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Software-Defined Networking Enabled Big Data
Tasks Scheduling: A Tabu Search Approach

Mina Soltani Siapoush, Shahram Jamali, and Amin Badirzadeh

Abstract—The growth of information technology along with the
revolution of the industry and business has led to the generation
of an enormous amount of data. This big data needs a platform
beyond the traditional data possessing context that relies on
some computational servers communicating through a network
in its lower layer. One of the most important challenges in data
processing is how to transfer the big batches of data between
the servers to achieve fast responsiveness. Consequently, the
underlying network plays a critical role in the performance
of a big data analysis platform. Ideally, this network must
use the shortest path that has the lowest amount of load, to
transfer the large-scale data. To address this issue, we propose a
software-defined networking (SDN) enabled scheduling method
that uses the tabu search algorithm to schedule big data tasks.
The proposed algorithm not only considers data locality but
also uses the network traffic status for efficient scheduling. Our
extensive simulative study in the Mininet emulator shows that
the proposed scheme gives high performance and minimizes job
completion time.

Index Terms—Big data, cross-layer, Hadoop, OpenFlow, soft-
ware defined networking, task scheduling.

I. INTRODUCTION

DATA processing is a rapidly growing part of business
and industry. These days, big data define databases

so large and complicated that traditional data management
tools or processing techniques have got some limitations to
handle. The amount of data from various sources, for example,
the Internet of things (IoT), scientific research, and social
networking websites (Twitter, Facebook, Instagram, etc.) is
increasing sharply. On the other hand, the latest advances in
information technology make it easier to generate data and
as a result, an enormous amount of data is generated every
day. Hence, big data analysis is a needed service in today’s
Internet companies. For example, Google processes data over
one hundred Petabytes (PB), Facebook generates log data
of approximately 10 PB per month, and Baidu, a Chinese
company, processes data of tens of PB [1]. To process this
massive data efficiently, MapReduce [2] with an open-source
implementation called Hadoop as the main solution. It is
the common computing framework used by Yahoo!, Amazon,
Facebook, etc. Nonetheless, it is important to note that the
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big data frameworks wouldn’t be possible to work without
supporting the network underlying due to their extremely large
volume of data and computing complexity [3]. To this end,
some performance-oriented policies must be implemented in
the network. To express the desired high-level network poli-
cies, including traffic engineering, QoS, and load balancing,
network operators need to configure each individual network
device separately using low-level and often commands that are
vendor-specific.

To overcome these challenges, software-defined network-
ing (SDN) architecture is proposed. As a new networking
paradigm, SDN enables us to improve the performance of the
network. In this architecture, the control logic of the network
is separated from the devices such as routers and switches
forwarding the traffic. Through this separating, the network
switches play a forwarding role only and the controlling
actions such as applying policies and managing the flows are
taken in a controller by (re)configuring the network [4]. In
Hadoop frameworks, one of the most challenging issues that
impact the performance of data processing is the “minimum
makespan” problem. Although many types of research have
been done on task scheduling, they can only find a near-
optimal solution or have high complexity in their computation
due to the limitation of traditional networks to provide a global
view of the network. To resolve this NP-complete problem,
we have to consider the distance of servers from where data
is located. Although to schedule the big data tasks, we prefer
to assign the tasks to the local servers, by selecting the local
servers frequently, these servers may be overloaded, and the
waiting time for tasks to execute increases.

On the other hand, in assigning tasks to the remote servers,
the corresponding bandwidth and time are needed for moving
data. Therefore, we are going to make a trade off between
choosing the remote and local servers to assign the tasks
and finding solutions to shorten the job completion time. To
address the mentioned problem, we leverage the abstraction
of SDN which can provide the network state information
to monitor and manage the networks and make the related
decisions accurately. In order to reach a solution in this search
space, we employ the tabu search algorithm which provides
solutions very close to optimal, if not the best. The proposed
algorithm not only shortens the completion time of task
scheduling in compared the related works by considering the
state of the network such as congestion ratio, but it improves
the data locality which is vital for performance because the
network biSection bandwidth in a large cluster is much lower
than the aggregate bandwidth of the disks in the machines.

The rest of the paper is organized as follows: Section II
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Fig. 1. A simplified view of an SDN architecture [4].

presents the background of the issue, Section III introduces
the related works. Section IV depicts the problem formulation
and Section V brings the proposed algorithm. Experimental
evaluation is shown in Section VI and finally, we make a
conclusion in Section VII.

II. BACKGROUNDS

In this section, we bring some preliminaries about this re-
search. First, the SDN and big data architectures are explained
in detail and then the other related concepts are described.

A. SDN Architecture

SDN architecture consists of three layers (as shown in
Fig. 1):

• Data plane The bottom layer of SDN is known as the
data plane. It consists of packet-forwarding devices such
as Ethernet, optical and virtual switches, routers, and
access points.

• Control plane The middle layer includes the controllers
and network services. The controllers are responsible for
routing and deciding about traffic transmitting to related
destinations.

• Application plane The upper layer is placed on top of the
central layer. This layer uses a high-level programming
language to provide some functions, such as security
monitoring, energy-efficient networking, traffic engineer-
ing, etc [4].

The interface between the application layer and the control
layer is referred to as the northbound interface (NBI), while
the interface between the control layer and the data layer is
referred to as the southbound interface (SBI). There are a vari-
ety of standards for these interfaces, e.g., the OpenFlow (OF)
protocol [5] is mostly used for the SBI. For the NBI, represen-
tational state transfer (REST) is generally defined as a software
architectural style that supports flexibility, interoperability, and
scalability [6].

Using the separation of control and data planes, applications
achieve their specific purposes such as quality of services,
traffic engineering, and monitoring. In addition, the SDN

Fig. 2. Main components of an OF switch [9].

controller manages and controls the switches known as OF
switches. In other words, the network can be managed by
adding some features to the control plane automatically with-
out any changes in the forwarding devices [5]. To do this, SDN
architecture uses a protocol called OF which is introduced
as the common standard interface to communicate between
the control and the data layer. It is designed by the open
networking foundation (ONF) [7] and provides a means to
control a switch without vendors that have to reveal any source
codes of their peripherals [8]. An OF switch which is shown
in Fig. 2 consists of three main items: a) Tables that include
flow tables, meter table, and group table, b) the secure channel
that is used mostly as an SSL channel among switches and
SDN controller, and c) OF protocol that is used to control and
manage the switches by communicating with them.

Through the OF channel, the SDN controller manages
the OF switches and receives the network status such as
network traffic and bandwidth. The OF protocol supports three
message types, controller-to-switch, asynchronous, and sym-
metric messages. The controller-to-switch messages are used
to manage or inspect the state of the switch. The asynchronous
messages are sent by the switches and used to update the
controller about its state, and finally, the symmetric messages
are initiated by either the switch or the controller and sent
without solicitation [8]. By transmitting these messages the
controller is able to have a global view of the network [9].
When the first table match is found, a set of actions associated
with that table entry is executed. They may direct the packet
to a particular switch port in a particular queue, send it to the
controller, or drop the packet [8]. It is generally intended that
when the existing flow tables do not know how to handle
a packet, it is sent to the controller, which may respond
by installing rules on the switch to properly process similar
packets [9].

B. Big Data

There are different types of definitions for big data in the
literature [10]. In the comparative definition, big data can be
defined as ‘data sets which are unstructured or time-sensitive



SOLTANI et al.: SOFTWARD-DEFINED NETWORKING ENABLED BIG DATA... 113

or very large that cannot be processed by relational database
engines and is beyond the ability of typical database tools to
capture, store, manage, and analyze.’

1) Big data characteristics: Big data has some parameters
which make it distinct from other structured data like relational
database systems. The main characteristics are volume, variety,
velocity, value, and veracity.

a) The volume of data is the major feature of big data
because the volume of the data is in terabytes and
petabytes [11].

b) Variety refers to the different formats of data such as
images, audio, video, document, social media messages,
etc [12].

c) The basic concern for velocity is the completeness and
consistency of data streams and getting the demanded
result matching on a specific time.

d) Another attribute is the value which is the results that
come out from analyzing data and defining how will we
get a better result from the data stored.

e) Veracity describes the quality of data and specifications
such as noiselessness, completeness, and accuracy are
concerned.

These 5Vs have been specified as the main features of big data
which make it different from traditional data. Other features
that play important roles in how to capture and analyze data
are as follows: Viscosity, variability, volatility, viability, and
validity.

2) Big data framework: Hadoop is an open-source platform
that can process vast amounts of data and store them in dis-
tributed systems. It usually consists of two main components:
HDFS and MapReduce.

The Hadoop distributed file system (HDFS) is a file system
that creates multiple replicas of data blocks for reliability and
places them on computational nodes in the cluster. HDFS
divides each file into 64 MB blocks, and stores several copies
of each block on different systems (by default 3 copies) [13].

MapReduce is a computing engine developed at Google and
runs in two phases: Map and reduce phases (Fig. 3). First of
all, every block including some number of records is processed
and each record contains a key/value pair. In map phase, a
specified node named the master node takes the input, divides
it into the data splits, and assigns them to slave nodes [14].
The reduce phase then begins with sorting and shuffling the
partitions that are produced by the map phase.

III. RELATED WORKS

Big data job scheduling is one of the most vital elements in
big data analytics, which has drawn much more attention in
recent years. The important issue in all scheduling algorithms
is minimizing the makespan which needs to meet solutions
that shorten the job completion time and have a significant
impact on the performance of Hadoop systems. The default
scheduling method in Hadoop is FIFO which jobs are located
in a queue and a job tracker schedules them one after another
based on arrival time. This algorithm is known as Hadoop
default scheduler (HDS). Later on, setting the priority of a

Fig. 3. MapReduce workflow.

job was added. Facebook and Character contributed meaning-
fully apply in processing schedulers i.e., fair scheduler [15]
and capacity scheduler [16] respectively which after free to
Hadoop dominion.

Considering data locality, some methods are proposed such
as state-of-the-art balances reduce scheduler (BAR) [17].
Though, this approach either disregards available bandwidth as
the base for assigning or does not allocate MapReduce tasks in
a global view which results in missing optimal opportunities
for scheduling. OFScheduler [18] is another approach that
identifies MapReduce traffic load in the network and then
balances the load among the links to shorten the completion
time of jobs. It first looks for overloaded links and then selects
flows to reduce the link’s load by granting priority to load-
balancing flows.

When the switches consider packet scheduling priorities
based on the bandwidth provisioning table from the SDN
controller, the network’s resources are allocated efficiently,
and the power consumption is also reduced for different big
data applications [19]. The use of SDN is applied to solve
this problem in Hadoop [20]. Specifically, a scheduler known
as bandwidth-aware scheduling with SDN (BASS) schedules
Hadoop tasks using the SDN and assures the providing data
locality in the overall network. It first utilizes the SDN to
manage the network bandwidth and allocates it in a time-
slot manner. In this regard, an application-aware networking
setup based on the SDN controller [21], propose the network
configuration which is made it easier by using the integrated
control plane in job placement. Due to application awareness
of the network, there is an improvement in the big data
performance, as well as the completion time of the job that is
minimized drastically. As another work, a virtual network of
tenants [22] represents the possible case where all the batches
of a task can be mapped on the same physical server. In this
method, a batch of tasks is split into two cases based on latency
and bandwidth such that the given batch cannot be mapped
into the same server.

IV. PROBLEM FORMULATION

As mentioned above, the underlying network has a great
impact on big task scheduling. Obviously, if the scheduling
process has a global view of the network, it can calculate
better scheduling solutions regarding the communication and
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Fig. 4. Architecture of Hadoop cluster enabled with SDN.

computation resources of the network. In SDN-enabled task
scheduling, upon receiving the request, the proposed algorithm
contacts the network information manager in the controller to
get the current state of the network. Based on this information,
the algorithm determines where and when this task will be
executed. For a better illustration of this model, let us consider
the architecture of the SDN-powered Hadoop cluster. As
shown in Fig. 4, an OF-controlled Hadoop cluster is composed
of the same servers or task trackers, an OF controller, and a
job tracker/scheduler. The SDN controller is connected to these
servers by OF switches.

A Hadoop MapReduce schema (MR-schema) is a pair (T,
S), where T is a set of tasks and S is a set of servers. Let
m = |T | be the number of tasks and n = |S| be the number
of servers in the cluster. The main entities of this framework
are described as follows;

Task: Each task of a Hadoop job is denoted by ti and can
be defined as given in (1):

ti = (σi, PTi) (1)

σi: Input data size of the ith task
PTi: Processing time of the ith task.

Server: Servers are computational resources of a Hadoop
cluster. In assigning map tasks, a critical consideration is to
keep the computation as close to the data as possible. But
to avoid the long waiting time for local servers, assigning
the tasks to the remote servers is an alternative solution as
shown in Fig. 5. In other words, for task ti in T, the goal is to
find an available server that can yield the earliest completion
time among all n servers of the cluster. Table I gives a brief
description of each parameter used in this section

Waiting time: As shown in Fig. 5, when task ti is allocated
to server j, either local or remote, it may face some queued

Fig. 5. Task scheduling with data locality.

TABLE I
THE INVOLVED SPECIFICATIONS IN PROPOSED ALGORITHM.

Notation Description

σi Input data size of task i

BWej Bandwidth of jth edge (or link)

Qj(ts) Queue length of server j at the current time slot

θj Waiting time until server j will be idle, until Qj(t) be free

Ai,j Allocation of task ti to server j at the current time slot

TTi,j Data transfer time of task i to the remote server j

PTi Processing time of task i

WTi,j Waiting time of task i on the server j

ETi,j Execution time of task i on server j

pk kth routing path between master and slave servers

Vpk The switches are involved in kth path

Epk The links are involved in kth path

MCvi Meter counter of ith switch

MBvi Meter band of ith switch

CΓT The completion time of all tasks T

tasks at the server. server j starts to process this task imme-
diately, if its queue length is zero, otherwise, the task waits
until server j becomes idle. Hence, the waiting time can be
defined as in (2):

WTi,j =

{
θj if Qj > 0

0 if Qj = 0
(2)

θi: The time it takes to serve all previously queued tasks.

Data transfer time: It is clear that assigning a task to a
remote server dictates some overhead to the controller and it
includes data transfer time. But, sometimes the local servers
may be heavily congested, and hence, the remote server may
be a better option. In other words, we need to strike the right
balance between data locality and load balancing in MapRe-
duce to minimize the makespan. To study the data transfer
time, consider the data plane of the underlying network. From
the data plane perspective, the topology of the network can
be modeled by G = (V,E), where V = {v1, · · ·, vn} is the
set of switches and E = {e1, · · ·, em} is the set of links
that connect switches each other. Note that each path that is
denoted by P = {p1, · · ·, pK} is a route consists of the set of
the switches and links between the source and the destination
nodes to send a flow. We use pk as a path that is generated
by the controller. This path includes some switches and links,
Vpk

= {vi|vi ∈ Pk} is the set of switches in the kth path, and
Epk

= {ej |ej ∈ pk} is the set of edges/links in the kth path.
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Fig. 6. Meter table of OF switch.

Regarding these definitions, to compute the data transfer
time, we need to consider the data size of task i (σi) and the
status of the links and switches, which data is transmitted as
shown below:

TTi,j =
∑

ej∈Epk

σi

BWej

× (CRpk
+ 1), (3)

where BWej is the bandwidth of link j of pk and CRpk
or

congestion ratio of pk, calculated through the meter table (ac-
cording to Fig. 6) as defined by (4):

CRpk
=

∑ MCvi

MBvi

{vi|vi ∈ pk}, (4)

in which, MBvi is the meter band or the maximum number
of packets that switch vi can forward and MBvi is the meter
counter or the number of received packets of switch vi.

Execution time: For the purpose of simplicity, we assume
that all servers are homogeneous, so task i can be processed
at the same time on all servers. Therefore, the processing time
of task i is defined by PTi and is the time spent by task i on a
server. Now, consider the execution time of task i on server j
which is influenced by three parameters as shown in (8):

ETi,j = TTi,j +WTi, j + PTi, (5)

where TTi,j is the task data transfer time to the remote
server j, WTi,j is the waiting time of task i on the server j,
and PTi is the processing time of task i. It is clear that, when
desired server j is a local one, TTi,j is zero. So, (5) can be
rewritten as (6):

ETi,j =

{
PTi +WTi,j if j ∈ local
PTi +WTi,j + TTi,j if j ∈ remote.

(6)

Based on these functions, we can formulate the problem to
minimize the completion time of task i as follows:

minimize(CΓT ) (7)

Subject to:

CΓT =

n∑
i=1

ETi,j ∀j ∈ S. (8)

According to all described parameters, Algorithm 1 explains
the steps of the task scheduling algorithm. In terms of server
load balancing in Hadoop servers, when a task is allocated
to a server, the queue lengths of the servers are recorded to
calculate the waiting time of just arrived task. As mentioned
above, waiting time has a significant role in selecting a
server, so the algorithm selects the server with the least queue

Algorithm 1 Load-award scheduling by SDN in Hadoop
Given the submitted job with m tasks and the n server
Use capability of SDN to:
for (ti : i = 1, 2, · · ·,m) do

Get input data size of task i;
for (pk : k = 1, 2, · · ·, K) do

Get the real-time bandwidth (BWei
) for each link;

Calculate the CRpk
Tabu search()
CΓT = Find a local server with minimum WTi,j for ti;
CΓT = Find a remote server with minimum WTi,j + TTi,j for ti;
if (CΓa <= CΓb) then

Assign ti to the local server j;
else if (CΓa < CΓb) then

Assign ti to the remote server j;
end if

end for
end for
return The assignment for all m tasks.

Fig. 7. The solution space of data placement problem.

lengths. Using this approach, neither queues are overloaded
nor underloaded.

V. PROPOSED TASK SCHEDULING ALGORITHM

To solve the scheduling problem formulated by (7)
and (8), we propose a meta-heuristic algorithm based on
tabu search (TS) methodology. This algorithm is a general
heuristic procedure introduced by Glover [24] to solve large
scale optimization problems. The main portion of TS is the
tabu list, that is used to avoid being trapped in local optima
and revisiting the same solution. From the current solution,
it defines a set of solutions, named the neighborhood and
at each step, the best one in the set is selected as the new
solution. Some attributes of the former solution are then stored
in the tabu list. The moves in the tabu list are repeated
until an aspiration criterion is satisfied. The neighborhood
structures are used in a local search phase to compute a local
minimum [25]. The main elements of TS that are introduced
as follows, incorporated in various versions optionally.

A. Solution Space

In TS algorithm, a solution is considered feasible until the
stop condition is fulfilled and in such a case, the solution is
repaired. For this purpose, the algorithm removes the action
which has the least impact on the objective value, at each
iteration. The solution space of the proposed task scheduling
algorithm is shown in Fig. 7. In our case, each task has three
input data replicas, so it can be assigned to three local servers.

B. Adaptive Memory

In this section, we describe the procedures used to store
and fetch solutions from adaptive memory [26]. Since every
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solution is split into its elements, it should be noted that
the memory is implicitly divided into a number of smaller
memories. Adaptive memory is required during the fetch
procedure.

C. Neighborhoods

The basic phase of TS is neighborhood that are placed in a
sequence of four different structures:

• Inter-route move: A task is moved from one route to
another and inserted at the best feasible place.

• Intra-route move: A task is moved from its current
position to another feasible position in the same route.

• Swap: Two tasks from two different routes are swapped.
Each task is inserted at the best feasible insertion place
in its new route.

• Swap-with-new: A task not currently in the solution is
swapped with a task in the solution and is inserted at the
best feasible insertion place [26].

D. Fitness Function

The quality of a solution in memory depends on the ob-
jective value and its contribution to the diversity of solutions.
The fitness function for the problem of task scheduling is to
minimize the overall time of the complete a job. Although, the
processing time of each task on the Hadoop servers are equal
as mentioned earlier, so:

Fi = minimize (TTi,j +WTi,j) ∀j ∈ S. (9)

Obviously, according to this fitness function, the TS algo-
rithm looks for the solutions to assign a task that has the
minimum data transfer time (TTi,j) and waiting time (WTi,j)
as possible. As expected, when a task is allocated to a local
server, the transfer time is zero, and hence the solution has a
high chance of acceptance. However, sometimes, according to
the state of the network, the transfer time plus waiting time on
a remote server is much less than the waiting time on a local
server. Since there are m servers, each operation of the task
placement takes O(logm) time and this is done for n task with
O(n) time. In addition, the algorithm also needs to evaluate the
routing paths to assign some tasks to the remote servers. Hence
the proposed task-scheduling method takes O(n(logm + k))
time.

After finding a task assignment, it is not inserted in the final
solution immediately. Tabu search algorithm also considers
each neighborhood and the recent moves are declared for
θ iterations (unless they can improve the best-known solution),
where θ is randomly selected in the interval [θmin, θmax],
with θmin = 5 and θmax = 10 in our experiment. Now we
depict the workflow diagram of the proposed task scheduling
algorithm in Fig. 8.

VI. RESULTS AND DISCUSSIONS

In this section, we use MapReduce workloads based on
HiBench benchmark suites. The applications that are used to

Fig. 8. The proposed task scheduling workflow.

evaluate the effectiveness of the proposed method are listed
below:

• WordCount: This is the most common application used in
MapReduce evaluation. It has text input data where each
word is counted. The traces had 50 GB of input data.

• Sort: We also use the sort application which sorts the
input data in the text format and is generated by a
random text writer [27]. This application is widely used
to evaluate the performance factor. In this application,
32 GB of data was sorted to obtain job traces.

A. Experimental Setup

The architecture of the proposed model which is shown
in Fig. 9 can be executed in real data-center networks by
making some minor changes. For the SDN controller, we use
Floodlight for two reasons: First, it is based on Java, which
gives the highest performance as stated earlier; and second, it
is built using Apache Ant, which is very easy and flexible in
use. Regarding the other components, open vswitches (OVSs)
and Linux hosts are used as the network switches and phys-
ical servers respectively, which are implemented within the
Mininet emulator.

In addition, OVS communicates with the ovsdb server using
the open vswitch database protocol (OVSDB) and configures
virtual network instances via netlink with the kernel, during
communicating with the system through the netlink interface.
OVS is also used to enable communication between various
hosted virtual machines. Accordingly, for the encapsulation of
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Fig. 9. The proposed task scheduling architecture.

traffic and the creation of overlay networks between the hy-
pervisor hosts the generic routing encapsulation (GRE) tunnel
is used. Being a simple and effective method of transporting
data over a public network, GRE lets two peers share data and
connect non-contiguous subnetworks.

According to this model, first of all, the job tracker in-
troduces its demands in a job request (e.g., a JSON file).
The job request, which is a set of tasks, is fed into the
proposed algorithm that is running in the OF controller.
Upon receiving the request, the algorithm contacts network
information manager to obtain the current state of the network.
Based on this state, the algorithm determines where these tasks
will be allocated. One important thing we should note is that
all the requests are processed by the controller and endures
some overhead.

When SDN controller is used for big data applications, its
performance could be degraded due to the rapid and frequent
update requests on flow table as well as big data transmis-
sion and processing. Accordingly, the network controller is
designed in such a way that it can accommodate larger flow
tables and big data, because the topology-update component
manages the network changes while traffic analysis component
detects and predicts network failures and links congestion as
well [28].

In our Experiment, the Hadoop cluster includes 10 OF
switches as shown in Fig. 10. Other specifications are shown
in the Table II.

While in SDN architecture, each link or switch has the

Fig. 10. Fat-tree topology of physical nodes and OF switches.

TABLE II
THE SPECIFICATION OF PROPOSED ALGORITHM SIMULATION.

Component Configuration

Operation system Ubuntu 16

Hadoop Version 2.7

Topology Fat-tree

Network’s links 100 Mb/s

Size of data block 64 MB

capability of configuration, this is not always required for just
task scheduling, as the same work is done in software-defined
optical networks (SDONs) [29]. There is some optional con-
figuration in the network which helps to enhance the efficiency
of big data processing, but most of these changes are applied
to limit the maximum rate of data flows forwarding to manage
the traffic and prevent future issues and problem.

To evaluate the performance of existing task schedulers, first
of all, we illustrate the resource usage by Hadoop schedulers in
Fig. 11. The main Hadoop scheduling algorithms are managed
to optimize the Hadoop cluster resources such as CPUs,
memories, and disks. Those algorithms fall mainly into three
categories: FIFO, capacity, and fairness schedulers.

As mentioned in the related works section, the default
scheduling method in Hadoop is FIFO as known as Hadoop
default scheduler (HDS). According to Fig. 11, we can find
out the reason for this choice. In FIFO, a job tracker pulled
jobs from a work queue, the oldest job first, so it does not
need more calculation or has no concept of the priority or
size of the job. Hence it is an efficient scheduling algorithm in
terms of resource usage. However, the assumption of initial job
starting and completion time cannot stand in a real network.
In Fig. 12, it can be seen the results of running the proposed
scheduling algorithm. The job completion time under running
the WordCount and Sort jobs is shown in a variety of data.

We have shown the comparison of the proposed algorithm
with the most common scheduling algorithms like HDS [16],
BAR [17], and BASS [20] in terms of completion time in
Figs. 13 and 14 for WordCount and sort jobs applications,
respectively. As mentioned earlier, HDS is the Hadoop de-
fault scheduling method that works based on FIFO approach,
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Fig. 11. Hadoop schedulers based on resource usage.

Fig. 12. Job completion time of the proposed algorithm (both WordCount and
Sort jobs).

regardless of the priority. It is obvious that the queue-based
methods are inefficient. However, the balance-reduce (BAR)
method, schedules tasks by adjusting data locality according to
the workload of the cluster. In order to decide about choosing
the remote or local server, it is done in two phases, balance
and reduce. The balance phase returns a total allocation and
the reduce phase repeats to generate a sequence of allocations
and returns the best solution. Among these methods, HDS
and BAR are the non-SDN approach and rely on traditional
networks.

Bandwidth-aware scheduling using SDN as named BASS
presents an algorithm to assign bandwidth in a time-slot
manner and the occupation time of each link is divided into
equal time slots by helping SDN. If a task has a demand for
data movement through a path, the scheduler will allocate the
related time slots, by guaranteeing that the bandwidths of all
links on this path are reserved for the task. This algorithm has
a better performance than the two previous algorithms. Among
the scheduling methods, we can see that for WordCount job,
the proposed scheduler has a minimum makespan compared
with other methods. We mentioned that link bandwidth and
data locality should be taken into account to aim the optimal

Fig. 13. Job completion time for WordCount job.

Fig. 14. Job completion time for Sort job.

overall performance. Sort job also illustrates the authenticity of
the proposed scheduler in practice. It is clear that the proposed
algorithm outperforms in terms of job completion time in both
jobs.

The proposed algorithm has been executed on multiple
virtual machines (VMs) as shown in Fig. 15. As expected,
by increasing the number of VMs, We do not observe a
significant increase in the time of job completion and this is
due to the increasing of map/reduce operations. Fig. 16 vividly
demonstrates the data locality ratio of the proposed method. In
some cases, the experimented data locality ratio (LR) is low,
taking the input data of 600 M as an example, LR of BASS is
55%, while LRs of BAR, BASS, and HDS are satisfying, but
the makespan of the proposed algorithm is only 220 s and in
comparison with other methods is lowest.

VII. CONCLUSION

In this paper, by profiting from SDN to gain the status
of the network at any time, we get every link’s bandwidth
for improving the performance of big data processing and
study map task scheduling problem in MapReduce. Using
the abstraction of underlying networks, we designed an SDN
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Fig. 15. The changes in job completion time based on the number of VMs.

Fig. 16. Data locality ratio (LR) among schedulers, LR = data local task
number/total task number.

controller and a problem-solving methodology based on a tabu
search algorithm that allocates batches of tasks and gains to
high resource utilization of the data center networks. Given
the practical interest in this type of problem, the proposed ap-
proach opens a way for further progress in this area. We proved
that it is relatively easier to deal with high data traffic and
failure information via a logically centralized SDNcontroller,
even though it imposes some overhead on the controller but
the advantages of our approach outweigh this overhead and
any flow format of big traffic data with arbitrary granularity
can be used for traffic engineering. It is also relatively easier
to apply traffic engineering to switches in the network by
helping the tables of the OF switches. We have designed our
task scheduling algorithm in Hadoop, which runs in Mininet
emulator and Floodlight controller and the experimental results
demonstrate that our method improves the job completion time
and resource utilization compared with recent works.
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