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HUB-GA: A Heuristic for Universal Lists
Broadcasting Using Genetic Algorithm

Saber Gholami and Hovhannes A. Harutyunyan

Abstract—Broadcasting is a fundamental problem in the infor-
mation dissemination area. In classical broadcasting, a message
must be sent from one network member to all other members
as rapidly as feasible. Although this problem is NP-hard for
arbitrary graphs, it has several applications in various fields. As a
result, the universal lists model, which replicates some real-world
restrictions like the memory limits of nodes in large networks, is
introduced as a branch of this problem in the literature. In the
universal lists model, each node is equipped with a fixed list and
has to follow the list regardless of the originator.

As opposed to various applications for the problem of broad-
casting with universal lists, the literature lacks any heuristic or
approximation algorithm. In this regard, we suggest HUB-GA:
A heuristic for universal lists broadcasting with genetic algo-
rithm, as the first heuristic for this problem. HUB-GA works
toward minimizing the universal lists broadcast time of a given
graph with the aid of genetic algorithm. We undertake various
numerical experiments on frequently used interconnection net-
works in the literature, graphs with clique-like structures, and
synthetic instances with small-world model in order to cover
many possibilities of industrial topologies. We also compare our
results with state-of-the-art methods for classical broadcasting,
which is proved to be the fastest model among all. Nevertheless
of the substantial memory reduction in the universal list model
compared to the classical model, our algorithm finds the same
broadcast time as the classical model in diverse situations.

Index Terms—Broadcasting, genetic algorithm, graph theory,
heuristic, interconnection networks, universal lists.

I. INTRODUCTION

W ITH the growth of computer networks in recent years,
various problems have received significant attention.

On the one hand, the design of interconnection networks is
pivotal in several domains, such as high-performance comput-
ing (HPC) systems [1], [2]. The overall network performance
is determined by the topology used in the interconnection
network as well as the routing scheme [3]. On the other hand,
studying the algorithms that move data around a network plays
a significant role in the scalability of HPC applications [1], [2],
and the network’s quality of service (QoS). In particular, the
time it takes to transmit a message between two communi-
cation sites, or the message delay, is one of several factors
that affect a network’s performance [4]. In this study, we
present a method to reduce the message delay in the process
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of transmission of an identical message over the network from
one computer to all other computers.

A crucial problem in this area is information dissemination,
which is the process of distributing a message throughout
a network. This problem has been shown to have several
applications in diverse fields, such as parallelism [5], mul-
tiprocessor systems [6], and malware diffusion [7], to name
a few. One of the fundamental problems in the field of
information dissemination is broadcasting, where a message
initially held by one network member must be distributed to all
network members as soon as feasible through communication
channels. In each unit of time, each informed member may
send the message to one of its uninformed neighbors via a
call. However, a node may receive messages from multiple
senders simultaneously. The process ends after informing all
network members.

Achieving optimal broadcasting in a network requires deep
knowledge of the network topology. To illustrate, not only
do network members need to be aware of the state of their
neighbors, but they should also know the origin of the mes-
sage, which is memory-inefficient. Hence, several settings of
this problem have been defined in the literature to simulate
real-world networks, i.e., messy broadcasting and the universal
list model. In the first model, when a node is informed, it
randomly selects one of its neighbors and sends the message
to that node [8], [9]. In the latter model, network vertices
are equipped with a universal list of their neighbors. When a
vertex receives the message, it follows its list and passes the
message to the vertices of its list [10]. Nevertheless, in both
models, a member needs local knowledge of its neighbors.

The problem of broadcasting with universal list has several
applications and could be applied to different networks, such
as software defined networks (SDNs) [11]. The SDN environ-
ment and its related algorithms have attracted both academia
and industrial communities in recent years [12]–[14]. In
particular, the problem of broadcasting with universal lists
has immediate applications in the update procedure of SDNs
[14], [15], which has shown to be highly effective on the
performance of the networks and their QoS [14], [16].

The emergence of machine learning has revolutionized
research in almost all areas. In this study, we focus on
the problem of broadcasting with universal list and propose
a reinforcement learning-based algorithm for this problem.
Although there are several studies for this problem, our work
differs from all of them by that we propose the first heuristic
for this problem. Our heuristic is based on genetic algorithm
which is proved to be genuinely useful for finding near-optimal
solutions for problems with huge search spaces.
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In genetic algorithm, a chromosome is a candidate solution
for the problem. In this regard, we first suggest a novel
way to encode a broadcast scheme as a chromosome. Then,
in our heuristic, we start with generating several random
chromosomes. Each chromosome is evaluated according to a
fitness function. In this study, we have designed two different
fitness functions to address two scenarios. Afterwards, we use
two operations of genetic algorithm, namely crossover and
mutation, to generate unseen solutions. In each round, the
chromosomes with higher fitness scores are more likely to be
survived to the next generation. Eventually, near optimal solu-
tions are expected to be generated over multiple generations.
The experimental results conducted in this paper demonstrate
that our approach finds optimal or near-optimal broadcast time
while being tested under divergent circumstances.

The rest of this paper is organized as follows: In Section
II, the preliminaries of this work are studied, while the
related works are discussed in Section III. We propose our
methodology in Section IV, and the numerical results are
reported in Section V. Lastly, Section VI concludes this paper.

II. PROBLEM DEFINITION

A. Classical Broadcasting

Broadcasting is a problem in which a sender, usually called
the originator, has a piece of information in a network and
wishes to inform all network members of this message. This is
achieved by placing a series of calls over the network’s com-
munications links while respecting the following conditions
[17]:

1) Each call involves exactly two members,
2) Each call needs precisely one unit of time,
3) A vertex can participate in only one call in each unit of

time,
4) And a vertex can only make a call toward its adjacent

vertices.
The process ends when all members are informed. Robledo et
al. proved that the one-to-one communication is faster than
a setup in which a sender may update all its neighbours
simultaneously [18].

Given an undirected graph G = (V,E), where
V = {v1, v2, · · · , vn} is the set of vertices, and E is the set
of bidirectional communication links, the broadcast time of a
vertex u ∈ V is the minimum time required to complete broad-
casting originating from u, and it is denoted by Bcl(u,G).
The broadcast scheme (or broadcast algorithm) of vertex u
is the series of calls that are placed in the network starting
from vertex u. The broadcast time of graph G, Bcl(G), is the
maximum value that the latter variable could take:

Bcl(G) = max
u∈V

{Bcl(u,G)} (1)

Finding Bcl(u,G) in an arbitrary graph is an NP-hard problem
[19], [20]. Unfortunately, this problem remains NP-hard in
more restricted families of networks such as bounded degree
[21] and planar and decomposable graphs [22]. The formal
definition of the decision version of this problem is as follows:

Minimum broadcast time (MBT) from [19],
Problem [ND49]:
Given a graph G = (V,E) with a subset
V0 ⊆ V , and a positive integer K. Can a mes-
sage be “broadcast” from the base set V0 to
all other vertices in time K, i.e., is there a se-
quence V0, E1, V1, E2, V2, · · · , EK , VK such that
each Vi ⊆ V , each Ei ⊆ E, VK = V , and, for 1 ≤
i ≤ K, (1) each edge in Ei has exactly one endpoint
in Vi−1, (2) no two edges in Ei share a common
endpoint, and (3) Vi = Vi−1 ∪ {v : {u, v} ∈ Ei}?

If |V0| = 1, it is the case when broadcasting starts from a
single originator, which remains NP-complete [19]. The NP-
completeness proof of the decision version is presented in [20],
and a reduction from the three-dimension matching (3DM)
problem has been utilized for the proof. Also, this problem
cannot be approximated in polynomial time for an arbitrary
graph within a ratio of 3 − ϵ for any ϵ > 0 unless P = NP
[23].

In classical broadcasting, a call is only initiated from
an informed vertex to an uninformed vertex which requires
comprehensive knowledge over the whole network for every
single vertex. In other words, once informed, a vertex sends the
message to some of its uninformed neighbors in a particular
order. This ordering is different for each originator; that is,
a vertex has to maintain n different lists according to n
possible originators. Thus, not only each vertex has to know
the originator to perform broadcasting, but it also should
maintain significantly large lists. This is inefficient in real-
world networks due to the increased message bits and the need
for larger local memory [10].

B. Broadcasting with Universal Lists

To handle the above-mentioned drawbacks, another variant
of broadcasting is introduced in the literature. Every vertex of
the network is given a universal list, and it has to follow
the list, regardless of the originator. So, once a vertex receives
the message, it transmits it to its neighbors with respect to the
fixed ordering given in the list. There are three sub-models
defined using universal lists:

• Non-adaptive model: Once a vertex u receives the
message, it will re-transmit it to all the vertices on its
list, even if u has received it from some of its neighbors.
The broadcast time of a graph G following this model is
denoted by Bna(G).

• Adaptive model: Once informed, a vertex u will send
the message to its neighbors according to its list, but it
will skip the neighbors from which it has received the
message. The broadcast time of a graph G following this
model is denoted by Ba(G).

• Fully adaptive model: Once a vertex u gets informed,
it will send the message to its neighbors according to its
list, but it will skip all informed neighbors. The broadcast
time of a graph G following this model is denoted by
Bfa(G).

There could be many unnecessary calls under the non-
adaptive model, in which the message is returned to the sender.



90 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 1, FEB 2023

It makes this model the slowest among all while having the
best space complexity as the list is the only thing that should
be maintained. Although the number of unnecessary calls
drops in the adaptive model compared to the non-adaptive
model, many calls might still be unnecessary since only the
senders are avoided under this model. Hence, a vertex u may
transmit the message to one of its neighbors v, which is
already informed but has not transmitted the message to u yet.
Furthermore, to keep track of the nodes that the message has
been received from, each vertex requires additional storage.
Lastly, in the fully-adaptive model, a vertex skips all of its
informed neighbors. This accelerates the broadcast process
compared to the adaptive model. Similar to the classical model,
no unnecessary call is made following this model. It is proved
that for any graph G [10], [15]:

Bcl(G) ≤ Bfa(G) ≤ Ba(G) ≤ Bna(G) (2)

Consider graph G = (V,E). A broadcast scheme for the
non-adaptive, adaptive, or fully adaptive model can be viewed
as a matrix σn×∆, where row i of σ corresponds to an
ordering of the neighbors of vertex vi. Assuming this vertex
has degree di, the cells σ[i][di+1], σ[i][di+2], · · · , σ[i][∆] will be
Null, where ∆ = max{di : 1 ≤ i ≤ n}. Also, denote all
possible schemes for a graph G by Σ(G). When it is clear
from the context, we may omit the subscript (G).

Let M be one of the three models using universal lists
(M ∈ {na, a, fa}) and fix a graph G. For any broadcast
scheme σ ∈ Σ, Bσ

M (u,G) is the time steps needed to inform
all the vertices in G from the source u while following the
scheme σ under model M . Moreover, the broadcast time of a
graph G under model M with scheme σ is defined as the
maximum Bσ

M (u,G) over all possible originators. Finally,
BM (G) is the minimum Bσ

M (G) over all possible schemes:

Bσ
M (G) = max

u∈V
{Bσ

M (u,G)}

BM (G) = min
σ∈Σ

{Bσ
M (G)}.

(3)

In terms of the space complexity, the relations in (2) are
reversed [15]. To illustrate, in the non-adaptive model, the list
is the only data structure that should be maintained that needs
at most

∑
1≤i≤n di space. In the adaptive model, in addition

to the above lists, each vertex vi should maintain a set of
size di in order to keep track of the vertices that have sent
the message to vertex vi. Therefore, the required space is at
most 2 ×

∑
1≤i≤n di. This is the same for the fully-adaptive

model, but those sets store the informed neighbors, which
should be updated after each time unit. On the other hand, in
the classical model, firstly, those lists differ according to every
possible originator. Thus, the required space is n×

∑
1≤i≤n di.

Secondly, the message bits increase since the identity of the
originator should be carried on with the message.

In summary, in universal lists models, the space complexity
is O(|E|), while in the classical model, it requires O(|V |·|E|).
Hence, the choice of a suitable model heavily depends on the
available resources and the requirements of the network.

TABLE I
AN ORDERING OF VERTICES FOR THE GRAPH OF FIG. 1.

Sender Ordering of receivers
1 3 2
2 3 1 4
3 2 4 1 5
4 3 2 6
5 6 3
6 5 4
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(b) Fully-adaptive model
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Fig. 1. (a) Graph G, (b) Broadcast scheme of G under fully adaptive
model: Bσ

fa(G, 3) = 3, (c) Broadcast scheme of G under adaptive model:
Bσ

a (G, 3) = 4, and (d) Broadcast scheme of G under non-adaptive model:
Bσ

na(G, 3) = 5.

C. An Example

Table I shows an arbitrary broadcast scheme σ for the graph
given in Fig. 1(a). Suppose vertex 3 is the originator. Now, the
broadcast processes starting from this vertex under all three
models are described:

• Fully-adaptive: At time t = 1, vertex 3 sends the
message to vertex 2 according to its list. At time t = 2,
vertex 3 sends the message to vertex 4, and vertex 2 (by
skipping the informed vertex 3) will send the message to
vertex 1. At time t = 3, the rest of the vertices on the list
of vertices 1 and 2 are already informed; thus, vertices 1
and 2 will remain idle. Also, vertex 3 will skip vertex 1
(since it is informed) and send the message to vertex 5,
whereas vertex 4 will skip vertices 3 and 2 from its list
and send the message to vertex 6. Since all 6 vertices are
informed, Bσ

fa(G, 3) = 3. See Fig. 1(b).
• Adaptive: The broadcast process is the same for time

units t = 1, 2. However, at time t = 3, vertex 1 sends the
message to vertex 3, while vertex 2 sends the message to
vertex 4 because vertex 2 has not received the message
from vertex 4. Also, vertex 3 sends the message to vertex
1 for the same reason, whereas vertex 4 is the only
vertex that informs an already uninformed vertex 6. Since
vertex 5 is still uninformed, the process must continue
for another time unit t = 4, in which vertex 3 and 6
hit the same target (vertex 5) which ends the process:
Bσ

a (G, 3) = 4. See Fig. 1(c).
• Non-adaptive: This model is the slowest model yet the
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TABLE II
AN OPTIMAL BROADCAST SCHEME FOR THE GRAPH GIVEN IN FIG. 1

UNDER FULLY-ADAPTIVE MODEL.

Sender Ordering of receivers
1 2 3
2 1 4 3
3 4 1 2 5
4 6 3 2
5 6 3
6 4 5

easiest to follow because no vertex is being skipped.
Therefore, once a vertex gets informed at time t, it will
send the message to its neighbours at time t+1, t+2, · · · ,
following its list given in σ. For instance, since vertex 3
is the originator who has the message at time t = 0, it
will pass the message to vertices 2, 4, 1, and 5 at time
units t = 1, 2, 3, 4, respectively. Also, since vertex 2 is
informed at time t = 1, it will send the message to vertex
3,1, and 4 during time units t = 2, 3, 4, respectively.
Following this process for other vertices is the same,
therefore is omitted. Eventually, this process ends at time
unit 5: Bσ

na(G, 3) = 5. See Fig. 1(d).

Two interesting points could be highlighted from this exam-
ple: Firstly, while a broadcast scheme σ might be optimal for
a particular model, it could be inefficient under another model.
For instance, Table I is optimal under model fa and vertex 3 as
the originator, whereas it is not optimal under model na and
the same originator. Secondly, a broadcast scheme could be
tailored for a particular originator, whereas it is not efficient
once other vertices are selected as the message originator. For
example, by following Table I from vertex 6 as the originator,
the fully-adaptive broadcasting will be finished in four time
units. Even though it is possible to come up with another
scheme that reduces this time to 3. The tough task is to design
a scheme σ′ that yields a broadcast time of 3 from not only
vertex 6 but all vertices of this graph under the fully-adaptive
model. This optimal broadcast scheme is given in Table II.
Following this scheme Bσ′

fa(G) = 3. Also, Table III gives
an optimal broadcast scheme under the adaptive model with
Bσ′

a (G) = 3, whereas Table IV is an optimal scheme under
the non-adaptive model with Bσ′

na(G) = 4 (achieving the non-
adaptive broadcast time of 3 for this graph is impossible).

Guessing an optimal scheme out of many possible solutions
is an impossible task, even for a small graph. Besides, our
results demonstrate that simple heuristics, such as sorting the
lists based on the degree, are not effective as well. In this
study, we propose a heuristic based on the Genetic algorithm
that tackles this problem. In particular, our heuristic tries to
find the minimum Bσ

M (G) over several possibilities of σ for
a given graph G under model M ∈ {na, a, fa}.

III. RELATED WORKS

We divide this section into three categories: studies related
to the classical broadcast problem, related works of the uni-
versal lists model, and problems and challenges of the genetic
algorithm.

TABLE III
AN OPTIMAL BROADCAST SCHEME FOR THE GRAPH GIVEN IN FIG. 1

UNDER ADAPTIVE MODEL.

Sender Ordering of receivers
1 3 2
2 4 3 1
3 5 1 2 4
4 2 3 6
5 3 6
6 5 4

TABLE IV
AN OPTIMAL BROADCAST SCHEME FOR THE GRAPH GIVEN IN FIG. 1

UNDER NON-ADAPTIVE MODEL.

Sender Ordering of receivers
1 2 3
2 4 3 1
3 1 5 2 4
4 3 6 2
5 6 3
6 4 5

A. Classical Broadcasting

Since the classical broadcast problem is a fundamental
NP-hard problem, there are three general directions to follow.

Firstly, some researchers designed exact approaches. This
includes a dynamic programming algorithm suggested in [24]
and the ILP models suggested in [25]. Currently, the ILP
method suggested in [25] is believed to be the best exact
method. These exponential methods can only effectively solve
this problem for networks with up to around 50 nodes in a
reasonable amount of time, making them unsuitable for use in
real-world networks.

Secondly, some researchers tried to solve the problem
optimally for a particular family of networks. Slater et al. [20]
made the first step in this category and suggested a linear
algorithm for trees. Other researches include grid and tori
[26], cube connected cycle [27], and shuffle exchange [28].
Later on, more algorithms for non-trivial topologies such as
unicyclic graphs [29], fully connected trees [30], and tree of
cycles [31] were developed, to name a few.

Finally, there is a long list of heuristics and approximation
algorithms for this problem. Several heuristic [25], [32]–[35]
and approximation algorithms for arbitrary graphs [36]–[38],
or a specific family of graphs [39], [40] have been proposed
in the literature. The algorithm with the best approximation
ratio is proposed in [41] which guarantees a ( log |V |

log log |V | )-
approximation for this problem. For survey papers, we refer
to [17], [42]–[44].

B. Broadcasting with Universal Lists

Slater et al. [20], who informally posted the problem of
broadcasting with universal lists, established Bcl(T ) = Ba(T )
for any tree T . However, in [45], where the authors proposed
an algorithm for optimal broadcasting in trees under the
adaptive model, the first explicit statement of the problem
of broadcasting with universal lists was provided. In order to
construct the optimal broadcast scheme for cycles and grids
under both models, Diks and Pelc [10] separated between
non-adaptive and adaptive models. Additionally, they provided
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TABLE V
NOTATION TABLE.

Variable Definition
G An undirected connected graph
V Set of vertices of graph G
E Set of edges of graph G
n Number of vertices in graph G

u ∈ V A vertex in graph G
Bcl(u,G) Classical broadcast time of vertex u in graph G
Bcl(G) Classical broadcast time of graph G

na Non-adaptive broadcasting with universal lists
a Adaptive broadcasting with universal lists
fa Fully-adaptive broadcasting with universal lists

M ∈ {na, a, fa} Model of broadcasting with universal lists
di Degree of vertex i
δ Minimum degree of graph
∆ Maximum degree of graph

Σ(G) All possible schemes for graph G
σn×∆ A broadcast scheme with n rows and ∆ columns

Bσ
M (u,G) Broadcast time of vertex u following σ under M
Bσ

M (G) Broadcast time of graph G following σ under M
BM (G) Broadcast time of graph G under M
g(i) Gene i, an ordering of neighbors of vertex i
|p| Population size

f1(σ) Fitness function, maximum broadcast time
f2(σ) Fitness function, average broadcast time
K Number of participants of a K-way tournament
cp Crossover point
p1 A chromosome: Parent number 1
c1 A chromosome: Offspring number 1

g(i)(pj) The ith gene of parent j
St Stability variable

upper bounds for complete graphs and tori under both adap-
tive and non-adaptive models. Also, the fully-adaptive model
and its applications is discussed in [15], where the optimal
broadcast scheme for trees, grids, and cube-connected cycles,
in addition to a tight upper bound for tori, are provided.

In [46], the non-adaptive upper bounds of tori were en-
hanced. Later, Kim and Chwa [47] developed non-adaptive
broadcast algorithms for paths and grids. They also developed
upper bounds for complete graphs and hypercubes under non-
adaptive models. The optimal broadcast time of hypercubes
under the fully-adaptive model is established in [11]. Also, a
general upper bound on arbitrary graphs as well as a tight
lower bound for trees under the non-adaptive model were
presented in [48]. They also suggested a polynomial-time
algorithm for determining Bna(T ) for any tree T .

C. Genetic Algorithm

Genetic algorithm (GA) has attracted an enormous amount
of attention from researchers after being proposed by J. H.
Holland [49]. The studies in this domain could be divided
into several categories.

Enhancing the algorithm: Several researchers have tried
to enhance the GA itself by proposing different approaches
for various operations of GA, such as crossover [50]–[52],
mutation [53], selection [54]–[59], or the stopping criteria [60].
For survey papers, we refer to [61]–[66].

Graph-related problems: GA helped researchers to de-
velop heuristics for different problems. As far as graph-
related problems are concerned, the graph coloring problem
and some solutions working with GA are discussed in [67],
[68], while some algorithms for the graph partitioning with

GA are proposed in [69], [70]. Several algorithms for max-cut
[71], max clique [72], [73], and max-cut clique [74] problems
are proposed in the literature. Palmer and Kershenbaum [75]
came up with a novel idea for representing trees in GA and
showed that the proposed encoding could be effective for
several problems.

Routing: As mentioned in [76], GA has been used in
various network routing protocols. In particular, in [77], a GA
approach for the shortest path problem under two different
settings has been proposed. Also in [78], the network design
problem with the goal of optimizing vehicle travel distance has
been studied with GA, while unmanned aerial vehicle (UAV)
networks [79], and energy-efficient resource allocation [80]
have been studied using GA. digital data service (DDS), which
is a famous communication service, is studied in [81] where
the authors proposed a GA for the Steiner-tree problem that
is tightly connected to the design of DDS networks.

In [82] the performance of several routing algorithms in
wireless sensor networks (WSNs) are compared, such as
GA, Dijkstra algorithm, ad hoc on-demand distance Vector
(AODV), GA-based AODV routing (GA-AODV), grade dif-
fusion (GD) algorithm, directed diffusion algorithm and GA
combined with the GD algorithm. They have also studied the
performance of those algorithms in the presence of faulty
nodes and found out that combining GA with other algorithms
is usually useful. In [83], efficient data transmission through
WSNs with multiple objective genetic algorithm is studied by
proposing a compressive sensing based algorithm. Multicast
routing problem and an algorithm based on GA is suggested
in [84]. A dynamic source routing protocol in mobile ad
hoc network (MANET) is suggested in [85] which utilizes
genetic algorithm-bacterial foraging optimization (GA-BFO).
The routing problem in MANETs is also discussed in [86]
using GA, considering energy consumption as one of the
foremost vital limitations in MANETs. Furthermore, the ef-
fectiveness of GA-based routing solutions in vehicular ad-hoc
networks (VANETs) is discussed in [87]. Also, QoS routing
using GA in VANETs [88] and WSNs with applications in
smart grids [89] is a well-studied problem in the literature.

In [90], the goal is to enhance energy efficiency with the
lifespan of sensor nodes. They proposed an energy effective
routing protocol, low energy adaptive clustering hierarchy
(LEACH) in addition to an optimization GA. The authors of
[91] proposed a GA for routing in WSNs with the aim of
minimizing the energy consumption. The problem of routing
in energy harvesting-wireless sensor networks (EH-WSN) has
been studied in [92] using GA. Prolonging the lifetime of
nodes by reducing energy consumption in WSNs is studied
in [93] where GA has been used for the routing algorithm.

Broadcasting: In the area of broadcasting, Hoelting et al.
proposed a GA for the problem of minimum broadcast time
(MBT) [94]. They tested their algorithm for random graphs
on 10 to 500 nodes, as well as three contrived sets of networks
on 40, 80, and 120 nodes. They compared their results with
the approximation matching (AM) algorithm presented in [24],
and claimed that their algorithm outperforms AM, particularly
considering the contrived networks. Moreover, Hasson and
Sipper [4] proposed ACS: an ant colony system for the MBT
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problem. They compared the performance of their algorithm
with that of [94] and AM [24] for random graphs on 15 to
250 nodes and edge probability in the range of (0.05− 0.1).
In most cases, the achieved broadcast time was better or the
same, while the running time was enhanced compared to both
algorithms.

More recently, Lima et al. [95] proposed a metaheuristic
algorithm for the MBT problem with GA, namely BRKGA.
They suggested various versions of their algorithm while
combining it with different decoders, such as first receive first
send (FRFS) or an integer linear programming (ILP) method.
They compared their results with various methods such as
Tree Block [25], NTBA [34], NEWH [35], and ACS [4] for
several graph families of up to 1024 nodes. Their results show
that BRKGA is able to outperform all counterpart heuristics
for the MBT problem, while it can also be an alternative for
larger networks where the exact methods cannot be applied.
Finally, we should point out that the goal of [4], [94], [95] is
to minimize the classical broadcast time of a particular vertex
under the classical model, not to optimize the broadcast time
of all network members at the same time.

IV. METHODOLOGY

In this section, we propose a novel solution to the problem
of broadcasting with universal lists. We look at this problem
as follows: Assuming Σ as the search space, the goal is to
find a σ ∈ Σ that minimizes an objective function, i.e. the
broadcast time. In the following proposition, it is argued that
the size of the search space skyrockets as the graph size
grows. Subsequently, a thorough exploration of state space is
impossible.

Proposition 1. For a graph G on n vertices, where the degree
of vertex i is di, the size of search space for the problem of
broadcasting using universal list is as follows:

|Σ(G)| =
n∏

i=1

di∑
j=0

(

(
di
j

)
× j!). (4)

Proof. Note that, as mentioned in [10], a solution to the
problem of broadcasting with universal lists may include some
neighbors of a particular vertex, not all of them, necessarily.

For a vertex i with di neighbors, a valid universal list may
contain any number of its neighbors ranging from 0 to di. If
it includes j neighbors, there are

(
di

j

)
different ways to select

those neighbors, while in each case, the selected neighbors
may be arranged in j! different ways. Also, this is true for
each vertex 1, 2, · · · , n.

Observe that the function given in (4) grows at least as
fast as Ω

(
(δ!)n

)
, when δ is the minimum degree of the

graph, that is, |Σ(G)| is exponential. The complexity of the
same function and its importance are studied in [96] under
the classical model. All in all, since the size of the search
space is exponential, evolutionary computing could be useful
in finding an optimal solution out of many possible solutions
with a high probability [61]. Genetic algorithm is a particular
class of evolutionary algorithms that has been shown to be

Algorithm 1: HUB-GA
Generate random population;
Calculate fitness score;
while not converged do

Crossover;
Mutation;
Calculate fitness score;
Acceptance;

end
return The best chromosome

effective in finding optimal solutions for complex problems
in various domains such as biology, engineering, computer
science, and social science.

Genetic algorithm (GA) is a population-based search algo-
rithm [65] that uses the idea of survival of the fittest [61],
originally inspired by the Darwinian theory of evolution [66].
In this algorithm, every solution to the problem at hand
corresponds to a chromosome, while every parameter is a
gene [64]. The fitness of each individual is evaluated with
a fitness function. In order to improve the quality of solutions,
the best solutions are selected for reproduction using two
main operations of GA: Crossover and mutation. GA tries to
find a good solution by repeating this process over multiple
generations.

In this study, we propose HUB-GA: A heuristic for universal
list model of broadcasting with genetic algorithm. The general
routine of HUB-GA is given in Algorithm 1, whereas Fig. 2
portrays how this framework is tailored according to our
problem. Note that the most crucial task for developing a GA
heuristic for a problem is to encode the problem properties
into chromosomes and genes [77], [84]. In the rest of this
section, the detail of the proposed algorithm is explained for
the problem at hand.

A. Genes, Chromosomes, and Population

Consider a graph G with n vertices and denote the degree
of vertex i by di. An arbitrary ordering of the neighbors of
vertex i represents a gene i, g(i), with size at most di. A
chromosome is a collection of n genes: g(1), g(2), · · · , g(n),
each corresponding to an ordering for a particular vertex.
Table I portrays an arbitrary chromosome for the graph given
in Fig 1(a), where row i of the matrix corresponds to gene
g(i). Using our notation, a chromosome is a matrix σ with n
rows (or n genes) and ∆ columns. We need to stress the fact
that a chromosome is different from an adjacency list of the
graph. This is due to the fact that a gene does not include all
neighbors of a particular vertex, necessarily, as opposed to the
adjacency list.

In GA, a chromosome is a possible solution for the problem,
meaning that any σ ∈ Σ may be an optimal broadcast
scheme. However, guessing the correct solution out of too
many possible solutions is nearly impossible. Subsequently,
the first step of HUB-GA is to generate several solutions
randomly, which is called the first population. The main goal
of the initialization step is to distribute the solutions in the
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Fig. 2. A schema of our methodology.

search space as evenly as possible to increase the diversity of
the population and have a better chance of finding promising
regions [64]. Consequently, the bigger the size of the first
generation, the higher the chance of finding a near-optimal
solution in early iterations. The computational cost, however,
surges as the size of the population grows. Therefore, choosing
a reasonable size for the first population is a trade-off between
cost and accuracy. In our experiments, we study the effect of
population size, or |p|, on the performance of our algorithm.

Choosing a suitable encoding for genes, chromosomes, and
population is crucial since they have to abide by some funda-
mental rules. For instance, a gene has to be mutable. Therefore,
having modified the content of a gene, another valid solution
must be generated. Moreover, it must be possible to create new
and unseen solutions using two different chromosomes. Also,
as mentioned in [75], it should be easy to go back and forth

between the graph’s encoding and the graph itself in a more
conventional form suitable for evaluating the fitness function
(which is called the encoding/decoding process). Lastly, the
encoding should possess locality; that is, small changes in the
encoding should result in small changes in the fitness score
[75]. This will help GA to function more effectively. This
study’s novel encoding allows us to respect these ground rules
without violating the problem’s definitions.

B. Fitness Function

The key element of any GA-based heuristic for a problem
is the definition of its fitness function. The complexity of
calculating the fitness function usually determines the com-
plexity of the algorithm. The fitness function, f(σ), evaluates
the fitness of a chromosome σ, and it must be designed
in a way that it evaluates the optimal solution as the best
one. The ultimate objective of GA is to find a chromosome
σ which minimizes/maximizes a predefined fitness function
f(σ). We consider two different fitness functions in this
study, as discussed in what follows. In both cases, a better
chromosome has a smaller fitness score. Hence, the ultimate
objective is to minimize the fitness function.

1) Broadcast time: For the first case, the fitness function is
considered to be the broadcast time of the graph using σ as
the universal list:

f1(σ) = max
u∈V (G)

{Bσ
M (u,G)} = Bσ

M (G). (5)

To evaluate f1(σ), the broadcast process is simulated start-
ing from every originator u, using σ as the universal list under
a model M . No need to mention that this is done in parallel
for each originator. Then, the maximum broadcast time over
every originator is considered as f1(σ). Therefore, in this
case, the aim is to minimize the maximum broadcast time.
Eventually, we expect to find a scheme in which, starting from
any originator, the broadcast time is quite short. Ideally, f1(σ)
approaches BM (G), since BM (G) = minσ∈Σ{Bσ

M (G)}.
The reason for defining this function is quite obvious. In

recent years, finding the broadcast time of a particular family
of graphs has been an ongoing research question [20], [30],
[39], [40], particularly under the universal list model [10],
[45]–[48]. We claim that using the proposed algorithm, we
can tackle this problem in two different ways: Firstly, our al-
gorithm generates the actual broadcast scheme that minimizes
its fitness function. The scheme could be used as a foundation
for proposing general upper bounds on the broadcast time of a
particular family of graphs. Secondly, the reachability of some
lower bounds could be questioned with the results provided
by this algorithm. For instance, based on our experimental
results, we conjecture that the broadcast time of a complete
graph Kn on n vertices under the fully-adaptive model should
be strictly greater than that of the classical model. This idea
could even be proved by generating all possible schemes for
a particular Kn and calculating their f1 fitness score, which
is out of scope for this study. On the other hand and by using
f1 as the fitness function, the network manager will be able
to minimize the maximum broadcast time of any entity of the
network, which is shown to be useful in different applications
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such as wireless sensor networks [97], industry 4.0 [98], video
packet distribution in vehicular ad-hoc networks [99], robotics
[100], satellite link topology [101], and age of information
performance [102].

2) Average broadcast time: In the second case, the average
broadcast time of the network is used for the fitness function:

f2(σ) =

∑
u∈V (G) B

σ
M (u,G)

n
, (6)

in which n is the number of vertices of graph G. Evaluating
f2(σ) is quite similar to that of f1(σ), except that instead of
taking the maximum broadcast time of each originator, we use
the average broadcast time. Using this fitness score, we aim
to find a scheme σ for which the behavior of all originators
is fairly optimal in terms of broadcasting under model M .

The definition of the second function fits the environment of
this study even better. To illustrate, by making a small change
in a chromosome σ, the value associated with f2(σ) is more
likely to change compared to f1(σ). This important feature,
previously referred to as locality, could help in creating a more
discoverable search space. Subsequently, the GA is anticipated
to perform better in minimizing f2 in general.

As an application concerning f2, consider a communica-
tion network containing a clique and several paths attached
to its nodes. In this network, the furthest nodes from the
clique cannot inform all members quickly, nevertheless of the
scheme. Using f1 for this network means paying attention
only to those at the furthest distance from the clique members.
Consequently, the broadcast time of several vertices will not be
minimized, even though it could be important for the network
provider. Using f2, on the other hand, will result in a scheme in
which the behavior of every originator is objectively optimal.

C. Crossover

There are two basic GA operators; the first one is Crossover,
where two chromosomes are selected as the parents (selection
phase), and then two children (called offsprings) are generated
by crossover. Each of these steps is described hereafter.

In nature, the fittest individuals are more likely to get food
and mate [64]. Inspired by this fact, the GA gives a higher
chance to fitter chromosomes to be selected as the parents.
There are several solutions proposed for this phase, a.k.a.
selection. For instance, one solution is to use the Roulette
Wheel method [62], where the chance of selecting a chro-
mosome is proportional to its fitness score. Other well-known
selection operations include, but are not limited to, Boltzmann
selection [55], rank selection [56], fuzzy selection [57], and
fitness uniform selection [58].

In this study, we used the famous K-way Tournament selec-
tion method [59]. In this method, K individuals are selected
from the population randomly. Then, the fittest chromosome,
according to its fitness function, will be selected for the role of
the first parent. The same procedure is repeated for selecting
the second parent. This method is proved to be genuinely
useful, particularly when the fitness score is a minimization
function. Moreover, this method is very efficient for parallel
computing [54]. In this paper, K is fixed to 4 as a commonly
used value [54], [59].

Once parent 1 (p1) and parent 2 (p2) are selected, a random
integer is chosen from the range [1, n) as the crossover point,
denoted by cp. Afterward, two new off-springs (c1 and c2) are
generated as follows:

c1 = g(1)(p1), · · · , g(cp)(p1), g(cp+1)(p2), · · · , g(n)(p2)
c2 = g(1)(p2), · · · , g(cp)(p2), g(cp+1)(p1), · · · , g(n)(p1),

(7)

in which g(i)(pj) is the ith gene of parent j. Indeed, the first
child contains the first cp genes of p1, while other genes come
from p2. This will be the other way around for the second
child. This method is called single-point crossover, which is
one of the most common methods in addition to the double-
point method [63]. To name a few other methods, three parents
crossover [50], uniform crossover [51], and Masked crossover
[52] could be mentioned.

We keep making new off-springs until the initial size of
the population is doubled. Note that off-springs still are valid
solutions since no new vertex is added to the neighborhood of
a sender. However, their fitness function must be calculated in
the next iteration.

D. Mutation

The second operator of GA is mutation, in which a gene
of an offspring is changed randomly with a small probability.
The mutation operator preserves population diversity by intro-
ducing another level of randomness [64]. Also, this operator
prevents the solutions from becoming similar and increases
the probability of avoiding local solutions in the GA [64].

In our algorithm, the ordering of a gene is shuffled when it
is supposed to go over mutation. Although mutation prevents
GA from falling into a local optimum, there is a big chance
of losing the best chromosome. Therefore, we performed two
actions for mutation:

1) Decreasing mutation probability: The chance of per-
forming mutation reduces over time. This is because in
early iterations, the goal is to explore the state space
as much as possible, which is achieved by mutation.
However, during last iterations, the algorithm is likely
to reach convergence with a relatively good solution.
Therefore, mutation cannot be useful anymore.

2) Elitism: When a gene of an offspring is changed by mu-
tation, the best solution is likely to be lost. Using elitism
[53], a copy of the original individual is maintained
before changing it. This copy will be carried out to the
next generation, being treated as a normal chromosome.
The goal is to prevent such solutions (elites) from being
degraded. This method may accelerate the convergence
of GA dramatically [53]. Also, as mentioned in [64],
the reliability of GA heavily depends on the process of
maintaining the best solutions in each generation. Using
elitism, the chance of maintaining a good solution gets
higher.

In our implementation, at early iterations, each gene could
go over mutation with a 1% chance, and this number decreases
smoothly over time. When a mutation is supposed to happen,
a copy of the original chromosome is kept in the population.
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Fig. 3. The process of selection, crossover, and mutation in HUB-GA.

Fig. 3 shows the three main operators of HUB-GA, i.e.
selection, crossover, and mutation. In this Figure, Parent 1 (p1)
and Parent 2 (p2) are the same chromosomes as the ones given
in Table I and Table II for the graph displayed in Fig. 1(a).
Assume p1 and p2 are selected through a 4-Way tournament
among other candidates. By performing crossover with cp = 2
on p1 and p2, two new offsprings, c1 and c2, are generated.
Each gene of c1 and c2 may go through mutation with a small
probability, resulting in a random shuffle in g(3) of c1.

E. Acceptance

Having generated several off-springs using crossover and
mutation, the population size escalates. To keep the current
generation manageable with limited resources, one possible
solution is to retain the original population size by allowing
a fixed number of chromosomes to survive into the next
generation.

In order to do so, we used a 4-way tournament as described
earlier in Section IV-C. Thus, as long as the size of the next
generation has not reached the original size, four random
chromosomes are selected from the current generation, and
the one with a better fitness score will survive into the next
generation. This method gives a higher chance to the fittest
individuals to survive, while any chromosome could be carried
out to the next generation.

F. Stopping Criterion

Several conditions are discussed in the literature regarding
the best time to terminate the execution of GA [60], [61].
Each criterion has its own advantages and disadvantages. For
instance, the most trivial way is to stop exploring when a fixed
number of generations have been generated or a predefined
time limit is exceeded. Although the idea is very simple
and easy to implement, choosing a number for this purpose
is not straightforward. Another well-known solution is to
stop the execution when the lower bound of the problem
is met. Utilizing this condition could be quite effective in
many problems. In the case of broadcasting, however, there
are two obstacles. Firstly, calculating the lower bound on

BM (G) could be as difficult as guessing Bcl(G) (See Eq.
(2)), which is an NP-hard problem [19]. Secondly, to the best
of our knowledge, there is no solution to evaluate the lower
bound’s reachability for a particular graph. Therefore, if the
lower bound is unachievable, the GA never terminates.

In this study, we employed an adaptive stopping criteria.
The execution of HUB-GA terminates if, after St iterations, the
fitness score of the fittest individual does not change. Thus,
the algorithm can avoid unnecessary reproductions once a local
(and possibly global) optimum has been reached. Nonetheless,
choosing the parameter St remains a confusing puzzle. There-
fore, we studied the impact of changing parameter St, a.k.a the
stability variable, on the performance of our algorithm. Once
the stopping criterion is met, the best chromosome (solution)
from the current generation as well as its fitness score is
returned as the final answer.

G. Remarks

The advantages of our method are as follows:
1) The first heuristic for this problem: As mentioned

in Section III, there are several heuristics for classical
broadcasting, such as [32], [33], even some researchers
consider GA [94], [95], or other evolutionary algorithms
[4]. However, to the best of our knowledge, there is
no similar study on the problem of broadcasting with
universal lists.

2) Working for arbitrary graphs: the proposed frame-
work takes an arbitrary graph as the input and finds
a nearly optimal broadcast scheme for that particular
graph, that is, the structure of the graph and its features
are not utilized in any step of HUB-GA. This is a
huge advantage since all upper bounds provided in the
literature (such as [10], [11], [15], [46]–[48]) are tailored
for a specific family of networks.

3) Working for any model under universal lists: our
heuristic could minimize its objective function (either f1
or f2) under all three models: non-adaptive, adaptive,
or fully adaptive. To the best of our knowledge, this
novelty separates HUB-GA from several related works
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considering a specific model; either classical [4], [32],
[33], [36]–[40], [94], [95], non-adaptive [10], [46]–[48],
adaptive [10], [45], or fully-adaptive [11], [15].

4) Possibility of defining various fitness scores: the
proposed framework can accept any fitness score defined
by the user. For instance, to minimize the broadcast time
of a particular vertex u under model M , the user can
define f3(σ) = Bσ

M (u,G). Moreover, more complex
fitness functions such as f4(σ) = f1(σ) × f2(σ) could
be defined according to the requirements of the network
manager. This useful feature is not considered in other
related works, such as [4], [84], [94], [95].

5) Efficiency: the proposed framework is quite efficient in
terms of run time. Our numerical results show that it
could find optimal (or near-optimal) solutions in a few
seconds for graphs with hundreds of nodes. Considering
the limited resources used in this study, we believe
this work is scalable to a good extent for real-world
applications.

6) Providing the broadcast scheme: As opposed to
several studies which propose closed formula upper
bounds for some graphs alongside a descriptive broad-
cast scheme (such as [10], [15], [45]–[48]), our method
generates the actual broadcast scheme. This is quite
useful for real-world scenarios. Also note that the gen-
erated schemes could be used to prove many theoretical
aspects related to this problem. Moreover, the process of
encoding/decoding of chromosomes does not require any
knowledge on the topic, in contrast with other related
works such as the ones suggested in [84], [94], [95].

V. EXPERIMENTAL RESULTS

To show the efficiency of the proposed method, we have
conducted several computer simulations. In this section, each
of which will be discussed in detail. Table VI specifies the
aims and scopes of each experiment.

A. Experiment 1

This experiment studies the impact of our algorithm’s pa-
rameters on its performance. There are two major parameters
in our algorithm:

• Population size |p|: As the size of the initial population
increases, the chance of finding a better solution in early
iterations gets higher. However, the computational cost
associated with the algorithm increases as well. There-
fore, choosing the initial size of the population plays an
important role in the algorithm’s performance.

• Stability St: The stopping criterion of the proposed
algorithm is its stability over the last St iterations; that is,
if the fitness score of the fittest individual does not change
over St generations, the algorithm stops and returns the
best solution. Choosing an appropriate number for St is a
trade-off; the higher the value of St, the higher the chance
of finding optimal solutions, and the longer it takes for
the algorithm to terminate.

Fig. 4. Karate club network [103], used in Experiment 1.

For this experiment, the Karate club network [103] has
been selected with 34 nodes and 78 edges (See Fig. 4). We
run our algorithm under all three models (na, a, fa) while
changing those parameters. The parameter |p| increases from
10 to 500, while we let St change in the range of 1 to 15.
The performance of the algorithm will be measured based on
4 criteria: The broadcast time (f1), the run time required for
calculating f1, the average broadcast time (f2), and the run
time required for calculating f2. The results of this experiment
are reported in Figs. 5 and 6.

By analyzing the results given in Fig. 5, several interesting
points could be drawn. Firstly, by increasing the population
size, the chance of minimizing fitness functions (either f1 or
f2) improves. But the slope of this improvement lessens for
higher values of |p|. In other words, increasing the population
size up to a certain value, such as 200, could be beneficial
for the algorithm, but higher values of |p| seem to be almost
ineffective, while they need more time to be processed. For
instance, we compare the performance of fa model when |p|
increases from 200 to 500 considering f2: Although the run
time increases by 140%, the fitness score improves only by
4%. These numbers are 434% and 3.5% under adaptive, and
146% and 3.6% under the non-adaptive model, respectively.
Therefore, based on this experiment, we set the value of |p|
to 200 for the rest of this study.

Secondly, by comparing Fig. 5(a) and (c), it is clear that
the average broadcast time (f2) could be improved more,
provided the fact that the algorithm has enough resources (time
and computational power). Whereas decreasing the broadcast
time (f1) seems to be a very difficult task, particularly once
f1 has reached a local minimum. This is due to the nature
of the search space associated with f1 and f2. For f1, the
search space has drastic steps, usually not very close to each
other (since a very small change in σ might not affect f1(σ)
sometimes). However, fitness function f2 has a search space
with a lot of small steps since by a slight modification in σ,
f2(σ) is expected to change, even for a small amount.

Thirdly, with a quick look at Figs. 5(b) and (d), it is
concluded that the Fully-adaptive model is the quickest model
among all. This idea also has been proved before [11].
Broadcasting under this model is also affected less than two
other models when changing |p|.
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TABLE VI
AIMS AND SCOPES OF THE EXPERIMENTS.

Experiment What? Why? How? Graph(s)
Experiment 1 Parameter Tuning To see the impact of chang-

ing HUB-GA parameters on
its performance.

For a graph G, we change
parameters |p| and St, while
reporting f1(σ) and f2(σ)
and the run time.

Karate club network [103]

Experiment 2 Performance comparison vs.
Classical model

To see whether the found
broadcast time under univer-
sal lists model approaches its
optimal value or not.

By calculating the ratio of
BM (G)/Bcl(G) for dif-
ferent interconnection net-
works.

Well-known interconnection
networks for which the value
of Bcl(G) is known.

Experiment 3 Performance comparison vs.
degree-based heuristics

To see whether HUB-GA
outperforms degree-based
heuristics or not.

By comparing the perfor-
mance of our heuristic with
three heuristics for clique-
like graphs.

Clique-like graphs: Ring of
cliques [104], and Windmill
graph [105]

Experiment 4 Performance comparison vs.
state-of-the-art heuristics

To see whether HUB-GA gets
close to other heuristics for
classical broadcasting or not.

By comparing the perfor-
mance of our heuristic with
two lower bounds and six
upper bounds.

Interconnection Networks
and Complex networks with
small-world model [106]

Also, we need to explain the reason for high fluctuations in
Fig. 5 (b) and (d): According to the randomness of HUB-GA,
it is possible that during early generations, a fit chromosome is
constructed and it will survive to future generations. Therefore,
the final answer could be found quickly. On the other hand, if
this chromosome is not generated in early iterations, it could
take multiple generations to construct it from several good
solutions. So, regardless of the population size, the run time
of GA fluctuates. Though the range of this fluctuation widens
as |p| grows, according to Figs. 5(b) and (d).

The next parameter of our algorithm is St, whose effect
on the performance of HUB-GA is reported in Fig. 6. Similar
to the population size, as St grows, the chance of finding a
solution with a smaller broadcast time (f1 or f2) increases.
However, as Fig. 6 suggests, increasing St to large values,
such as 10 or higher, does not seem to have a notable effect
on the performance of the algorithm while it requires more
processing time. Consequently, based on the results of this
experiment, we select a value of St = 5 throughout the rest of
this study. Also, note that by looking at the line charts provided
in Fig. 6, still, the fully-adaptive model is the quickest among
all.

B. Experiment 2

The objective of this experiment is to compare the GA
heuristic for the universal list model with known bounds
on the classical model for commonly used interconnection
networks. Therefore, we measure the ratio of Bσ

M (G)/Bcl(G)
for several graphs. Ultimately, the found broadcast time under
universal list models should approach a desired value. For
instance, consider line graph Pn on n vertices under the
non-adaptive model. Recall that Bcl(Pn) = n − 1, and
Bna(Pn) = ⌈ 3n

2 ⌉ − 2 [10]. If our algorithm finds the optimal
scheme, as n approaches infinity, the ratio is supposed to
approach 1.5: limn→∞

Bna(Pn)
Bcl(Pn)

= limn→∞
⌈ 3n

2 ⌉−2

n−1 = 1.5.
To this aim, for a graph G on n vertices (or dimension d,

where n is a function of dimension d), we run our heuristic
under all three models (na, a, fa), then compare the achieved
value with the known value of Bcl(G). We repeat this process
for several instances of that graph and report the average of the

ratio as the result. Note that for this experiment, we need to use
some graphs for which the exact value of classical broadcast
time is known; thus, the ratio could be calculated. The only
exception is the De Bruijn graph DBd for which the exact
value of Bcl(G) is not known. Hence, we compare our results
with the best lower bound suggested in [108]. The result of this
experiment is reported in Table VII. An asterisk means that
our algorithm has been able to find the optimal scheme or a
scheme better than the current upper bound for a given graph.
Also, the known bounds under all models of broadcasting for
these families are presented in Table VIII.

By comparing the results of Table VII and VIII, it immedi-
ately follows that HUB-GA is able to achieve the optimal result
for Path, Star, and Cycle under all three models since the ratio
approaches the optimal value. For Grid and Tori, however, the
values are close to optimal. The reason is that, as mentioned in
[15] and [10], an optimal broadcast scheme for these networks
is symmetric for all nodes. Finding a completely symmetric
scheme for a large graph could be difficult for the GA due
to its randomness. Also, since the universal list broadcast
time of HCd, CCCd, DBd, and SEd are not known, we
can neither accept nor reject the optimality of HUB-GA for
these families of networks. However, the achieved broadcast
time for all these networks is better than the current upper
bound and mostly between 1 to 1.5 times its classical time,
which is very promising. A trivial upper bound for the non-
adaptive broadcast time of an arbitrary graph is suggested in
Theorem 2.2. of [10] as follows: Bna(G) ≤ 3 · Bcl(G), for
any graph G.

Lastly, the results of complete graphs are discussed. The
known bounds for a complete graph are as follows:

⌈log n⌉ = Bcl(Kn) ≤ Bfa(Kn) ≤ Ba(Kn) ≤ Bna(Kn)

≤ ⌈log n⌉+ 2⌈
√
log n⌉,

(8)

where the lower bound comes from the trivial lower bound
on broadcast time, and the upper bound is presented in [10].
According to Table VII, the result of each model differs
from other models. Hence, in (8), the inequalities are more
likely to become strictly less than, particularly for the fully-
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(a) Broadcast time (f1) (b) Run time for calculating f1

(c) Average broadcast time (f2) (d) Run time for calculating f2

Fig. 5. Results of experiment 1: Impact of population size (|p|).

TABLE VII
RESULTS OF EXPERIMENT 2.

Graph G n
Bσ

fa(G)

Bcl(G)

Bσ
a (G)

Bcl(G)

Bσ
na(G)

Bcl(G)

Path Pn 2 ≤ n ≤ 1000 1.00* 1.00* 1.49*
Cycle Cn 3 ≤ n ≤ 1000 1.00* 1.00* 1.32*
Star Sn 2 ≤ n ≤ 1000 1.00* 1.00* 1.01*
Complete Graph Kn 3 ≤ n ≤ 50 1.14 1.39 1.42
Grid Gn×m 2 ≤ n,m ≤ 10 1.07 1.08 1.35
Tori Tn×m 2 ≤ n,m ≤ 10 1.09 1.24 1.55
Hypercube HCd 2 ≤ d ≤ 9 1.06 1.41* 1.68*
Cube Connected Cycle CCCd 2 ≤ d ≤ 7 1.14 1.18* 1.52*
Shuffle Exchange SEd 3 ≤ d ≤ 9 1.06* 1.09* 1.44*
De Bruijn DBd 3 ≤ d ≤ 9 1.09* 1.18* 1.51*

adaptive model. Based on our results, we make the following
conjecture:

Conjecture 1. For sufficiently large n, the broadcast time of
a complete graph Kn is bounded as follows:

⌈log n⌉ = Bcl(Kn) < Bfa(Kn) < Ba(Kn) ≤ Bna(Kn)

≤ ⌈log n⌉+ 2⌈
√
log n⌉.

(9)

In order to experimentally validate this conjecture, we
designed another experiment in which the performance of

our GA is compared with the lower and upper bounds of
(8) for a complete graph Kn on size 3 ≤ n ≤ 150. The
results of this experiment are illustrated in Fig. 7. First,
observe that these results correspond to the bounds of (8).
Secondly, based on this result, the smallest value of n for
which ⌈log n⌉ = Bcl(Kn) < Bfa(Kn) is n = 8 where
Bσ

fa(K8) = 4, while Bcl(K8) = 3. In order to prove that
Bfa(K8) ̸= 4 (which also proves the first inequality of (9)),
one solution is to examine all possible broadcast schemes
for a complete graph K8 under the fully-adaptive model.
If no scheme σ could be found that yields Bσ

fa(K8) = 3,
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(a) Broadcast time (f1) (b) Run time for calculating f1

(c) Average broadcast time (f2) (d) Run time for calculating f2

Fig. 6. Results of experiment 1: Impact of stability variable (St).

the proof is completed. However, by considering (4), there
are almost 2.08e40 unique broadcast schemes for K8, which
is impossible to be generated without a careful constructive
method. Thirdly, the truth of the second inequality could
be realized by observing the growth rate of Bfa(Kn) and
comparing it with that of Ba(Kn) in Fig. 7.

We need to stress the importance of Conjecture 1: If it is
true, it implies that the definition of broadcast graphs (bg’s)
are different under the universal list models. A bg on n
vertices is a graph for which broadcasting could be finished in
⌈log n⌉ time units starting from any originator. In the classical
model, the most trivial bg on n vertices is Kn in which
∀u ∈ V (Kn) : Bcl(u,Kn) = ⌈log n⌉. If Conjecture 1 is
true, it means that: 1) complete graphs are not immediate
bg’s under the universal lists model, 2) for an arbitrary value
of n, the existence of a graph on n vertices for which the
⌈log n⌉ time could be obtained under the universal list model
is questionable. It should be noted that this problem is also
studied in [11] where the Hypercube Hd was introduced as the
first infinite family of minimum bg’s under the fully-adaptive
model for any n = 2d. They also proposed different bg’s for
some values of n such as n = 2k−1+2k−2 or n = 2k−1+2k−3

for any integer k = ⌈log n⌉ ≥ 4. However, the puzzling

Fig. 7. Comparing the performance of HUB-GA with the known bounds on
the broadcast time of a complete graph Kn of size 3 ≤ n ≤ 150.

question discussed in this study concerning arbitrary values
of n still remains open.
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TABLE VIII
KNOWN VALUES OF BM (G) FOR THE GRAPHS OF EXPERIMENT 2.

Graph G Bcl(G) Bfa(G) Ba(G) Bna(G)

Path Pn n− 1, folklore n − 1, proved in
[15]

n− 1, proved in [10] ⌈ 3n
2
⌉ − 2, proved in [10]

Star Sn n− 1, folklore n − 1, proved in
[15]

n− 1, proved in [10] n, proved in [10]

Cycle Cn ⌈n
2
⌉, folklore ⌈n

2
⌉, proved in

[15]
⌈n
2
⌉, proved in [10] ⌊ 2n

3
⌋, proved in [10]

Grid Gn×m n+m−2, proved
in [26]

n+m−2, proved
in [15]

n+m−2, proved in [10] n+m−1, proved in [10]

Tori Tm×n ⌊n
2
⌋+⌊m

2
⌋, if m

and n are even
⌊n
2
⌋+ ⌊m

2
⌋+1,

otherwise proved
in [26]

≤ ⌊n
2
⌋+ ⌊m

2
⌋+

2, proved in [15]
≤ ⌊n

2
⌋+ ⌊m

2
⌋+ 3,

proved in [10]
≤ ⌊n

2
⌋+ ⌊m

2
⌋+ 5,

proved in [46]

Complete graph Kn ⌈logn⌉, folklore ≤ ⌈logn⌉ +
2⌈

√
logn⌉,

proved in [15]

≤ ⌈logn⌉ + 2⌈
√
logn⌉,

proved in [10]
≤ ⌈logn⌉ + 2⌈

√
logn⌉,

proved in [10]

Hypercube HCd d, folklore d ≤ d(d−1)
2

+ 1 ≤ d(d+1)
2

+ 1

Cube Connected Cycle CCCd ⌈ 5d
2
⌉−1, proved

in [27]
⌈ 5d

2
⌉ − 1 ≤ 2⌈ 5d

2
⌉ − 1 ≤ 3⌈ 5d

2
⌉ − 3

Shuffle Exchange SEd 2d−1, proved in
[28]

≤ 4d− 1 ≤ 4d− 1 ≤ 6d− 3

De Bruijn DBd ≤ 3
2
(d + 1),

proved in [107]
≥ 1.3171d,
proved in [108]

≤ 3d+ 1 ≤ 3d+ 1 ≤ 4d

C. Experiment 3

For a fixed value of n, the function discussed in (4), i.e. the
size of the search space of this problem, reaches its maximum
when the degree of each node maximizes, or a complete graph
on n vertices. In fact, as opposed to the classical model in
which Bcl(Kn) is known, there is no optimal bound for this
network under universal list models. Besides, as mentioned in
[29], the broadcast problem becomes more difficult when there
are several intersecting cycles. In the previous experiment, we
studied this problem for complete graphs Kn. Subsequently,
the objective of this experiment is to study the performance
of HUB-GA for graphs with clique-like subgraphs.

To this aim, two different families of graphs are considered:
the ring of cliques [104] and the Windmill graph [105]. A
ring of clique RCn,m consists of n cliques of size m that are
connected to each other on a cycle. It has n ·m vertices and
n·m·(m−1)

2 +n edges. Also, a Windmill graph Wk,n is a graph
of n cliques each of size k that are all joined at one vertex.
Alternatively, one may generate n cliques of size k − 1 and
add one node to this graph which is connected to all other
vertices. A Wk,n has n · (k − 1) + 1 vertices and nk(k−1)

2
edges. Fig. 8 portrays RC3,5 and W5,3.

The classical broadcast time of these networks is not known.
Therefore, we cannot make a similar experiment as the previ-
ous experiment. Instead, we compare the performance of our
GA solution with three heuristics:

• Ran.Seq.: The ordering of a vertex is uniformly ran-
dom.

• Inc.Deg.: Neighbors of a vertex are sorted in ascend-
ing order based on their degree.

• Dec.Deg.: Neighbors of a vertex are sorted in descend-
ing order based on their degree.

a) b)

Fig. 8. (a) Ring of clique RC3,5 and (b) Windmill graph W5,3.

Note that as the performance of the Ran.Seq. is random
in each run, we need to average its result over 5 runs.
Moreover, the idea of degree-based heuristics is claimed to be
efficient under the classical model, such as the AM algorithm
provided in [24]. Besides, not only the worst behavior of
random broadcasting in a network, a.k.a messy broadcasting,
has received a lot of attention from researchers [8], [9], [109],
but also the average-case random broadcasting time of various
networks are studied in [110].

For each heuristic, we report three numbers: Min which is
the minimum broadcast time of any vertex in the network using
the scheme provided by a heuristic: minu∈V (G){Bσ

M (u,G)},
Avg or the average broadcast time of all vertices of the
graph following that scheme:

∑
u∈V (G){B

σ
M (u,G)}

n , and Max
which is the broadcast time of the worst originator in the
graph following a particular scheme: maxu∈V (G){Bσ

M (u,G)}.
Note that Max corresponds to fitness function f1, whereas
Avg corresponds to f2. The results of this experiment are
reported in Table X for RCn,m and Table IX for Wk,n, where
3 ≤ n,m, k ≤ 6.

By looking at the results expressed in Table X, it is obvious
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Fig. 9. Comparison of the performance of the HUB-GA and other heuristics in terms of average broadcast time - Ring of cliques.

that HUB-GA outperforms all other heuristics in terms of
Min, Avg, and Max broadcast time in almost all cases.
Moreover, among three competitor heuristics, Dec.Deg. is
the most successful one for this particular graph family, while
Inc.Deg. is even worse than a pure random ordering. The
reason is that by using Dec.Deg. a vertex will first send the
message to join vertices since they have the highest degree
in the graph (Fig. 8(a), there are 6 join vertices). Then, it
will send the message to its other neighbors in a random
way. This is an efficient ordering, which could be optimal
with a careful ordering of other neighbors. On the other hand,
the Inc.Deg. heuristic is the least successful one since a
vertex prioritizes its non-joint neighbors, which is not optimal
behavior.

Lastly, the margin between the performance of the GA and
Dec.Deg. heuristic is wider under the non-adaptive model
compared to the fully-adaptive model. The underlying reason
is interesting: consider a random scheme for non-adaptive
broadcasting in a complete graph, and denote the non-adaptive
broadcast time achieved by this scheme by tranna . Also, denote
the optimal broadcast time for the same graph under the same
model by toptna . Moreover, denote by tranfa the fully-adaptive
broadcast time of a random scheme for the same graph,
whereas toptfa is the optimal fully-adaptive broadcast time. We
argue that the value of tranfa − toptfa is more likely to be less
than tranna − toptna with infinite number of same experiments.
This is because of the fact that in the fully-adaptive model,

an inefficient behavior is to hit the same receiver by several
senders. However, in the non-adaptive model, the message is
likely to be sent back and forth between senders and receivers,
resulting in a wider gap between the optimal scheme and a
randomly selected ordering. Based on this observation, we
expect the results of HUB-GA to have a wider margin with
all three heuristics under the non-adaptive model compared
to the fully-adaptive model in which the performance of all
4 heuristics could get much closer. The numerical results of
this experiment reported in Table X also correspond to this
observation.

Table IX gives the results of the same experiment for
Windmill graph Wk,n, where 3 ≤ k, n ≤ 6. In a Wk,n

there are two types of vertices: Join vertex (with a degree
of k(n − 1)), and other vertices (with a degree of n − 1).
Therefore, in competitor heuristics, the join vertex will choose
a random ordering for its neighbors since all neighbors have
the same degree. However, other vertices behave differently in
two degree-based heuristics: in the Inc.Deg. heuristic, they
will first distribute the message within their clique and then
will send it to the join vertex, whereas this ordering is reversed
in the Dec.Deg. heuristic. Therefore, we expect Dec.Deg.
to perform slightly better than Inc.Deg.

The results given in Table IX correspond to our expecta-
tions, in which Dec.Deg. outperforms both Inc.Deg. and
Ran.Seq. heuristics under all three models. Interestingly
enough, a random ordering of the vertices seems to be more
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Fig. 10. Comparison of the performance of the HUB-GA and other heuristics in terms of average broadcast time - Windmill graph.

effective than the Inc.Deg. heuristic. This is due to the
missing call toward the join vertex during early stages under
the increasing degree heuristic. All in all, the performance of
HUB-GA is better than all three heuristics, particularly under
the non-adaptive model, for the same reason discussed earlier.

Also, Figs. 9 and 10 compare the results of HUB-GA
with three heuristics for these two families of graphs. The
comparison metric is the performance improvement which
is calculated as follows for model M when comparing the
performance of HUB-GA against heuristic H:

improvementHM =
Avg(BH

M (G))− Avg(BHUB-GA
M (G))

Avg(BHUB-GA
M (G)),

(10)

in which M ∈ {na, a, fa} and H∈ {Ran.Seq.,
Dec.Deg., Inc.Deg.}.

As can be seen, HUB-GA is able to speed up the broadcast
process up to almost 60% compared to degree-based heuristics
for both networks. The main reason for high fluctuations in
Fig. 9 and 10 are as follows:

1) Randomness of HUB-GA: As mentioned earlier, GA
is a random search algorithm that starts with generating
several random solutions for the problem at its first step.
Although GA is expected to approach a nearly-optimal
solution in the long run, it is possible that it does not
find it in some situations. Therefore, the performance of
HUB-GA is random. However, our extensive experiments

show that our heuristic is quite effective dealing with
real-world data sets.

2) Randomness of other heuristics: When the perfor-
mance of HUB-GA is compared with Ran.Seq. the
fluctuations are wider. This is due to the pure random-
ness of Ran.Seq. heuristic. Even though we took the
average results of Ran.Seq. over 5 runs, it still exhibit
its random nature which leads to high fluctuations.

3) Random ordering of deterministic heuristics: Con-
sider other deterministic heuristics, Dec.Deg. or
Inc.Deg.. In both heuristics, the ties are broken
randomly. In graphs with several vertices with the same
degree (such as the Windmill graph), these heuristics are
almost random, with the only difference being the posi-
tion of the joint vertex. This fact justifies more drastic
fluctuations in Fig. 10 (Windmill graph) compared to
Fig. 9 (Ring of cliques).

4) x-axis: In Figs. 9 and 10, the x-axis is the experiment
number. According to Table X and IX, the experiment
number does not have a monotonic relation with neither
|V | nor |E|. However, we decided to choose the exper-
iment number as the x-axis (and for instance, not sort
the experiments based on |E|) to avoid confusion. We
believe this is the best way to represent our findings.



104 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 1, FEB 2023

TABLE IX
RESULTS OF EXPERIMENT 3 FOR Wk,n , WHERE 3 ≤ k, n ≤ 6.

Wk,n |V | |E|
Non-adaptive model

Min Avg Max
k n Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 7 9 4.4 5 4 4 5.94 5.57 5.42 4.71 7 6 6 6
4 3 9 12 5.8 7 8 5 7.2 8.44 9.33 5.88 7.8 9 10 7
5 3 11 15 7.6 9 8 6 8.96 9.72 9.63 6.81 10 10 10 8
6 3 13 18 8.8 10 10 7 11.49 11.61 11.53 7.92 12.4 12 12 9
3 4 10 18 5.6 6 7 4 7.72 7.3 8.8 5.1 9.2 8 10 6
4 4 13 24 6.2 6 6 5 9.12 7.46 8.53 6.07 11 8 9 7
5 4 16 30 8 8 9 6 11.23 10.37 11.25 7.31 13 11 12 8
6 4 19 36 11.6 10 11 8 14.53 14.15 15.89 8.84 16.2 15 17 10
3 5 13 30 6.4 7 9 5 9.33 9.69 11.46 6.07 11.4 11 13 8
4 5 17 40 6.8 7 9 6 9.95 10 11.82 7.11 12.4 11 13 9
5 5 21 50 10.4 9 8 7 14.45 10.57 11.61 8.14 16.8 11 12 9
6 5 25 60 11 11 11 8 14.4 13.48 14.52 9.08 16.6 14 15 11
3 6 16 45 6.6 8 7 5 9.51 8.62 11.37 6.37 11.8 9 12 8
4 6 21 60 9.4 10 9 6 12.49 10.95 13.76 7.33 14.6 11 14 9
5 6 26 75 11.6 12 12 7 15.6 14.38 16.42 8.53 18.2 15 17 10
6 6 31 90 13.2 16 18 9 17.54 21 22.87 9.93 19.6 22 24 11

Wk,n |V | |E|
Adaptive model

Min Avg Max
k n Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 7 9 4.2 4 4 4 4.82 4.28 4.85 4.28 5.4 5 5 5
4 3 9 12 5.8 6 7 5 6.35 6.77 7.44 5.22 7.2 7 8 6
5 3 11 15 6.6 6 7 6 7.92 7 7.72 6.18 9 8 8 7
6 3 13 18 8 8 9 7 8.7 8.69 9.46 7.15 9.4 10 10 8
3 4 10 18 5.2 5 7 4 6.65 6.2 7.6 4.7 7.8 7 8 5
4 4 13 24 6.6 6 7 5 7.5 6.92 8.38 5.38 8.6 8 9 6
5 4 16 30 8 7 9 6 9.62 9.5 11.12 7 11 11 12 8
6 4 19 36 9.2 7 8 7 10.41 7.78 9.89 7.21 11.6 8 10 8
3 5 13 30 6.2 6 8 5 7.53 7.23 9.3 5.69 8.6 8 10 7
4 5 17 40 6.8 8 10 6 8.71 9.76 12.17 6.47 10.2 11 14 7
5 5 21 50 8.6 8 9 7 10.11 9 11.33 7.66 11.6 10 13 9
6 5 25 60 10.6 10 11 8 12.31 11.2 13.2 8.4 14.2 12 15 9
3 6 16 45 6.2 5 6 5 8.01 7 8.68 5.68 9.6 8 10 6
4 6 21 60 8.6 8 10 6 10.72 9.19 12 6.9 12.2 10 13 8
5 6 26 75 9.2 9 11 7 11.36 10.84 13.76 7.88 13 12 15 9
6 6 31 90 10.6 12 13 8 12.58 12.93 15.16 8.61 14.4 14 17 10

Wk,n |V | |E|
Fully-adaptive model

Min Avg Max
k n Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 7 9 4.2 4 4 4 4.91 4.14 4.85 4.14 5.6 5 5 5
4 3 9 12 5.4 5 6 5 6.06 6.11 6.88 5.11 7 7 8 6
5 3 11 15 6.4 6 6 6 6.96 6.09 6.9 6.09 7.6 7 7 7
6 3 13 18 8 8 9 7 8.9 8.766 9.61 7.07 9.8 10 10 8
3 4 10 18 5.2 5 6 4 6.21 5.6 6.9 4.4 7.2 7 8 5
4 4 13 24 6 6 7 5 7.3 6.92 8.38 5.23 8.6 8 9 6
5 4 16 30 6.4 6 8 6 8 7.68 9.31 6.18 9.4 9 10 7
6 4 19 36 8.2 8 9 7 9.69 8.78 10.42 7.21 11 10 11 8
3 5 13 30 5.6 5 6 5 6.89 6.15 7.92 5.3 8.2 7 9 6
4 5 17 40 7.2 6 7 6 8.43 7.17 9.05 6.23 9.8 8 10 7
5 5 21 50 7.4 7 8 7 8.91 8.04 10.14 7.28 10.2 9 11 8
6 5 25 60 9 8 9 8 10.87 9.16 11.4 8.12 12.6 10 12 9
3 6 16 45 6.2 7 7 5 7.45 7.18 9.5 5.56 8.6 8 10 7
4 6 21 60 7.6 7 8 6 9.53 8.28 10.76 6.52 11 9 12 7
5 6 26 75 9.8 11 13 7 11.51 12.15 14.73 7.34 13.4 14 16 8
6 6 31 90 10 11 12 8 12.19 11.67 14.35 8.58 13.6 13 16 10

D. Experiment 4

The objective of this experiment is to compare our heuristic
with some state-of-the-art heuristics in the literature. Since
some instances used in previous works, such as [4], [24], [94]
are no longer available, we used two types of networks:

1) Interconnection Networks (44 instances): We repli-
cated several instances from [4], [25], [34], [35], [95].
These networks include 8 instances of hypercube HCd,
5 instances of cube connected cycle CCCd, 7 instances
of De Bruijn DBd, 8 instances of Shuffle Exchange SEd
1, and 16 instances of Harary Hk,n

2.
2) Connected Complex Networks (30 instances): well-

established instances of connected complex networks
from network repository3 [106]. In order to address
various industry scenarios, we take into account in-

1Data available here: https://github.com/sabergholami/
2Data available here: https://github.com/alfredolimams/
3Data available here: https://networkrepository.com/rand.php/

stances based on small-world networks with 100 nodes
[95], [111]. Note that the small-world model could be
used to represent communication networks in real-world
applications, as suggested by [95], [112], [113].

For each instance we report |V | (the number of vertices), |E|
(the number of edges), and density (edge density of the graph:

2|E|
|V |(|V |−1) .) As mentioned before, our heuristic is the first of
its kind in the literature for broadcasting with universal lists.
Thus, we can only compare our heuristic with similar results
under the classical model. We compared our results with two
lower bounds:

• TLB: The trivial lower bound on the classical broadcast
time of graph G on n vertices: Bcl(G) ≥ ⌈log n⌉.

• LBB [95]: The lower bound on the classical model
suggested in [95], namely LBB-BFS. The goal here is to
find the maximum shortest path between any receiver and
the originator (vertex v) by performing a BFS algorithm.
Then, a lower bound on the value of Bcl(v,G) is found,
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TABLE X
RESULTS OF EXPERIMENT 3 FOR RCn,m , WHERE 3 ≤ n,m ≤ 6.

RCn,m |V | |E|
Non-adaptive model

Min Avg Max
n m Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 9 12 5 5 6 5 6.22 6.11 6.77 5.33 7.4 7 7 6
4 3 12 16 6.6 7 9 6 8.38 7.91 9.41 6.83 10.4 9 10 8
5 3 15 20 8.4 8 10 7 9.93 9 10.86 8.33 12 10 12 10
6 3 18 24 10.2 9 12 9 12.04 10.44 13.77 9.66 13.8 12 15 10
3 4 12 21 6.2 6 9 5 8.06 7.08 9.5 5.83 9.6 8 10 7
4 4 16 28 8.4 7 12 7 10.33 8.81 13.56 7.81 12.6 10 15 9
5 4 20 35 10.8 8 15 8 13.05 10.2 16.1 9.45 15.8 12 17 12
6 4 24 42 12.2 10 18 10 14.91 11.79 19.95 11.29 17.8 14 22 13
3 5 15 33 7.2 7 12 6 9.78 7.93 12.4 7.2 11.8 9 14 9
4 5 20 44 8.8 8 16 7 12.37 9.9 17.75 8.65 15.4 11 19 11
5 5 25 55 11.6 9 21 8 14.55 11.12 21.84 10.04 17.6 13 23 12
6 5 30 66 14 11 24 11 17.91 12.73 26.86 12.13 21.8 14 29 14
3 6 18 48 8.8 8 15 6 10.94 8.77 15.77 7.55 13 10 17 9
4 6 24 64 11 9 20 7 14.52 10.29 21.83 9.2 17.8 12 24 11
5 6 30 80 14 11 25 9 17.22 12 26.53 10.8 20 13 27 13
6 6 36 96 16.4 11 30 11 20.59 13.66 33.05 12.44 23.8 16 36 14

RCn,m |V | |E|
Adaptive model

Min Avg Max
n m Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 9 12 4.4 4 5 4 4.8 4.33 5 4.33 5 5 5 5
4 3 12 16 5.6 5 6 5 6.4 5.33 6.66 5.33 7 6 7 6
5 3 15 20 6.8 6 8 6 7.58 6.33 8 6.33 8 7 8 7
6 3 18 24 8 7 9 7 8.86 7.33 9.38 7.61 10 8 10 8
3 4 12 21 5.6 5 6 4 6.13 5.41 6.83 5.08 6.8 6 7 6
4 4 16 28 7 6 9 5 8.36 6.5 9.12 6.25 9.4 7 10 7
5 4 20 35 8.4 7 11 6 9.77 7.25 11 7.25 10.8 8 11 8
6 4 24 42 10.4 8 12 8 12.15 8.29 12.91 8.41 13.6 9 13 9
3 5 15 33 6.6 5 8 5 7.71 6 8.13 5.6 8.6 7 9 6
4 5 20 44 7.8 6 11 6 9.45 7.35 11.35 6.8 11 8 12 8
5 5 25 55 9.8 7 12 7 11.52 7.64 12.4 7.96 13.2 8 13 9
6 5 30 66 12 8 14 8 13.97 9.16 15.26 9.03 15.8 10 17 10
3 6 18 48 6.8 6 9 6 8.46 7.05 9.55 6.44 9.6 8 10 7
4 6 24 64 9 7 13 6 11.12 7.69 13.04 7.45 13 8 14 8
5 6 30 80 11 8 14 8 13.15 8.93 14.5 8.86 14.8 10 15 10
6 6 36 96 13.8 9 17 8 15.66 9.83 18 9.8 17.6 11 19 11

RCn,m |V | |E|
Fully-adaptive model

Min Avg Max
n m Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 9 12 4.4 4 5 4 4.86 4.33 5 4.33 5 5 5 5
4 3 12 16 5.8 5 6 5 6.25 5.33 6.41 5.33 7 6 7 6
5 3 15 20 6.6 6 8 6 7.53 6.33 8 6.33 8 7 8 7
6 3 18 24 8 7 9 7 8.73 7.33 9.44 7.33 9.2 8 10 8
3 4 12 21 5.4 4 6 5 5.9 5 6.66 5 6.6 6 7 5
4 4 16 28 6.6 5 8 5 7.82 5.87 8.81 5.5 9 7 10 6
5 4 20 35 8.2 6 11 6 9.36 7.1 11 7.05 10.4 8 11 8
6 4 24 42 10.2 7 13 7 11.23 8.25 13.29 8.16 13 9 14 9
3 5 15 33 6 5 7 5 6.7 5.6 7.86 5.73 7.2 6 9 6
4 5 20 44 7.6 6 9 6 9.05 6.66 9.9 6.65 10.2 7 11 7
5 5 25 55 9.4 7 12 7 10.7 7.92 13.04 7.8 12.2 9 14 9
6 5 30 66 11 8 14 8 12.54 8.6 15.03 9.16 14 9 16 10
3 6 18 48 6.8 6 8 5 7.76 6.66 9.27 5.88 8.6 7 10 7
4 6 24 64 8.6 7 12 7 10.17 7.95 12.83 7.5 11.6 9 14 8
5 6 30 80 10.4 7 13 8 11.66 8.26 14.03 9.1 13 9 15 10
6 6 36 96 11.8 8 16 9 13.71 9.25 17.16 10.27 15.4 10 19 11

which is also a valid lower bound on the Bcl(G).
Also, we compare our results with six upper bounds reported
in the literature:

• TreeBlock [25], [114]: the constructive heuristic pro-
posed in [25], with a more detailed version presented in
[114] considering various network families. TreeBlock
works based on detecting cut-points of graph G and
breaking the problem down into several smaller problems
in trees that are formed from the cut-points.

• NTBA [34]: This algorithm works based on forming a
layer graph from the original graph by performing a
BFS. Then, it traverses the layer graph and produces a
broadcast scheme for the originator.

• NEWH [35]: This algorithm builds upon the idea of NTBA
but applies a new non-random strategy in order to gen-
erate a spanning tree for broadcasting. The advantage of
this algorithm is that almost half of vertices are informed
by the shortest path from the originator, while the rest
are informed by a path at most 3 hops longer.

• ILP [25], [95]: Consider exact algorithms on the classical
broadcast problem. In addition to the dynamic program-
ming algorithm presented in [24], the most successful
approach is the linear programming model of de Sousa et
al. [25]. However, only cases with up to about 50 vertices
can be solved using this model in a fair amount of time,
which is insufficient for actual industrial applications.
The ILP algorithm [95] works based on the algorithm
suggested in [25]. It is an integer linear programming
algorithm for the classical broadcast problem, solved by
IBM Cplex 12.9.

• ACS [4]: The ant colony system algorithm proposed by
Hasson and Sipper [4]. Note that the results reported
by the authors of [4] illustrate that ACS outperforms
the algorithm by Hoelting et al. [94]. Thus, we did not
consider their algorithm.

• BRKGA [95]: The biased random key genetic algorithm
proposed in [95] with the first receive first send decoder.
Considering the results reported in the corresponding
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TABLE XI
RESULTS OF EXPERIMENT 4 FOR INTERCONNECTION NETWORKS.

Instance |V | |E| Density LB on Bcl(v,G) UB on Bcl(v,G) HUB-GA
TLB LBB TreeBlock NTBA NEWH ILP ACS BRKGA Bσ

fa(G) Bσ
a (G) Bσ

na(G)

HC2 4 4 0.6667 2 - - - - - - - 2 2 2
HC3 8 12 0.4285 3 - - - - - - - 3 4 4
HC4 16 32 0.2667 4 - - - - 4 - - 4 5 6
HC5 32 80 0.1613 5 5 5 5 5 5 5 5 5 7 9
HC6 64 192 0.0952 6 6 6 7 6 6 6 6 7 9 11
HC7 128 448 0.0551 7 7 7 9 7 7 7 7 8 11 14
HC8 256 1024 0.0314 8 8 8 11 8 8 8 9 9 13 16
HC9 512 2304 0.0176 9 9 9 14 9 9 9 10 10 15 18
CCC2 8 12 0.4285 3 - - - - - - - 4 4 5
CCC3 24 36 0.1304 5 6 - 6 7 6 6 6 8 8 10
CCC4 64 94 0.0476 6 8 - 7 9 9 9 9 11 11 15
CCC5 160 240 0.0189 8 10 - 11 12 11 12 11 14 15 19
CCC6 384 576 0.0078 9 13 - 14 14 13 14 13 17 18 24
DB3 8 16 0.5714 3 - - 4 4 - - - 4 4 5
DB4 16 32 0.2583 4 4 4 5 5 - 5 5 6 6 7
DB5 32 64 0.1270 5 5 7 7 7 - 6 6 7 8 10
DB6 64 128 0.0630 6 6 8 8 8 - 8 8 9 10 13
DB7 128 256 0.0314 7 7 12 10 10 - 10 9 11 12 16
DB8 256 512 0.0157 8 8 12 12 12 - 12 11 13 14 19
DB9 512 1024 0.0078 9 9 14 13 13 - 14 13 15 17 22
SE2 4 5 0.8334 2 - - - - - - - 3 3 4
SE3 8 12 0.4285 3 - - 5 5 - - - 5 5 6
SE4 16 21 0.1750 4 7 - 7 7 7 7 7 7 7 9
SE5 32 46 0.0927 5 9 - 9 9 9 9 9 9 10 13
SE6 64 93 0.0461 6 11 - 11 11 11 11 11 12 12 16
SE7 128 190 0.0234 7 13 - 13 13 13 13 13 15 15 20
SE8 256 381 0.0117 8 15 - 15 15 15 15 15 17 17 25
SE9 512 766 0.0059 9 17 - 18 18 17 17 18 20 21 28
H10,30 30 150 0.3448 5 3 6 - - 5 5 5 7 9 9
H11,50 50 275 0.2245 6 3 7 - - 6 6 6 8 10 11
H20,50 50 500 0.4082 6 3 8 - - 6 6 6 8 10 11
H21,50 50 525 0.4286 6 2 7 - - 6 6 6 7 10 10
H2,100 100 100 0.0202 7 50 50 - - 50 50 50 50 50 67
H2,17 17 17 0.1250 4 8 9 - - 9 9 9 9 9 11
H2,30 30 30 0.0690 5 15 15 - - 15 15 15 15 15 20
H2,50 50 50 0.0408 6 25 25 - - 25 25 25 25 25 29
H3,17 17 26 0.1912 4 4 5 - - 5 5 5 6 6 8
H3,30 30 45 0.1034 5 8 9 - - 9 9 9 9 9 12
H3,50 50 75 0.0612 6 13 14 - - 14 14 14 14 15 17
H5,17 17 43 0.3162 4 3 5 - - 5 5 5 5 6 7
H6,17 17 51 0.3750 4 3 5 - - 5 5 5 6 6 7
H7,17 17 60 0.4412 4 2 5 - - 5 5 5 5 6 6
H8,30 30 120 0.2759 5 4 6 - - 5 6 5 8 9 10
H9,30 30 135 0.3103 5 3 6 - - 5 5 5 7 8 9

study, this could be considered the most successful
and recent heuristic for the classical broadcast problem.
BRKGA_FRFS is believed to outperform several well-
known heuristics for the classical broadcast problem such
as Tree Block [25], NTBA [34], and NEWH [35].

The numerical results of this experiment are reported in
Tables XI and XII. The results of all lower and upper bounds
are reproduced from their original paper, respectively. A
hyphen in Tables XI and XII indicates that we do not have
the result for an instance or the method could not produce a
feasible solution. Also, in the case that the result of a particular
algorithm is not reported for an instance, we used the result
reported in [95], as they re-implemented all algorithms.

We need to point out that the value achieved by all
upper bounds concerns Bcl(v,G) for a particular v as
the originator (for most instances, v = {1}). Recall that
∀v : Bcl(v,G) ≤ Bcl(G). Also, from (2), it is clear that
the value of Bσ

M (G) is lower bounded by Bcl(G) for
M = {fa, a, na}. Thus, the values achieved by HUB-GA

are not supposed to outperform the six upper bounds. In
fact, it could be impossible to achieve those values if the
chosen originator in a competitive algorithm is not the worst
originator. Finally, in all competitor heuristics, the goal is to
minimize the broadcast time of a vertex in a given graph.
This is somewhat in contrast with the nature of the universal
list model, in which the goal is to optimize the behavior of
all nodes simultaneously with one universal list. However, we
performed this experiment to see whether Bσ

M (G) could get
close to Bcl(v,G) or not.

Our numerical results demonstrate that as opposed to the
significant memory reduction in the universal list model com-
pared to the classical model, as well as the need for only
local knowledge for nodes, the universal list broadcast time of
all instances considered in this study is very close to that of
classical. In fact, most cases have between 1 to 3 time units
difference.

For most instances reported in Table XI, HUB-GA finds
a sufficiently close broadcast time under all three models
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TABLE XII
RESULTS OF EXPERIMENT 4 FOR CONNECTED COMPLEX NETWORKS.

Instance |V | |E| Density LB on Bcl(v,G) UB on Bcl(v,G) HUB-GA
TLB LBB TreeBlock NTBA NEWH ILP ACS BRKGA Bσ

fa(G) Bσ
a (G) Bσ

na(G)

SW-100-3-0d1-trial1 100 100 0.0202 7 61 - - - 61 61 61 68 68 104
SW-100-3-0d2-trial1 100 100 0.0202 7 31 - - - 31 31 31 40 40 60
SW-100-3-0d2-trial3 100 100 0.0202 7 31 - - - 31 31 31 49 49 74
SW-100-4-0d1-trial1 100 200 0.0404 7 7 - - - 9 10 9 14 14 19
SW-100-4-0d1-trial2 100 200 0.0404 7 7 - - - 8 9 8 13 14 18
SW-100-4-0d1-trial3 100 200 0.0404 7 9 - - - 10 11 10 15 16 20
SW-100-4-0d2-trial1 100 200 0.0404 7 7 - - - 8 9 8 12 13 17
SW-100-4-0d2-trial2 100 200 0.0404 7 7 - - - 8 9 9 12 13 16
SW-100-4-0d2-trial3 100 200 0.0404 7 7 - - - 9 9 9 12 13 17
SW-100-4-0d3-trial1 100 200 0.0404 7 6 - - - 8 9 8 12 13 16
SW-100-4-0d3-trial2 100 200 0.0404 7 6 - - - 8 8 8 11 12 15
SW-100-4-0d3-trial3 100 200 0.0404 7 7 - - - 8 9 8 11 12 15
SW-100-5-0d1-trial1 100 200 0.0404 7 8 - - - 9 10 9 14 15 19
SW-100-5-0d1-trial2 100 200 0.0404 7 9 - - - 10 11 10 15 15 22
SW-100-5-0d1-trial3 100 200 0.0404 7 11 - - - 12 13 12 15 16 21
SW-100-5-0d2-trial1 100 200 0.0404 7 8 - - - 9 10 10 13 14 17
SW-100-5-0d2-trial2 100 200 0.0404 7 9 - - - 9 10 10 12 13 17
SW-100-5-0d2-trial3 100 200 0.0404 7 7 - - - 8 9 9 12 13 18
SW-100-5-0d3-trial1 100 200 0.0404 7 6 - - - 8 8 8 11 12 15
SW-100-5-0d3-trial2 100 200 0.0404 7 6 - - - 8 8 8 11 12 16
SW-100-5-0d3-trial3 100 200 0.0404 7 6 - - - 8 8 8 11 12 15
SW-100-6-0d1-trial1 100 300 0.0606 7 5 - - - 7 8 8 12 13 16
SW-100-6-0d1-trial2 100 300 0.0606 7 6 - - - 8 9 8 12 13 16
SW-100-6-0d1-trial3 100 300 0.0606 7 6 - - - 7 8 8 12 14 17
SW-100-6-0d2-trial1 100 300 0.0606 7 6 - - - 7 8 7 11 13 15
SW-100-6-0d2-trial2 100 300 0.0606 7 4 - - - 7 8 7 10 12 14
SW-100-6-0d2-trial3 100 300 0.0606 7 4 - - - 7 8 7 10 12 15
SW-100-6-0d3-trial1 100 300 0.0606 7 4 - - - 7 8 7 10 11 14
SW-100-6-0d3-trial2 100 300 0.0606 7 5 - - - 7 8 7 10 11 13
SW-100-6-0d3-trial3 100 300 0.0606 7 5 - - - 7 8 7 10 11 14

(M = {fa, a, na}) compared to the best upper bound reported
in the literature. This gap is even smaller for Harary networks
Hk,n and Shuffle Exchange graphs SEd, where the fully-
adaptive and adaptive broadcast time is even equal to the clas-
sical upper bounds in several instances. For complex networks
in Table XII, HUB-GA is able to decrease its objective function
to 10, 11, and 14 for various instances under fully-adaptive,
adaptive, and non-adaptive models, respectively. The value of
classical broadcasting is mostly close to 8 in those instances.
This result is promising in the sense that with a careful design
of the broadcast scheme under the universal list model, the
best-known upper bounds reported in the literature for the
classical model are achievable.

VI. CONCLUSION

In this paper we proposed HUB-GA: A heuristic for the
problem of universal lists broadcasting that uses genetic al-
gorithm. Our numerical results have demonstrated that our
algorithm is able to find optimal or near-optimal broadcast
time for several well-known interconnection networks. It also
outperforms degree-based heuristics for various networks with
clique-like subgraphs, in which the search space of the prob-
lem is almost maximized. Finally, as opposed to the significant
memory reduction in the universal list model in comparison
with the classical model, our result is very close to the state-
of-the-art heuristics for the classical broadcast problem for
interconnection networks and several instances of synthetic
networks.
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