ejarg(cl) −
ejarg(xl), 0, · · ·, 0]T , and n = min(M, l) is the number of
nonzero elements of Rl. It is important to note that the vector
w is constant for all neighbors of the same candidate. This
insight enables the computation of its cumulative amount,
which is then saved in a short-lived memory e as follows
[20]:

e =

[
M∑
i=2

|wi|2,
M∑
i=3

|wi|2, · · ·, |wM |2, 0

]
. (27)

The short-lived memory is thereafter used by each neighbor
to efficiently obtain its metrics by

p (x) =

n∑
i=1

|wi −Ri,lξl|2 + en. (28)

Up to this point, (28) is already appealing, as it significantly
reduces the computational load by performing some of the
repetitive operations only once and allows their results to be
shared across different neighbors. However, to finalize this
technique, we simplify one more operation. It is worth pointing
out that in two successive iterations, t and t + 1, w(t) and
w(t+1) must differ in only one position l̃, similar to the
candidate–neighbor relationship. From this observation, w is
computed as

w(t) =

{
QHhd +Rc(t), t = 1,

w(t−1) +Rl̃ξl̃, t > 1,
(29)

where ξl̃ is the l̃th element of c(t) − c(t−1). In summary,
whenever we compute the objective value of each neighbor
as in (24), we start by finding the vector w, as shown in (29),
followed by evaluating the short-lived memory e. Finally, we
find the objective value by using (28).

V. SIMULATION RESULTS

A. Simulation Setup

In this section, we present numerical results to demonstrate
the effectiveness of our proposed schemes as well as to
validate our analysis. For performance comparison, we adopt
state-of-the-art algorithms AO [9], GP [17], and CE [17] as the
benchmark schemes, which, to the best of our knowledge, de-
liver the highest performance–complexity tradeoff among the
existing schemes for discrete IRS phase-shift optimization in
downlink MISO systems. We consider an indoor environment,
where an AP with M = 6 antennas located at (0, 0) serves
a single-antenna user located at (D, dy). The IRS located at
(D, 0) is used to help this communication by reflecting phase-
adjusted signals in the direction of the user. Unless otherwise
stated, the transmit power P at the AP is set to 23 dBm,

whereas the noise power σ2 at the user is set to −80 dBm.
The distance-dependent path loss β for all channel components
is modeled as [9]

β(d, α)[dB] = −30− 10α log10(d), (30)

where d is the distance in metres of the individual link, and
α is a path loss exponent.

In what follows, any parameter with a subscript AI , IU ,
and AU denote the belonging of the parameter to the links G,
hr, and hd, respectively. To account for small-scale fading,
we further assume that AP–IRS and IRS–user links follow the
Rician fading channel model, particularly due to their line-of-
sight (LoS) nature, whereas the direct AP–user link follows
the Rayleigh fading channel model. The antenna elements at
the AP and IRS are assumed to form half-wavelength uniform
linear arrays (ULAs) [12]. The channels G, hr, and hd can
be given by

G =

√
κβ̄AI

κ+ 1
Ĝ+

√
β̄AI

κ+ 1
Ḡ, (31)

hr =

√
κβ̄IU

κ+ 1
ĥr +

√
β̄IU

κ+ 1
h̄r, (32)

hd =

√
β̄AU h̄d, (33)

where κ is the Rician factor; β̄ indicates a linear scale of
the path loss β; Ĝ ∈ CN×M and ĥr ∈ CN×1 denote LoS
components obtained by the product of two array response
vectors at the two sides of the link; Ḡ ∈ CN×M and h̄r ∈
CN×1 denote the non-LoS (NLoS) components, whose entries
are distributed as CN (0, 1). Moreover, h̄d ∈ CN×1 denotes
the Rayleigh distributed channel vector, whose elements are
assumed to be independent and identically distributed zero-
mean complex Gaussian random variables with a variance
of 1/2 per dimension. Without loss of generality, algorithm-
specific parameters are set as follows: the length of tabu list
is set to L = min

(
2Nb, 50

)
. TS is halted after ϱ = 100

iterations without improvement of the best solution, whereas
SD is terminated early after ϖ = max (5N, 100) iterations
without reaching a leaf node.

B. SNR Improvement on a Deep-Fade Direct Link

We set the distances D = 150 m and dy = 3 m. The
path loss parameters are set to αAI = 2.2, αIU = 2.8,
and αAU = 3.5. Rician factors for different links are set to
κAI = ∞ and κIU = 10 [12]. Because we assume a coarse
IRS, we set b = 1. To model a deep fading scenario, we adopt
a penetration loss factor ε, which introduces the necessary
attenuation to the commonly suffering link. The penetration
loss factor is added to (30). As shown in Fig. 2, we consider
the link hd to be in a deep fade as the AP and user are blocked
by a 12-inch thick concrete wall, hence on the basis of [36],
we set εAU = −70.4 dB. To demonstrate the optimality
of the proposed algorithms, in Fig. 3 we compare their
performance to that of the exhaustive search. However, due
to the excessive computational load of the exhaustive search,
we only consider it for a small number of IRS elements, i.e.,
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Fig. 3. SNR versus the number of IRS elements for an IRS-assisted
downlink MISO system with M = 6, b = 1, and εAU = −70.4 dB.

N = {5, 10, 15, 20}. Apart from benchmark schemes, we also
include the random-phase scheme, where the phase shift of
each element is determined by a random selection from Fb. In
Fig. 3, it is seen that when the phase shifts of the IRS elements
are chosen randomly, the performance becomes very poor, as
expected. This simply demonstrates the absolute importance of
proper phase shift optimization to fully exploit the potential of
the IRS. Second, it is clearly observed that for a small number
of IRS elements, our proposed algorithms, i.e., SD and TS,
nearly attain the optimal performance of the exhaustive search.
However, when the size of IRS increases, the performance
of CE is observed to drop marginally with respect to that of
TS. Furthermore, we note that CE requires significantly higher
complexity compared to our proposed schemes, as shown in
Section V.G. The performance gains of both the proposed
and benchmark schemes over that of random phase scheme
increase to 15 dB when N = 80, which demonstrates that the
importance of IRS phase shift optimization is more evident
with large IRS size. Another interesting observation is that,
despite of ignoring the direct link, the SD’s performance loss
with respect to TS is almost negligible. This further validates
our assumption that when the strength of the deep-fade direct
AP–user link is very small compared to the composite AP–
IRS–user link, it can be safely ignored.

C. Convergence Behavior of TS

We provide the convergence behavior of our proposed TS
algorithm in Fig. 4. For this purpose, we set M = 6, N = 50,
b = 2, and εAU = 0 dB. Fig. 4 shows that the convergence of
the TS algorithm is monotonic and converges at 40 iterations.
Notably, the TS algorithm is designed to store the best-
found solution at each iteration. This attribute guarantees the
monotonic convergence behavior, as seen in Fig. 4.

D. Performance on a Normal Direct AP–User Link

Next, we examine the performance of our proposed algo-
rithms in normal wireless propagation environments. Except
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Fig. 4. TS convergence for a downlink MISO system with M =
6, N = 50, b = 2, and εAU = 0 dB.

for the attenuation factor εAU , which is ignored in this sub-
section, the rest of parameters remain the same as those used
in Fig. 3. Fig. 5 plots the SNRs of all the algorithms versus the
number of IRS elements for quantization bits b = {1, 2}. We
first observe that for b = 1, TS attains the highest performance
amongst all the schemes. Compared to the case when the direct
link is severely attenuated in Fig. 3, there is almost negligible
improvement in terms of performance. This implies that in
wireless communications, the LoS channels, especially when
properly directed to the destination as in this case, deliver
stronger signals than the NLoS channels. This is also the
reason that SD, which ignores the NLoS direct link, still
maintains its good performance over the benchmark schemes.

For b = 2, the performance of the proposed algorithms is
almost indistinguishable from that of AO and GP. Neverthe-
less, the performance of CE seems to degrade significantly,
especially for a large IRS. In our analysis, we note that
this loss is highly contributed by the difficulty on the proper
selection of algorithm parameters like the smoothing strategy
that prevents premature convergence, the update rule of the
tilting parameter, the choice of the numbers of candidate and
elite samples, and the maximum number of iterations (tmax).
The dependency of CE on these many parameters not only
degrades its performance upon improper parameter settings,
but also makes the algorithm selective of the propagation
environment and system setups.

Another important observation from Fig. 5 is that when
the number of quantization bits increases from 1 to 2, a
performance gain of approximately 2.5 dB is obtained for the
entire range of the number of IRS elements. However, it comes
at the expense of increased power consumption and complexity
on the design of IRS elements as well as the optimization
of their phase shifts. Therefore, in the design of IRS-assisted
MIMO systems, it is necessary to properly balance the desired
performance versus the complexity and power consumption of
the system.
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TABLE I
Computational complexity for SD, TS, AO, GP, and CE algorithms.

Algorithm Operation FLOPS Frequency

SD
SD problem formulation 7N3/3+0.5N2−M2+NM(2N+2M+

1) + 13N/6
1

SE-ordering 2N + 4 card (Fb) t
Solution saving and radius update N2 + 1.5N − 1 t

TS

J = diag (hr)G
T NM 1

QR-decomposition of J 2N2 (M −N/3) 1

w = QHhd +Rc 2M2 + 2MN −M 1
Neighbor’s objective value computation 3M + 5 card (N (c))− 3 t

AO

w̄ = hd/∥hd∥ 3M − 1 1
γ0 = arg(hH

d w̄) 2M t
a = diag(hH

r )Gw̄ 3NM −N t

v∗ = ej(γ0−arg(a)) 3N t

w̄ =
(hH

d +hH
r ΦG)H

∥hH
d

+hH
r ΦG∥ 2MN + 3M +N − 1 t

Quantization of v∗ to the nearest phase shift in Fb N2 +N 1

GP

A = diag(hH
r )GGHdiag(hH

r ) N2(2M − 1) +NM 1
b = diag(hH

r )Ghd 3NM −N 1
Eigenvalue decomposition to obtain λmax N3 1

Ã = 2µA and b̃ = 2µb N2 +N 1
Update procedure 2N2 +N t

Objective value computation 2N2 + 7N − 3 t

CE
Computation of the initial probability matrix P (0) N 1

Objective value computation of each sample 2N2 + 7N − 3 tS
Update of probability matrix P N tS
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Fig. 5. SNR versus the number of IRS elements for a downlink MISO
system with M = 6, b = {1, 2}, and εAU = 0 dB.

E. SNR versus Quantization Bits

To cement the discussion ignited in the previous subsection
about the effect of quantization bits on the performance of
IRS-assisted MIMO systems, we analyze it in different system
setups. We use same system parameters as those used in
the previous subsection although to capture different system
setups, the set of quantization bits b = {1, 2, 3, 4} is analyzed
for N = {30, 50}. In Fig. 6, where we plot SNR versus the
number of quantization bits for different algorithms, we also
include the performance of the continuous phase, which is the
unquantized solution of AO, to act as an upper bound. From
Fig. 6, we observe that for both N = 30 and N = 50, our
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Fig. 6. SNR versus the number of quantization bits for a downlink
MISO system with M = 6 and N = {30, 50}.

proposed algorithms attain better performance than benchmark
schemes for low-resolution IRS, whereas with high-resolution
IRS, their performance indistinguishably drops below that of
AO and GP.

F. Effect of IRS and User Locations

In this subsection, we evaluate the effect of the IRS and
user locations on the performance of IRS-assisted MISO
systems. Specifically, we start by moving the user on the
range ∂ = [100, 200] m, whereas IRS is fixed at its original
position (D, 0). In the second phase, IRS is moved over the
same range ∂, whereas the user is reset to its initial location
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Fig. 7. SNR versus location of IRS and user for an IRS-assisted
downlink MISO system with M = 6, N = 50 and b = 1.

(D, dy). We assume N = 50, b = 1, and no penetration loss.
The rest of parameters remain the same as in Section V.B.
In Fig. 7, the SNRs of the proposed and benchmark schemes
are plotted against various IRS/user horizontal locations. First,
we observe that when both the IRS and user have the shortest
separation between them, all the schemes provide the maxi-
mum performance. This is expected because of the small path
loss on the IRS–user link. We also note that a higher SNR is
attained when the user is close to the AP than when IRS is
close to the AP; this is because when a user is close to the
AP, the gain on the strength of the direct link (due to reduced
path loss on the AP–user link) is relatively large compared
to the loss of strength (due to the increased path loss resulted
from the increased distance) on the IRS–user link. By contrast,
when IRS is close to the AP, the gain of the strength on
the AP–IRS link is comparable to the loss on the IRS–user
link, hence neutralizes the effect of IRS being close to the
AP. Moreover, we can clearly see from both Figs. 7(a) and

7(b) that, irrespective of IRS/user locations, our proposed TS
algorithm provides higher SNRs than the benchmark schemes.

G. Computational Complexity

Furthermore, we investigate the complexity of the proposed
algorithms and benchmark schemes in terms of the number of
floating-point operations (FLOPS) [28], [37]. In Table I, where
we summarize the number of FLOPS needed by each main
operation of each algorithm, t denotes the number of times
each operation is performed. Note that for fair comparisons,
we have also included the GP’s computation load N3 for
finding λmax, which was not included in its original work [17].
For the CE algorithm, the notation S denotes the number
of samples of candidate solutions. We further assume that
the QR Householder method [28] is used to perform QR
decomposition for the TS algorithm. In Fig. 8, we compare
the complexity of different schemes under different system
configurations by using the same parameters as those used in
Fig. 3, with the exception of εAU , which is ignored.

Specifically, Figs. 8(a)–8(c) plot the FLOPS against the
number of IRS elements for b = 1, IRS horizontal distance ∂
for b = 1 and N = 50, and number of quantization bits for
N = 30, respectively. We observe from Figs. 8(a)–8(c) that
the complexities of the proposed algorithms are lower than
those of CE and GP and higher than that of AO. AO has the
smallest complexity because it does not directly optimize the
discrete phases. Instead, it quantizes its continuous solution
to the nearest discrete phase shift in Fb. Furthermore, unlike
GP, which accumulates most of its complexities from the com-
putation of the objective value and its two update procedures
[17, eq. (8a) and (8b)], AO computes the objective value only
in each iteration. In contrast, the complexity reduction of
the proposed algorithms over GP and CE is remarkable. For
instance, in Fig. 8(a), we observe that for N < 50, the
complexity of SD is smaller than those of TS, CE, and GP.
However, as N increases beyond 50, the SD’s complexity
surpasses that of TS although it still remains below those of GP
and CE. Quantitatively, we note that when N = 50, the gains
in complexity reduction of TS and SD over GP are 99.28%
and 99.03%, respectively, whereas those over CE are 99.32%
and 99.08%, respectively.

In Fig. 8(b), we observe that when IRS is moved along
different positions, the complexity of GP also changes sig-
nificantly, with the highest complexity obtained for the IRS
and user being closest to each other. This causes the gain in
complexity reduction of the proposed algorithms over GP to
vary significantly. For example, when IRS is at ∂ = 100 m,
the complexity-reduction ratios of TS and SD over GP are
78.74% and 70.58%, respectively, whereas at ∂ = 150 m they
increase to 99.21% and 98.91%, respectively.

Finally, from Fig. 8(c), it is clearly seen that the complex-
ities of all the schemes are less sensitive to the number of
quantization bits. This is due to the design of these algorithms.
For example, TS and SD use termination criteria, which are
independent of b; likewise, CE is also caped at a predefined
number of maximum iterations, whereas AO and GP only
quantize their continuous solutions to the set of discrete phase
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Fig. 8. Comparison of computational complexity of proposed algo-
rithms with benchmark schemes for an IRS-assisted downlink MISO
system with M = 6 and εAU = 0 dB.
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Fig. 9. Running time versus the number of IRS elements for a
downlink MISO system with M = 6, b = 1, and εAU = 0 dB.

shifts. Despite of that, the proposed algorithms still attain
substantial complexity reductions up to 97.83% and 97.91%
for TS over GP and CE, respectively, whereas those of SD
over GP and CE are 98.90% and 98.94%, respectively.

H. Running Time

Finally, we compare the running time of the proposed
algorithms with the benchmark schemes for various sizes of
the IRS. The results in Fig. 9 are obtained by using the
same parameters as those used in Fig. 5 for b = 1. The
simulation was performed by MATLAB R2021a running on
a Windows 11 computer having an Intel(R) Core(TM) i7-
10700 CPU @ 2.90 GHz processor and 16 GB of RAM.
From Fig. 9, we observe that the CE algorithm has the longest
running time of all the tested schemes, whereas AO has
the shortest. Furthermore, the average running times of the
proposed algorithms are still shorter than those of GP and
CE.

VI. CONCLUSION

In this study, we have investigated an IRS-assisted downlink
MISO system with the aim of enhancing the signal strength
at the user. To achieve this, the IRS reconfiguration problem
has been addressed in two stages. First, a narrowed analysis,
which ignores a severely attenuated NLoS direct AP–user link,
has been studied. We have then generalized the analysis to the
case of a normal AP–user link. In the former scenario, the IRS
phase-shift problem is reformulated so that it can be efficiently
solved by the proposed SD algorithm, whereas in the latter
scenario, we have resorted to the original joint active and
passive beamforming problem and proposed the TS algorithm.
Both proposed algorithms have been carefully designed to
deliver high performance with significant reduction in com-
plexity compared to the conventional GP and CE schemes.
Specifically, the complexity of SD is regulated by an early-
termination criterion, which halts the algorithm whenever slow
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convergence is detected, especially when there is a large
number of close-to-optimal lattice points. Furthermore, TS
uses a novel QR-TS technique to reduce its complexity by
reusing the computational results of the candidate solution
in computing the neighbor’s metrics. Extensive simulation
results verify the validity of our analysis as well as prove the
effectiveness of our proposed algorithms over the benchmark
schemes. In particular, TS provides a 1-dB SNR gain over
AO and GP when the direct AP–user link is in deep fade.
The proposed schemes not only deliver higher performance
than the benchmark schemes, but also attain near-optimal
performance of an exhaustive search for small-size IRS. More
importantly, such high performance in different system setups
is obtained with significant complexity reduction. For example,
complexity-reduction ratios of 99.28% and 99.03% have been
obtained by TS and SD, respectively, over GP when the phase
shifts of the 50-element IRS are optimized in a normal wire-
less propagation environment. Furthermore, the phase-shift
optimization by SD for a 30-element IRS with quantization
bits b = {1, 2, 3, 4} only requires 1.1% and 1.06% of the
computational loads of GP and CE, respectively.

Despite performance gains provided by our proposed al-
gorithms, their design relies on the assumption of perfect CSI
knowledge at the AP. Also, the algorithms have been designed
and analyzed for single-user systems only. However, in practi-
cal systems, getting perfect CSI can be challenging, especially
when there are multiple users in the network. Therefore, the
extension of the proposed algorithms to the IRS-assisted multi-
user wireless communication system with imperfect CSI can
be an interesting direction for future research.
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