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A Data-Driven Deep Learning Network for Massive
MIMO Detection with High-order QAM

Yongzhi Yu, Jie Ying, Ping Wang, and Limin Guo

Abstract—Massive multiple-input multiple-output (MIMO)
can provide higher spectral efficiency and energy efficiency
compared to conventional MIMO systems. Unfortunately, as
the numbers of modulation orders and antennas increase, the
computational complexity of conventional symbol detection algo-
rithms becomes unaffordable and their performance deteriorates.
However, deep learning (DL) techniques can provide flexibility,
nonlinearity and computational parallelism for massive MIMO
detection to address these challenges. We propose an efficient
data-driven detection network, i.e., accelerated multiuser inter-
ference cancellation network (AMIC-Net), for uplink massive
MIMO systems. Specifically, we first introduce an extrapolation
factor regarded as a learnable parameter into the multiuser
interference cancellation (MIC) algorithm for iterative sequential
detection (ISD) detector through extrapolation technique to
enhance the convergence performance. Then we unfold the above
accelerated iterative algorithm and adopt a sparsely connected
approach, instead of fully connected, to obtain a relatively
simple deep neural network (DNN) structure to enhance the
detection performance through the data-driven DL approach.
Furthermore, in order to accommodate communication scenarios
with higher-order modulation, a novel activation function is
proposed, which is composed of multiple softsign activation
functions with additional learnable parameters to implement a
multi-segment mapping of the set of constellation points with
different modulations. Numerical results show that the proposed
DL network can bring significant performance gain to ISD
detector with various massive antenna settings and outperform
the existing detectors with the same or lower computational
complexity, especially in high-order QAM modulation scenarios.

Index Terms—Data-driven detection network, deep learning,
high-order QAM modulation, massive MIMO detection, mul-
tiuser interference cancellation.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO),
which can significantly improve spectral efficiency and

energy efficiency, is one of the most promising technologies
for fifth generation mobile communications (5G) [1],
machine-to-machine communications (M2M) [2], [3] and
other wireless communication systems. And its large number
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of antennas (e.g., tens or hundreds of antennas) at the
subscribers and base stations (BS) endow the system to
achieve high speed and low latency transmission [4], [5].
However, such large-scale deployments also pose significant
difficulties for MIMO detection. The problem statement for
MIMO detection is simple - to infer the original transmitted
signal from the signal received at the BS antennas. But how
to build a MIMO detector that can achieve high detection
accuracy with low complexity is a challenging research
problem, especially for massive MIMO deployments.

It is well known that the maximum likelihood (ML) de-
tector [6] is optimal but with the highest computational com-
plexity due to the consideration of all possible combinations of
transmit symbols. Therefore, some linear detectors such as the
zero forcing (ZF) [7] detector and the linear minimum mean
squared error (MMSE) [7] detector are proposed to reduce
the computational complexity, but they require the inverse
of the matrix to obtain the estimated signal, which is very
complicated in massive MIMO scenarios. Also, some other
suboptimal algorithms, e.g., the sphere decoding (SD) [8],
semidefinite relaxation (SDR) [9], approximate message pass-
ing (AMP) [10] and orthogonal AMP (OAMP) [11], have
been validated the near-optimal performance in some case.
However, they suffer from severe degradation in detection ac-
curacy and dramatic increase in complexity when the number
of antennas is incremented.

As one of the most efficient and promising core technologies
to artificial intelligence, deep learning (DL) has achieved
tremendous success in many fields, such as computer vi-
sion, natural language processing and wireless communica-
tions [12]. Owing to its ability to achieve approximation of
complex functions through nonlinear operations and neural
networks, it has also recently been applied to massive MIMO
signal detection in pursuit of enhanced performance. In fact,
the deep learning approaches for MIMO signal detection are
classified into two main categories, namely model-driven ap-
proaches and data-driven approaches [13], [14]. Model-driven
approaches are mainly to construct an iterative network by
adding a few learnable parameters to the existing algorithmic
model, also known as deep unfolding [13]. In [15], [16]
and [17], the learned conjugate gradient descent network
(LcgNet), model-driven deep learning-based (DL-based) and
OAMP deep network (OAMP-Net) are deep unfolding of the
conjugate gradient descent algorithm [18], multiuser interfer-
ence cancellation (MIC) algorithm [19] and OAMP algorithm
[11], respectively. By learning the optimal parameters from
the training data, they have been proven to outperform the
original algorithms and are trained quickly due to the minimal
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number of learnable parameters. But unfortunately, as these
algorithmic models are with a low level of nonlinearity and
few learnable parameters, their performance is limited by the
original algorithmic structure, resulting in limited performance
gains or difficulty in handling the complex situation of massive
MIMO [15]. Data-driven approaches, on the other hand, learn
features directly from large amounts of data without rely-
ing on relevant models for problem solution. The detection
network (DetNet), as a paradigm of data-driven approaches,
is proposed in [20], [21] by unfolding a projected gradient
descent algorithm to a fully connected deep neural network
(DNN) network. Since DNN possesses a strong learning ability
from the data and nonlinear expression, the DetNet achieves
a comparable performance to those of the SDR and AMP
detectors at the expense of heavy training time. Then, an
improved network proposed in [22], the sparsely connected
neural network (ScNet), is obtained mainly by simplifying
the connection structure of the DetNet, which tremendously
reduces the network complexity and training time consump-
tion. Furthermore, in order to improve the detection per-
formance of the ScNet in high-order modulation scenarios,
the multi-segment mapping network (MsNet), which builds a
staircase function based on the sigmoid activation function, is
introduced in [23]. The results of these studies demonstrate
unprecedented performance improvement thanks to the DNN
framework. In contrast to model-driven, the DNN network
designed by the data-driven approach exhibits a higher level of
nonlinearity and flexibility attributed to deeper network layers
and a sufficient number of learnable parameters, which can
solve much harder and larger problems to achieve better results
at the cost of memory space due to the increase in the model
parameters [24].

In this work, motivated by these findings, we propose a data-
driven DL network, namely the AMIC-Net, for uplink massive
MIMO detection. Furthermore, in order to accommodate com-
munication scenarios with higher-order modulation, we devise
a novel activation function that implements a multi-segment
mapping of the set of constellation points with different
modulations. Our contributions are summarized below:

• First, an extrapolation factor is introduced into the mul-
tiuser interference cancellation (MIC) algorithm [19] and
treated as a learnable parameter to enhance the con-
vergence speed and robustness. Then our proposed DL
network is derived by unfolding the above accelerated
MIC (AMIC) algorithm and adopting a sparsely con-
nected approach instead of fully connected to obtain a
relatively simple DNN structure to achieve promising
improvement in detection accuracy through the data-
driven DL approach.

• A novel activation function, referred to as the SoftS func-
tion, is designed to improve detection performance under
high-order modulation, which is composed of multiple
softsign activation functions with additional learnable
parameters. Its curve is flatter and the gradient is non-
zero everywhere compared to the sigmoid function. This
appealing property allows the AMIC-Net to learn more
efficiently through backward propagation and prevents
gradient vanishing due to the saturation of the activation

functions. The simulation results show that our designed
activation function is far superior to other activation
functions in the case of complex high-order modulation.

• The detection performance and computational complexity
comparison of the AMIC-Net with other reported de-
tectors, including data-driven approaches, model-driven
approaches and traditional algorithms, are given. Our
study and results show that the proposed AMIC-Net has
almost the same detection accuracy as OAMP-Net, but
with at least 10 times lower computational complexity.
Furthermore, AMIC-Net brings significant performance
gain to ISD detector with various massive antenna set-
tings and outperforms the existing detectors with the same
or lower computational complexity, especially in high-
order QAM modulation scenarios.

Notations: Throughout the entire paper, scalars, vectors and
matrices are respectively denoted by lowercase, boldface low-
ercase, and boldface uppercase letters. ℜ(·) and ℑ(·) denote
the real and imaginary parts of a complex vector or matrix.
(·)T and (·)−1 denote the transpose and matrix inversion,
respectively. IN represents the N dimensional identity matrix.
The symbol ⊙ denotes the Hadamard product. ∥ · ∥ denotes
the Euclidean norm of a vector or matrix. sign(·) is used to
represent the signum function, where sign(x) = 1 when x ≥ 0,
and sign(x) = −1 otherwise.

II. PRELIMINARIES ON MASSIVE MIMO DETECTION

A. System Model

We consider the uplink massive MIMO system with M
antennas at the base station (BS) and K single-antenna users.
The transmitted signal vector s̃ ∈ CK×1 from the users is
transmitted to the BS through the Rayleigh fading channel
H̃ ∈ CM×K . The received signal vector ỹ ∈ CM×1 at the BS
is given by

ỹ = H̃s̃+ ñ, (1)

where ñ ∈ CM×1 is the additive white Gaussian noise
(AWGN) vector with zero mean and variance σ2.

For easy handling in DL, we can convert the complex model
(1) to an equivalent real one as

y = Hs+ n, (2)

where

y =

[
ℜ(ỹ)
ℑ(ỹ)

]
∈ R2M×1, s =

[
ℜ(s̃)
ℑ(s̃)

]
∈ R2K×1,

n =

[
ℜ(ñ)
ℑ(ñ)

]
∈ R2M×1,

H =

[
ℜ(H̃) −ℑ(H̃)

ℑ(H̃) ℜ(H̃)

]
∈ R2M×2K .

(3)

The estimated signal vector for MMSE detector can be
expressed as

s̃MMSE = (HTH+
σ2

Ex
I2K)−1HTy = A−1b, (4)

where Ex is the average energy per symbol,
A = HTH+ (σ2/Ex)I2K denotes the MMSE filtering
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matrix, b = HTy represents the matched-filter output
of y. Despite the relatively low complexity of the linear
detector MMSE compared to ML detection, the computational
complexity of A−1 is very large due to the high dimensionality
of the channel matrix H in massive MIMO, making it difficult
to implement. And when the loading factor M/K ≤ 10,
MMSE suffers a large gap in detection accuracy with the
optimal ML detection [7].

B. MIC Algorithm for Iterative Sequential Detection (ISD)
Detector

An iterative sequential detection (ISD) detector based on the
MIC algorithm has been proposed to address the significant
degradation in detection accuracy as the number of users
increases by iteratively detecting transmitted symbols from
each user in a sequential fashion [19].

In ISD detector, the received signal from the jth user that
removes the interference from other users can be written as

ŷj = y −
2K∑

k=1,k ̸=j

hkŝ
l(k) = hj ŝ

l+1(j), (5)

where l denotes the iteration index, hj is the jth col-
umn of H, and ŝl+1(j) is the jth element of the
ŝl+1 = [ŝl+1(1), ŝl+1(2), · · · , ŝl+1(2K)]T , j = 1, · · · , 2K.

To detect ŝl+1(j), it can be deduced as

ŝl+1(j) =
hT
j

∥hj∥2
ŷj

=
1

∥hj∥2

hT
j y − hT

j

2K∑
k=1,k ̸=j

hkŝ
l(k)


=

1

∥hj∥2

(
hT
j y − hT

j

2K∑
k=1

hkŝ
l(k)

)
+

hT
j hj

∥hj∥2
ŝl(j)

=
1

∥hj∥2

(
hT
j y − hT

j

2K∑
k=1

hkŝ
l(k)

)
+ ŝl(j)

(6)
Let diagonal matrix D = diag(HTH) =

diag{d1, d2, · · · , dj , · · · , dk}, where dj = ∥hj∥2. Then,
(6) can be expressed as

ŝl+1(j) = ŝl(j) +
1

dj

(
hT
j y −

2K∑
k=1

(HTH)j,kŝ
l(k)

)
. (7)

Further, (7) can be rewritten in matrix-vector form as

ŝl+1 = ŝl +D−1(HTy −HTHŝl). (8)

III. PROPOSED DATA-DRIVEN AMIC-NET

In this section, we first present a data-driven AMIC-Net for
massive MIMO detection, and detail the structure of AMIC-
Net. Afterwards, we design a novel activation function for
the high-order modulation scenario. Since (8) is a recursive
iterative algorithm, an extrapolation factor is introduced into
the structure of (8) to improve the convergence performance

by using an extrapolation technique [22], which is formulated
as follows:

ŝl+1 = γ(ŝl +D−1(HTy −HTHŝl)) + (1− γ)ŝl

= ŝl + γD−1(HTy −HTHŝl),
(9)

where γ is the optimum extrapolation factor, which can be
exactly calculated as [25]

γ =
2

λmin + λmax
, (10)

where λmin and λmax are the minimum and maximum
eigenvalue of D−1HTH. We replace the calculations of
γ,which originally involves matrix eigenvalue operations, with
a learnable parameter that can be trained by DL to obtain an
appropriate extrapolation factor, which not only reduces the
computation complexities, but also enhances the robustness of
convergence. Thus, (9) can be represented by

ŝl+1 = ŝl + βD−1(HTy −HTHŝl), (11)

where β is a learnable parameter.
Data-driven DL approaches, one of the most popular meth-

ods for building neural networks, can demonstrate a better
performance than traditional algorithms in many cases and has
potential to handle more complex situations due to their pow-
erful learning capabilities and nonlinear expression. Motivated
by this idea, we propose a DNN network, namely AMIC-Net,
by unrolling the iterations of (11) to get a performance boost.
It is evident from (11) that each iteration is just related to
ŝl and βD−1(HTy −HTHŝl), so we concatenate them into
a single vector as the input of AMIC-Net to raise the input
dimension for the construction of DNN network with a large
number of nodes.

In addition, since only the elements between ŝl and
βD−1(HTy − HTHŝl) vectors are linearly added or sub-
tracted at the same index, there is no relationship with the other
elements of these vectors. Therefore, utilizing this feature,
the AMIC-Net we proposed employs sparse connections in
the neural network similar to ScNet [22] instead of full
connections. By cutting out meaningless connections, only
meaningful connections can be formed to ensure the efficiency
of the network and maximize its working capacity. It is
worth noting that this can effectively reduce the complexity of
the network and enhance the detection performance to some
extent. Then, the architecture of the network is as follows:

ŝl+1 = Π

(
P⊙Wl

[
ŝl

βlD−1(HTy −HTHŝl)

]
+ bl

)
,

(12)
where Π(·) represents a nonlinear operator to enhance the
expression of the network, Wl and bl are the weight matrix of
2K×4K dimension and the bias vector of 2K×1 dimension,
respectively, P is a weight connection matrix of Wl used to
generate the sparsity.

The structure of the AMIC-Net is illustrated in Fig. 1, which
is built based on the MIC algorithm. The input of the AMIC-
Net is HTH, HTy, D−1 and the initial estimate ŝ0, while
the output is the final estimate ŝL of the transmitted signal ŝ.
Moreover, the network is composed of L cascade layers and
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Fig. 1. The structure of the proposed AMIC-Net.

Fig. 2. Neural network connection for AMIC-Net.

each layer has the same structure but with different parameter
values. For the lth layer of the AMIC-Net, the input ŝl is
the estimated signal from the (l − 1)th layer, and the output
ŝl+1 is also input of the next layer. The SoftS function is the
staircase activation function to be designed later in this work.
Further, the weight connection matrix P is a sparse matrix,
when K = 2, it can be expressed as

P =


1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


= [I2K I2K ].

(13)

From (13), it can be seen that the weight connection matrix
P consists of two identity matrices of 2K dimension, which
controls the sparsity of the weights of each layer, leading to a
sparse connection between adjacent layers. The neural network
connections represented in the form of nodes are shown in
Fig. 2, where each node denotes one of the elements of the
vector. As can be seen in Fig. 2, the solid line connection
between each node of the output and the input at the same
index is represented by 1 in the weight connection matrix
P, while the dashed line connection between the input and
output nodes at different indexes is represented by 0 in the
P matrix, which indicates that no information exchange is
required, thereby yielding sparsity.

To accommodate communication scenarios with high-order

−1 0 1
x

−1

0

1

f(σ
x)

σ=1
σ=4
σ=20
σ=100

Fig. 3. f(σx) with different slope σ.

QAM modulation, an ingenious approach is to build a stair-
case function consisting of a universal activation function to
perform multi-segment mapping of the input, such as ψt(·)
for DetNet [21] and sigS(·) for MsNet [23]. sigS(·) solves
the problem that ψt(·) is not derivable at the inflection point,
however, it is designed based on a sigmoid function with
saturation at both ends, which prevents the backward prop-
agation of the gradients during the training process, leading to
unexpected performance losses of the network. Thus, in order
to overcome these difficulties, we designed a new staircase
function, referred to as SoftS(·), in Π(·) to implement a multi-
segment mapping of the input in different modulation modes.
The SoftS(·) is based on the following softsign(·) activation
function:

softsign(x) =
x

1 + |x|
. (14)

In order for the softsign(σx) function to have a range of
[−1, 1] when the domain of definition is [−1, 1], we stretch it
vertically as follows:

f(σx) = (1 +
1

σ
)softsign(σx), (15)

where σ can be interpreted as the slope. Fig. 3 shows the
curves of f(σx) with different values of σ. It can be observed
that if the slope is too large, the curve will tend to saturate
at both ends with zero gradient, whereas if the slope is too
small, it will cause the output to oscillate. Thus, on balance,
we take σ = 4.

Our proposed staircase function is made of multiple
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Fig. 4. SoftSum and sigS function mapping curve under 16-QAM modulation.

softsign(·) functions with different offsets, which is given by

SoftSum(x)

=
2N−3∑
t=1

(
sign(x+ 1 +Gt)− sign(x− 1 +Gt)

2

×((1 +
1

4
)softsign(4(x+Gt))−Gt)

)
+

2N−1∑
t=2N−2

(
1− (−1)tsign(x− 1 +Gt)

2

×((1 +
1

4
)softsign(4(x+Gt))−Gt)

)
.

(16)

Gt =
1

2
+ (−1)t(t− 1

2
), (17)

where sign(·) is a signum function applied to restrict the
domain of definition of the softsign(·) function, and Gt is the
step size of the translation, and 2N (2N ≥ 4) is the sum
of constellation points sets in high-order QAM modulation.
Figs. 4 and 5 show the mapping curves and derivative curves
of SoftSum(·) function and sigS(·) function under 16-QAM
modulation, respectively. It can be noted that the SoftSum(·)
function is non-saturated and has a flatter curve compared
to sigS(·), which means that the AMIC-Net can not only
prevent the gradient from vanishing due to the saturation of
the activation function but also learn more efficiently through
backward propagation.

Besides, in order to allow the proposed staircase function
to fine-tune its own shape according to the change in the
input value of the activation function at each layer to better
match the network, a set of learnable parameters {θlt}2N−1

t=1
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Fig. 5. SoftSum and sigS function derivative curve under 16-QAM modula-
tion.

are introduced to (16), which is as follows:

SoftS(x)

=

2N−3∑
t=1

(
sign(x+ 1 +Gt)− sign(x− 1 +Gt)

2

×((1 +
1

4θlt
)softsign(4θlt(x+Gt))−Gt)

)
+

2N−1∑
t=2N−2

(
1− (−1)tsign(x− 1 +Gt)

2

×((1 +
1

4θlt
)softsign(4θlt(x+Gt))−Gt)

)
.

(18)

SoftS(·) is the final form of our activation function design.
In order to further improve the performance of the proposed

network, we add the residual structure [23] as follows:

ŝl+1 = ηlŝl+1 + (1− ηl)ŝl, (19)

where ηl is a learnable residual coefficient of the lth layer.
The entire network structure is shown in Fig. 1.

In addition, to facilitate the convergence of the network,
we sacrifice a little extra negligible computational complexity
to obtain a rough MMSE estimate as an initial solution by
utilizing the diagonally dominant property of A [26]. Then
the initial solution can be expressed as

ŝ0 = D−1
A b, (20)

where diagonal matrix DA is the diagonal component of A.
Obviously, the computational complexity of D−1

A is very low.
Moreover, we adopt the following Loss function to eval-

uate the distance between the outputs of all layers and the
transmitted signal [22]:

L(s, ŝ) =
L∑

l=1

log(l)∥s− ŝl∥2. (21)
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TABLE I
SIMULATION SETTINGS OF AMIC-NET.

Parameters Values

(K, M ) (8, 64), (32, 64) (16, 128), (32, 128)

Modulation BPSK 16QAM, 64QAM

Batch size 2000 500

Number of training iterations 10000 16000

Size of training data 200000 200000

Size of testing data 20000 20000

SNRs for training [0, 16]

Starting learning rate 0.0001

Optimization method Adam optimizer

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we first experimentally demonstrate the
detection performance of the proposed AMIC-Net with various
activation functions. Then the detection performance com-
parison of the AMIC-Net with data-driven DetNet, ScNet,
MsNet, model-driven DL-based, OAMP-Net, and conventional
algorithms MMSE, ISD, OAMP detectors is given. Finally, the
computational complexity is evaluated.

A. Simulation Setup

In our simulation, the proposed network AMIC-Net is
implemented in TensorFlow 1.14.0 for Python [27]. Since the
dimensionality of the algorithm model depends on the number
of transmit antennas rather than the receive antennas, we fix
the number of receive antennas to study the effect of different
number of transmit antennas on the detection performance in
scenarios with low-order modulation and high-order modula-
tion, respectively. The detailed settings of the AMIC-Net under
various system configurations are summarized in Table I.

The entire experiment process contains two phases, the
training phase and the testing phase. During training, each
transmitted signal s is generated from the corresponding
set of constellations (e.g., BPSK, 16QAM or 64QAM) by
following a random normal distribution. The MIMO channel
H is randomly generated from an independent identically
distributed (i.i.d.) Gaussian distribution with mean zero and
unit variance and assumed to be exactly known at the receiver.
Also, the channel noise n is sampled from a zero-mean i.i.d.
normal distribution with a variance that is obtained according
to the definition SNR(dB) = 10 log(KEx/σ

2). Besides, we
train AMIC-Net for 10000 iterations with batch size of 2000
for each iteration under BPSK modulation and 16000 iterations
with batch size of 500 for each iteration under 16-QAM or 64-
QAM modulation. For each training batch, the SNR is chosen
randomly from a uniform distribution on U(0 dB − 16 dB).
In order to train the network well, we employ an ADAM
optimizer [28] with an initial learning rate of 0.0001 and an
exponential decay of 0.97 per 500 training iterations, and the
training datasets contain 200000 samples. On the other hand,
we evaluate the performance of the well-trained network in the
testing phase using the testing datasets with 20000 samples.
This training and testing procedure conforms to the vast

0 5 10 15 20 25 30
Layers / Ite ations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

SE
R

AMIC-Net
MsNet
ScNet
DetNet
ISD
DL-based
OAMP-Net
OAMP

Fig. 6. Symbol erro rate (SER) vs. Layers or Iterations at 12 dB in a (16,
128) system (i.e., K = 16, M = 128) using 16-QAM modulation.

majority of experimental setups in the relevant literature [20]–
[23].

B. Detection Performance

Fig. 6 illustrates the symbol error rate (SER) performance
with different numbers of Layers (Iterations) at 12 dB. We
consider a (16, 128) system (i.e., K=16, M=128), and 16-
QAM modulation is employed. From Fig. 6, ISD and DL-
based can converge at about 8 iterations, OAMP and OAMP-
Net converge at about 6 iterations, DetNet, ScNet, MsNet and
the proposed AMIC-Net converge at about 25 layers. Although
OAMP, OAMP-Net, etc., only require a few layers to achieve
respectable performance, their detection performance remains
stable as the number of layers grows. However, the proposed
AMIC-Net can achieve a lower SER than OAMP and OAMP-
Net by deepening the number of layers up to 14 and above;
this is attributed to the high level of nonlinearity and flexibility
of the data-driven approach, which endows the AMIC-Net
with higher performance bounds. Layers or iterations analysed
above are adopted in the subsequent simulation experiments.

1) Comparison between Different Activation Functions.
Figs. 7 and 8 show the SER performance of the proposed

AMIC-Net with various activation functions, such as sigS(·),
SoftSum(·) and SoftS(·), for BPSK modulation and 64-QAM
modulation, respectively. As can be seen, at 10−5 SER, the
AMIC-Net with SoftS(·) function has gain margin of about
0.3 dB and 0.6 dB over the AMIC-Net with SoftSum(·)
function at BPSK modulation and 64-QAM modulation, re-
spectively, which reveals that learnable parameters can be
added to the activation function to further increase detection
accuracy. Moreover, we can also observe that the AMIC-
Net with SoftS(·) function has a slight performance gain
compared to the AMIC-Net with sigS(·) function under BPSK
modulation, especially in low and medium SNR regions. How-
ever, under 64-QAM modulation, the AMIC-Net with SoftS(·)
function significantly outperforms the AMIC-Net with sigS(·)
function by about 2.5 dB at 10−4 SER. This implies that
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Fig. 7. SER performance of the proposed AMIC-Net with various activation
function in a (32, 64) system (i.e., K = 32, M = 64) using BPSK modulation.
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Fig. 8. SER performance of the proposed AMIC-Net with various activation
function in a (32, 128) system (i.e., K = 32, M = 128) using 64-QAM
modulation.

our designed activation function is far superior in complex
scenarios with high-order modulation. It is mainly due to the
non-saturated nature of the SoftS(·) function and its flatter
curve compared to the sigS(·) function that allows the AMIC-
Net with SoftS(·) function to avoid vanishing gradient and
to learn more efficiently in the training phase, thus making
it possible to solve the symbol detection difficulties for high-
order modulation.

2) Detection Performance Under BPSK Modulation.
Fig. 9 compares the SER performance of the proposed

AMIC-Net with that of the MMSE, ISD, DL-based, OAMP,
OAMP-Net, DetNet, ScNet and MsNet with different system
configurations under BPSK modulation. It can be seen that
when the (8, 64) system configuration is employed, all the
considered detectors (except for the DetNet, OAMP-Net and
AMIC-Net) have similar performance in terms of SER; this is
due to the fact that detectors under such conditions can take
full advantage of the channel hardening phenomenon [29],
leading to near optimal performance. Nevertheless, the pro-
posed AMIC-Net shows close performance to OAMP-Net
and obviously outperforms ISD detector by about 0.8 dB at
10−5 SER. When the number of transmit antennas increases
to 32, our proposed AMIC-Net brings great performance
improvement for ISD detector and has significant advantages
over other detectors (except for the OAMP-Net); for example,
it provides performance gains of about 1 dB at 10−5 SER and
2.7 dB at 10−4 SER compared to MsNet and MMSE detectors,
respectively.

3) Detection Performance Under High-order QAM Modu-
lation.

In Figs. 10 and 11, we investigate the performance of
the AMIC-Net, MsNet, ScNet, OAMP-Net, DL-based, ISD,
OAMP and MMSE detector under 16-QAM and 64-QAM
modulation, respectively, where two different system configu-
rations are considered, such as (16, 128) and (32, 128). From
Fig. 10, we can observe that when the system configuration
is (16, 128), the SER performance of all the considered

detectors (except the MMSE detector) is comparable and
exceeds the MMSE detector in the low SNR region. However,
when the number of transmit antennas increases to two times,
our proposed AMIC-Net shows superior performance and
outperforms MsNet and DL-based by 0.5 dB and 1.2 dB at
10−5 SER, respectively. It is clear that the AMIC-Net and
MsNet suffer a slight performance loss as the number of
transmit antennas increases due to their staircase activation
functions designed to accommodate high-order modulation
schemes. As shown in Fig. 11, the detection performance of
MsNet is badly degraded, even worse than that of the DL-
based and OAMP detector. Nevertheless, the proposed AMIC-
Net still significantly outperforms other detectors (except for
the OAMP-Net). Specifically, its performance exceeds DL-
based by 0.8 dB and 1.5 dB at 10−5 SER for 16 and 32
transmit antennas, respectively. In addition, compared to the
16-QAM modulation scheme, the AMIC-Net has almost no
degradation in detection accuracy, which is attributed to the
design of SoftS(·) function that allows AMIC-Net network to
learn more efficiently in the training process, thus overcoming
the difficulties of symbol detection due to the increase in
the order of higher modulation. In general terms, we can
also observe from these two sets of graphs that the proposed
AMIC-Net greatly enhances the performance of traditional
ISD detector and has almost the same detection accuracy as
OAMP-Net. Furthermore, compared with ISD and DL-based,
the AMIC-Net offers a broader choice of antenna ranges for
massive MIMO due to its detection performance with lower
sensitivity to system size than ISD and DL-based.

C. Complexity Analysis

Despite the superior and stable detection performance of
OAMP and OAMP-Net, they require matrix inversion oper-
ations similar to MMSE at each iteration step, resulting in
a computational complexity of O(LK3), which is at least
10 times more than that of the other detectors mentioned
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Fig. 9. SER performance comparison of different detection schemes under BPSK modulation with two system configurations.
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Fig. 10. SER performance comparison of different detection schemes under 16-QAM modulation with two system configurations.

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON.

K ×M
BPSK 16-QAM

channel

DetNet 2K2M + 2KM −K2 −K + L(14K2 + 3K) 16K2M + 8KM − 4K2 − 2K + L(56K2 + 6K)

ScNet 2K2M + 2KM −K2 −K + L(2K2 + 7K) 16K2M + 8KM − 4K2 − 2K + L(8K2 + 14K)

MsNet 2K2M + 2KM −K2 −K + L(2K2 + 8K) 16K2M + 8KM − 4K2 − 2K + L(8K2 + 16K)

ISD 2K2M + 2KM −K2 − 2K + L(2K2 + 3K) 16K2M + 8KM − 4K2 − 4K + L(8K2 + 6K)

DL-based 2K2M + 2KM −K2 − 2K + L(2K2 + 6K) 16K2M + 8KM − 4K2 − 4K + L(16K2 + 12K)

AMIC-Net 2K2M + 2KM −K2 − 2K + L(2K2 + 13K) 16K2M + 8KM − 4K2 − 4K + L(8K2 + 26K)

here except for the DetNet detector. In Table II, we broadly
estimated the computational complexity of the DetNet, ScNet,
MsNet, ISD, DL-based, and AMIC-Net based on the number
of multiplicative and additive operations. First of all, for BPSK
modulation, the overall computational complexity consists of

two main parts: 1) Initialization step, i.e., the computation of
HTy, HTH, D−1 and initial solution which involves the mul-
tiplication of the diagonal matrix D−1 with HTy, requiring
K(2M−1), K2(2M−1), K and 2K operations respectively.
2) L-iteration process, for our proposed AMIC-Net, since the
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Fig. 11. SER performance comparison of different detection schemes under 64-QAM modulation with two system configurations.

sparse matrix P has only 2K non-zero entries, the Hadamard
product of P with weight W requires 2K operations. Simi-
larly, calculating the multiplication of the sparse weight matrix
W with the concat requires 5K operations. Thus, the com-
plexity required for one iteration contains matrix-vector mul-
tiplication, vector-vector addition and other basic operations
is 2K2 + 13K operations. Plus the computational complexity
of initialization step, the total complexity of the AMIC-Net is
given as 2K2M + 2KM −K2 + 2K + L(2K2 + 13K). The
complexity comparison is presented in Table II.

From Table II, the AMIC-Net requires 8K2 − 14K fewer
operations in each iteration than the DL-based for 16-QAM,
which is attributed to the fact that the DL-based adds two
layers in the network structure to obtain lower SER. However,
the AMIC-Net has more layers than the DL-based, so the
overall complexity of the AMIC-Net is approximately the
same as that of DL-based. In addition, regardless of BPSK
modulation or 16QAM modulation, the proposed AMIC-Net
has the same coefficients at K2 and K2M as other considered
detectors (except the DetNet and DL-based), which indicates
that the AMIC-Net has comparable computational complexity
with these detectors for the same iterations. Therefore, the
additional complexity of the AMIC-Net mainly comes from
the number of iterations. Note that the complexity of the
AMIC-Net is much lower than that of DetNet. In general, our
proposed AMIC-Net shows superior detection performance
with low complexity.

Fig. 12 shows the variation of the number of learnable
parameters with the number of network layers. When the layer
dimension, which determines the number of neurons, is fixed,
the model size is determined by the number of learnable pa-
rameters and the number of network layers. As a result, it can
be seen that model-driven DL-based and OAMP-Net require
very little memory space and training time to build the models
due to the few learnable parameters, but it also limits their
ability to go for unprecedented performance improvements
and solve complex situations for massive MIMO. However,
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Fig. 12. Number of parameters at different layers.

the proposed AMIC-Net with sufficient learnable parameters
can achieve promising performance with much less training
time and memory consumption than DetNet.

V. CONCLUSION

In this letter, we proposed an efficient data-driven AMIC-
Net for massive MIMO detection. AMIC-Net is obtained
by unfolding the iterative AMIC and adopting a sparsely
connected approach. Moreover, in order to improve detection
performance under higher-order modulation, we proposed a
novel SoftS activation function, which is designed by building
a staircase function based on the softsign activation func-
tion and adding additional learnable parameters. Numerical
results demonstrate that the proposed AMIC-Net has almost
the same detection accuracy as OAMP-Net, but with at
least 10 times lower computational complexity. Furthermore,
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AMIC-Net brings significant performance gain to ISD detec-
tor with various massive antenna settings and outperforms
the existing detectors, including data-driven DetNet, ScNet,
MsNet, model-driven DL-based, and conventional algorithms
MMSE, ISD and OAMP detectors, in terms of computational
complexity and detection performance, especially in high-
order QAM modulation scenarios.
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