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Abstract—Wireless sensor networks (WSN) are widely used for
multi-disciplinary applications. According to the requirements
and the goal of the application, the network is designed and
the protocol is tuned to obtain the best performance of the
WSN. In real world applications, all nodes in the network
have a common protocol parameter set, irrespective of their
position in the network. In several experiments with multihop
sensor networks, we observed that individual nodes perform
differently depending on the protocol parameter values. With the
observation the question was raised whether the performance
of the network can be improved by using tuned parameter
sets for each individual node in the network. Tuning protocol
parameters for each node manually is tedious and may not be
practical for large number of nodes. As a solution, adaptive
protocol parameters are introduced using reinforcement learning.
The learning algorithm gradually approaches an optimal set of
protocol parameter values for each and every node during the
runtime resulting in average improved network performance with
13.44% and 29.41% compared to networks with static common
parameter sets in a network of 20 and 30 nodes respectively
in simulation environment. The performance of the adaptive
protocol is validated using real testbed with 10 nodes and
the performance improvement is 16.21%. With the simulation
results it was observed that networks with higher number of
nodes obtain more performance gain using the adaptive protocol
algorithm compared to networks with lower of nodes.

Index Terms—Adaptive protocol parameters, Q learning,
WSN.

I. INTRODUCTION

W IRELESS sensor networks (WSN) emerge as an effec-
tive technique to gather information from a potentially

large amount of sensor nodes. The applications of WSNs vary
from industrial, environmental, medical, habitat monitoring
to domestic applications [1]–[3]. Each application constitutes
its own goals and limitations. To achieve the goals while
tackling all possible constraints, WSN protocols need to be
fine-tuned according to the application. There are several
protocol parameters which need to be optimized according to

Manuscript received March 17, 2022; revised July 16, 2022; approved for
publication by Jiming Chen, Division 2 Editor, August 13, 2022.

P. N. Karunanayake is with Department of Sustainable Communication
Networks, University of Bremen, Germany and with Department of Electrical
Electronics & Telecommunication Engineering, General Sir John Kotelawala
Defence University, Sri Lanka, email: piumikan@comnets.uni-bremen.de.
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the application, topology and number of nodes in the network.
Applying the same WSN protocol or protocol parameters for
different applications will reduce the reliability, time efficiency
or the energy efficiency of a WSN. Also it leads to undesirable
performance of the network. Hence it is mandatory to adjust
the protocol parameters according to the application which is
expedited by experts based on experience, analysis of expected
traffic load or by performing a number of trials before actual
deployment. Therefore the WSN designer undergoes a tedious
process to identify the optimal parameter set before deploying
the network even common set of parameters are activated for
all the nodes in the network. Hence to obtain the optimum
parameter set for each individual node, machine learning
technique is introduced which learns from the environment
to identify the best parameter set for each node.

The sensor nodes play different roles within multi-hop
networks compared to single-hop networks. A set of nodes acts
as leaf sensor nodes and remaining nodes relay the packets to
the sink including its own packets. Each node handles different
traffic load according to the placement of the node in the
network. Also the packet collisions and the interference the
nodes experience depends on the placement of the node. In this
paper we show that optimizing parameter values for individual
node improves the performance of the network.

By analyzing the current status of the network, a parameter
reconfiguration approach can be specified either in a decentral-
ized or centralized manner. In the centralized manner all the
information is passed to a central node which decides whether
a reconfiguration needs to be executed and if so which nodes
should be reconfigured. This method results in large overhead
due to the amount of exchanged information. In centralized
networks, frequent changes of the network is not catered due to
the mentioned overhead. In decentralized methods, nodes take
decisions locally by observing its own quality measurements.

There are two methods that can be used for parameter
optimization, mathematical optimization and machine learn-
ing [4]. In case of linear objectives and constraints, linear
programming can be used for convex optimization problems,
or an equivalent Lagrange dual problem can be constructed in
mathematical optimization. A Lagrange dual problem is solved
in a distributed manner. Therefore it can be applied for WSN
as well [4]. To use mathematical optimization in a network
an extensive knowledge about the network is required. Hence
it is mandatory to have prior knowledge about the network
and considerable amount of information passing within the
network on top of normal traffic load. A survey was conducted
to evaluate the pros and cons of using machine learning and
fuzzy logic as an adaptation mechanism in WSNs [5]. In [6]
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and [7] the applicability of machine learning techniques to
improve WSN performance have been studied extensively.
Compared to mathematical optimization, machine learning
requires a less amount of information regarding the network.

Optimizing the parameters can be carried out in two sit-
uations, static environment and dynamic environment. The
objective of optimizing the parameters in static environment
is to obtain best parameter set for a particular application
when using a standard or commonly used protocol. Obtaining
optimum parameters in dynamic environment focuses on main-
taining the performance by adapting the parameters according
to the dynamics.

In this paper a novel algorithm for adaptive parameter
adjustment is proposed for multi-hop networks which operates
without prior knowledge of the network or the channel in a
static environment. The adaptive parameter algorithm provides
optimum parameters for each individual node for any appli-
cation without any modification of the original protocol. The
most impacting protocol parameters which need to be opti-
mized for the application are decided by the network designer.
For the algorithm, the prior knowledge of the impact to the
network when parameter values are changed is not required.
The network performance after parameter values are changed
is learned by the algorithm which is based on Q learning,
during run time in a distributive manner using a reactive
approach. This results in obtaining optimized parameters for
each node without injecting additional signalling packets as
they would be needed in a centralized approach. Since each
node seeks for its best parameter set with the adaptive protocol
parameter algorithm, the network consists of nodes which
operates with different parameter values.

Using simulations and experiments with real nodes, we
show that the proposed adaptive algorithm outperforms the
configuration of the protocol with static parameter values.

The rest of the paper is structured as follows. We demon-
strate our algorithm using the well known Collection Tree
Protocol (CTP) [8]. Therefore the background of CTP is
presented under Section II to provide a clear view of our
usage of the protocol for simulations and real world applica-
tions. Section III discusses previous work related to adaptive
parameters for WSN and application of reinforcement learning
algorithm in WSNs. The motivation for this work is discussed
in Section IV. The model of the adaptive protocol parameter
algorithm is discussed under Section V whereas Section VI
discusses the design of the algorithm. The simulation setups
and the real world experiments setup which were used to vali-
date the usage of adaptive protocol parameters using reinforce-
ment learning is presented in Section VII. Section VIII covers
the results obtained and discusses the findings. Section IX,
includes the conclusion remarks.

II. COLLECTION TREE PROTOCOL

To evaluate the performance of the proposed adaptive pa-
rameter algorithm, the Contiki implementation of CTP is used
due to its deployment in practical applications. Although CTP
is selected for evaluation of the algorithm, any other protocol
may be used with the algorithm. This section provides a brief

description of CTP. Subsection VI-A discusses how parameters
are selected in general for optimization and how it is applied
to CTP protocol.

CTP is a tree based collection protocol. All the nodes
send packets towards the sink node in multi hop network
by considering the expected number of transmissions (ETX)
value of its own and the neighbouring nodes. ETX value is
the expected number of packet transmission for one packet
to reach the sink node, it is used to measure the cost of a
link. CTP mainly focuses on achieving reliability, robustness,
efficiency and hardware independence [8]. The protocol has
proven that all the mentioned goals are achieved with a
series of experiments in real-world testbeds. The protocol
achieves its goals by improving the accuracy of the link
estimation, by continuously validating the data path and using
adaptive beaconing. Each method is described in the following
paragraphs.

Improving the accuracy of the link estimation is carried
out by combining information from the physical layer, data
link layer and routing layer to calculate the link estimate.
This overcomes the challenges which rise due to intermediate-
quality links, time-varying nature of wireless channels, multi-
path inter-symbol interference and hardware variations. The
physical layer provides the quality of the received packets
while the data link layer gives the information on the ETX
value of each link. The network layer improves neighbour
discovery by activating route comparison.

All nodes keep track of the cost to the sink node. Once
a packet is received by the node it checks the cost of the
sending node. If the cost of the sending node is lower than the
receiving node, the received node detects an inconsistency in
the cost update which will end up with a loop in the network.
If inconsistency is detected, topology adaptation is triggered
and using the Trickle algorithm [8] the new information is
passed throughout the network. By checking all the received
packets, the nodes maintain the data path validation.

The third method uses the adaptive beaconing to maintain
the consistence cost values of the links. Once the beaconing
period is low, the cost information will be up-to-date whereas
the overhead will be high. Also it consumes high bandwidth
and high energy. Large beaconing periods would result in
low bandwidth requirement and low energy consumption but
would result in inconsistent cost value updates of links leading
to loops within the network. The beaconing period shrinks due
to three events:

• Detect inconsistency in ETX values.
• Detect superior path.
• Receive a request for a beacon.

The beaconing period is expanded once the node hears another
node sending the packets with information which node already
has.

In CTP, transmit timers are also adjusted to minimize the
self-interference. If the expected packet time is p, a node
always waits for a duration of 1.5 to 2.5 p to send a packet.
Hence once the parent node forwards the packet, it will not
collide with the child’s second packet.

There exist a number of parameters in the implementation
of CTP. These parameters focus on efficiently calculating
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the link cost, packet transmission and receiving, maintaining
the packet queue and beaconing. Out of these parameters
three parameters were selected to incorporate the proposed
algorithm. Subsection VI-A discusses the selected parameters
for optimizing and their attributes used in the adaptive learning
algorithm.

III. RELATED WORK

Wireless sensor networks are self maintained devices in
most applications. Therefore in recent years adaptation has
been incorporated to different protocol layers in different
designs of wireless sensor networks.

In [9] it is shown that the MAC layer protocol needs to
be selected according to the application scenario and the
condition of the environment. Hence the authors have proposed
to select the optimum MAC layer protocol according to the
frequently varying condition of the underwater WSN using a
software defined communication stack (SDCS). In our work
a single protocol functions with optimum parameters without
changing main objectives of the protocol.

The authors of [10] have showed that by using adaptive
low power listening, the energy consumption of the WSNs in
noisy environment can be improved. The problem is solved
considering it as an optimization problem. Therefore to min-
imize the computational burden for individual sensor node,
optimal values are pre computed and each nodes keeps the
values locally. This requires knowledge about the network
and the environment whereas in our work pre knowledge is
not required. To maximize the network reliability, life time
and to reach the constraints of end to end delay, an adaptive
mechanism is introduced for the wake-up rate and the transmit
radio power of each node [11]. Again this work illustrates how
the performance improvement is gained by considering it as
an optimization problem. Adaptive duty cycling is introduced
in [12] to handle load variations in time and location, which
leads to lower energy consumption in WSNs. The Previously
mentioned work require an awareness of the network and the
application, however in our work, the machine learner collects
information about the network during run time.

For the protocol IEEE 802.15.4, with two assumptions, a
single hop network and infinite queue length, authors of [13]
have introduced tuning parameters for the CSMA/CA mecha-
nism in a distributed manner. The algorithm performs well for
static networks as well as for dynamic networks. An adaptive
backoff algorithm is introduced in the work of [14] which
improves the throughput and reduces the energy consumption
in the network. The main assumptions are not required in our
approach which performs well with multihop networks and
limited queue length.

The authors of [15] and [16] have used a proactive dis-
tributed approach to obtain adaptive parameters for the net-
work dynamics. In this method, all the dynamics should be
identified and parameter values should be defined accordingly
which is not a requirement in our work .

In order to maintain the minimum required QoS, [17]
proposes a solution using a distributed feedback control mech-
anism. End to end delay and delivery ratio have been optimized

using two controllable parameters, the transmitting power and
the number of retransmissions.

To maximize the battery life time, the authors of [18] have
proposed protocol optimization using the status of the battery
power for IEEE 802.15.4. The authors of [19], [20] have
proposed an algorithm to obtain optimum parameter settings
for 802.15.4 WSNs. The proposed algorithm of [19] adopts
optimum parameter values when the operating conditions
change over time. All of the above work optimizes a particular
protocol but our proposed method is possible to work on top
of any protocol without constraints.

Reinforcement learning is used in many WSN related works
due its simplicity in the implementation, low complexity
and its capability of learning from the environment without
prior knowledge. In [21], the sampling interval is adjusted
to minimize the number of transmissions according to the
changes in the environment. Also the work highlights the
importance of the proper choice of learning parameters for
its performance. In [22] reinforcement learning is applied in
underwater WSN to improve the packet delivery ratio and the
energy consumption.

The authors of [23], [24] have used reinforcement learning
for energy management maintaining network performance
without an energy consumption tracker. The QL-Mac protocol
is introduced in [25] which is an energy efficient protocol
utilizing Q learning to adapt the duty cycle. Q learning is
incorporated to the ALOHA protocol in the work of [26]
resulting in an efficient transmission schedule. The introduced
algorithm is robust in the dynamic environment and during
packet losses due hardware issues. An efficient routing al-
gorithm is introduced in [27] incorporating Q learning as
the learning algorithm. In [28] the communication range is
adjusted using reinforcement learning to control the number
of connectivities per node resulting in a reduction of energy
wastage. The authors of [29] have proved by using rein-
forcement learning that the transmit power can be adjusted
considering the feedback of the data packets, hence extending
the life time of the network. A secure routing scheme is
implemented to avoid malicious nodes in the work of [30]
using reinforcement learning.

The research work mentioned in the last two paragraphs
leverage reinforcement learning to improve the performance of
the network and most of them focus on particular application
or one specific parameter. Our work can be distinguished from
the previous work by introducing an algorithm which can be
incorporated without changing the properties of the underlying
protocol. Also the algorithm works independently from the
network topology without additional burden to the network.

IV. MOTIVATION: EVALUATION OF NODE’S INDIVIDUAL
PERFORMANCE WITH DIFFERENT PROTOCOL PARAMETERS

IN A MULTI HOP NETWORK

To identify the impact of the protocol parameters on the
performance of individual nodes, a series of experiments were
carried out with different static protocol parameter sets in
multi-hop networks.
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TABLE I
PARAMETER SETS FOR PRACTICAL EXPERIMENTS. PACKET RATE:

ANIMAL DETECTION: 1 PKT/MIN; TEMPERATURE SENSING: 1 PKT / 12
MIN, JAMMED.

Parameter Set 1 Set 2 Set 3
MAX MAC REXMITS 2 4 2

MAX ACK MAC REXMITS 2 4 2
REXMIT TIME 4sec 4sec 2sec

Two different application scenarios were selected, the first
application is temperature sensing which requires a low data
rate in a highly interfered area assuming an urban or indoor
environment. The packet rate was considered as one packet per
12 minutes. The second application is animal detection which
requires a high data rate in a low interfered area assuming
large field with crops where interference is low. For this
application the packet rate was considered as one packet per
1 minute. Both application scenarios were experimented in
a real network with 3 different sets of protocol parameters.
The first parameter set includes default parameter values. In
the second parameter set, the max. number of retransmissions
was doubled w. r. t. the default settings and in the third set,
the retransmission time was halved. Rime is a lightweight
layered communication protocol stack for sensor networks
and implemented using Contiki OS [31]. The protocol stack
consists of the Radio layer, RDC layer, MAC layer and
Network layer.1 For the experiment, CTP was used on top
of the Rime protocol, ContikiMac in the RDC layer and the
CC2420 chip as the hardware interface in the radio layer.
The experiments were carried out with 9 Zolertia Z1 nodes
creating a multi-hop network. To generate interference, another
Z1 node was placed as a jamming node for the application of
temperature sensing. For each parameter set, an experiment
running 24 hours was conducted. The results are compared
between the two applications for the same topology. Table I
illustrates the 3 sets of local parameters.

Table II illustrates the performance of each node measured
by the ETX value.

Nodes 7, 8 and 9 have better ETX value with the param-
eter set 1 for the animal detection scenario whereas nodes
2,3 and 6 perform well with parameter set 2 for the same
application scenario. For Temperature sensing application, all
nodes perform well with the parameter set 2. The evaluation of
the results highlights that nodes perform in a distinct manner
for different parameter sets, although the application scenario
is same. Considering the two application scenarios, the best
parameter set for a node is not identical to the best parameter
set of the same node in another application. The main reason
for this is the traffic load handled by each node and the varying
demand for channel access among the nodes. Therefore we
propose an algorithm to identify a better parameter set for each
node in a distributed manner maximizing the performance of
the network compared to the performance of a network with
original static protocol parameters. The performance of the
network is measured by the packet delivery ratio.

1http://anrg.usc.edu/contiki/index.php/Network Stack

Fig. 1. Extension of the original CTP by Q learning.

V. MODEL OF THE ADAPTIVE PROTOCOL PARAMETER
ALGORITHM

The goal of our work is to increase the performance of
the network by optimizing protocol parameters for individual
nodes without additional effort for the network designer. Ex-
amining the parameters in a centralized manner and evaluating
the best parameter set, followed by sending the optimum
values for the individual nodes will be a huge burden for
the network. Therefore in the proposed work, individual node
evaluates its own performance and converges to a set of
parameters that maximize the performance. The significance
of the algorithm is that for any topology or any number of
nodes it should identify a better set of protocol parameters
compared to the original static parameter set.

The model of our proposed algorithm is illustrated in Fig. 1.
It consists of three main parts, the input, the machine learner
and the output.

Three types of inputs are considered: The parameters which
need to be optimized, the range of each parameter and the
default value for each parameter.

To select the protocol parameters, an analysis of parameters
was carried out in general. There are two types of protocol
parameters, local parameters and global parameters. The local
parameters affect the functionality of individual nodes with
minimum impact on the other nodes in the network. For
example, the maximum number of retransmissions, maximum
number of ACK retransmissions or length of the sending
queue. On the other hand, global parameters have a direct
impact on the functions of all nodes, for an example the
duty cycle. Since our work focuses on optimizing parameters
individually, only local parameters are considered. In the case
of CTP, maximum number of MAC retransmissions, backoff
time for retransmission, minimum available queue entries for
own packets were considered for optimization and provided
as the user input to the model. Although we selected three
parameters to be improved by the algorithm, the number of
parameters to be optimized can be decided by the network
designer.

The selected parameters for optimization will have a re-
striction w. r. t. the value range from the original protocol
implementation. Therefore for each parameter, the value range
is required as the input for optimization as the second type of
input. The third input is the best known value of each selected
parameter. By starting from the default or best known value,
the algorithm converges to a parameter combination which
provides better performance compared to the original protocol
which uses the default value. As for the experiment purposes,
the Contiki implementation of the CTP protocol was selected
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TABLE II
ETX VALUES OF ANIMAL DETECTION AND TEMPERATURE SENSING APPLICATION.

Sensor node ETX value for animal detection ETX value for Temperature Sensing
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Node 2 3.26 1.81 2.15 3.19 1 2.16
Node 3 2.39 2.32 3.22 3.23 2.1 2
Node 4 2.12 2.44 4.36 5.32 3 2.16
Node 5 1 1.01 1.02 2.02 1 1
Node 6 2.64 2.01 3.33 2.18 2 2.04
Node 7 2.55 3.05 3.33 3.25 2 3.56
Node 8 1.65 2.73 1.04 1.04 1 2
Node 9 3.13 3.8 2.09 3.04 2 3.8
Mean 2.34 2.39 2.57 2.9 1.76 2.08

due to practical reasons. The parameter selection for adaptation
in CTP is discussed in Subsection VI-A.

The machine learner evaluates the performance of differ-
ent combinations of protocol parameters to output the best
combination. There are many approaches for the learner
to compute the best combination of parameters as offline
computation, model-based adaptation and measurement-based
adaptation [32]. As processing is carried out within each
individual node, the implementation is required to be simple
utilizing a minimum amount of memory and processing. Q
learning includes the mentioned properties and in addition,
it is model-free and adapts to changing environments and
falls under measurement based adaptation. Therefore, as the
learning algorithm to identify the optimum set of protocol
parameters, Q learning is selected. The learning algorithm
implemented in the adaptive parameter protocol, is discussed
in more detail in Subsection VI-B.

The output of the model will be, an optimized parameter
value set for each individual node, which leads to improved
overall performance in the network exceeding the performance
of the original protocol.

VI. ADAPTIVE PROTOCOL PARAMETER ALGORITHM WITH
Q LEARNING

The proposed algorithm consists of two main components.
Selection of parameters and its attributes is the first com-
ponent whereas learning and optimizing the parameters is
the second. The two components are discussed under two
Subsections VI-A and VI-B.

A. Selection of Parameters and Their Attributes

A protocol consists of a number of parameters which
affect the performance of the network. Tuning or adapting all
parameters is not practically feasible. Therefore for adaptation
it is important to identify parameter set which would highly
impact on the performance of the network. Once the parameter
set is identified, the value range for each parameter needed to
be determined. To overcome the difficulties in identifying the
best value range, the default value of each of the parameters
is considered and a value range is selected which includes
adjacent values of the default value. For the implementation,
the minimum value, maximum value and the unit step size is
provided as the input.

TABLE III
PARAMETERS AND THEIR ATTRIBUTES.

Parameter Default values Value range
Max number of MAC REXMITS 2 [1, 5]
Minimum allocated queue entries 2 [1, 5]

Retransmit backoff (sec) 4 [1, 5]

Let X be a selected adaptive parameter. It consists of a
value set that can be assigned as shown in (1).

X = x1, x2, · · ·, xn (1)

Let x1 be the minimum value and xn be the maximum
value, the default value is within this set. The unit step value
is the difference between two adjacent values of the set. If
the unit step is 1, then j = i + 1 where xi and xj are
adjacent values in the set. The difference between any adjacent
values is considered to be constant. In the adaptive algorithm,
if the exploration is conducted, the algorithm changes the
parameter value either by increasing or decreasing it in unit
step. Therefore the parameter value cannot jump arbitrarily to
any value within the set. The reason behind the constraint is
that the assumption of performance improvement or reduction
changes gradually along the parameter set.

If there are k adaptive parameters and n is the number
of values for each parameter, the optimum set of parameters
needs to be determined out of nk combinations or states.
During the exploration, one parameter set which includes
adjacent parameter values with the existing set out of six
possibilities will be selected using the random generator.

For optimization purposes three parameters were selected
from the CTP protocol: maximum number of retransmissions,
minimum allocated queue entries for own packets, and retrans-
mission backoff time. These parameters were selected as they
are local parameters and considerably contribute on the packet
delivery rate. The default values assigned for each parameter
were 2, 2, and 4, respectively. Hence for all three parameters,
the value range was decided as [1,5]. Therefore as the inputs
to the algorithm were given as mentioned in Table III.

B. Adaptive Algorithm Based on Q Learning

The system requires learning from the environment without
prior knowledge. Hence we prefer reinforcement learning over
supervised learning and unsupervised learning algorithms.
Q learning and SARSA fall under reinforcement learning
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Fig. 2. Agent-environment interaction in reinforcement learning adopted
from [33].

theories, but Q learning is selected over SARSA as it con-
verges faster compared to SARSA. Also Q learning is simple,
model-free, adaptable to changing environments and uses less
processing power with lower amount of memory [33]. Also
it allows to evaluate a better parameter set in a distributed
manner.

An agent in Q learning is a learner and a decision maker
who takes actions according to a policy and interaction with
the environment. For the actions that are taken, rewards are
allocated according to the reward function. An action value is
denoted as Q(t, a) which implies the estimated value on the
tth time step [33]. Fig. 2 illustrates the link between the agent
and the environment.

The main Q learning components related to the our adaptive
algorithm are shortly described below.

• State: Valid protocol parameter combination which re-
quires adaptation.

• Action: Increasing, decreasing or keeping the same value
for the parameter.

• Reward: The reward received after evaluating the per-
formance metrics, number of queue drops and expected
number of transmissions.

• Exploration: Generate random value and if the random
value is less than ϵ, a random action is generated out
of six possible actions, which is increasing or decreasing
one parameter at a time. Keeping the same value for all
three parameters state was not considered for exploration.

The ϵ-greedy method is one method used for action se-
lection. In this method, exploration is conducted with a
probability of ϵ. The ϵ value can be reduced over time. The
disadvantage of the ϵ-greedy method is, when the agent wants
to explore it considers all actions with an equal probability.
For this reason the worst action or actions are selected with
a probability of other desirable actions. To overcome the
problem of selecting any action with equal probability during
exploration, the softmax action selection rule is proposed in
the literature [33]. The disadvantage of the softmax strategy
compared to the ϵ-greedy method is the difficulty in tuning
parameters of the softmax strategy [34]. For the implemen-
tation of our algorithm, ϵ-greedy is used for its on-node
implementation efficiency [35].

Once values for the parameter set are selected according to
the ϵ-greedy policy, values are not changed until the node
transmits three self generated packets. A window size of
three packets for reward calculation was decided based on
the performance of the network after conducting series of

Algorithm 1 Reward assignment

1: procedure CalRwd (cTx,prevTx,cDrop,minDrop,hop)
2: i← 0
3: if cTx = hop && cDrop = 0 then i← 4
4: else if cDrop = 0 then i← 3
5: else if cTx ≤ prevTx && cDrop ≤ minDrop then

i← 2
6: else if cDrop ≤ minDrop then i← 1
7: else i← 0
8: return i

simulations. The reward is calculated according to following
algorithm:

For the reward calculation, two performance measurements
of individual nodes are considered. The number of transmis-
sions required to send a packet to the sink and number of drops
in the send queue. With the two measurements, the algorithm
monitors the queue drops and the number of transmissions
required to send one packet and provides reward for the
parameter combination. After transmission of 3 packets, the
performance is evaluated for the window. The algorithm for
reward calculation is illustrated under Algorithm 1.

As we start from the known best values which may not be
optimum, positive values are allocated for rewards. A node’s
best performance occurs in a situation where the number of
transmissions from the nodes to sink is equal to the number
of minimum hops and zero packet drops. If a node achieves
the mentioned criteria, maximum award is assigned. For all
other cases which are better than the best known situation,
positive reward is allocated and if there is no improvement,
zero reward is allocated.

Once the reward is given for the performance of the pa-
rameter set within the window, the Q value is updated. For
the updating rule user defined two parameters are used, step
size parameter α and discount parameter γ. The step size
parameter confirms that the Q value is the weighted average
of past rewards and the initial reward estimate. The step size
parameter should be selected confirming the convergence of
the Q value with time. For the convergence, two conditions
needs to be satisfied as illustrated in (2) and (3) by the value
assigned for the step size [33]. αk(a) is the step size parameter
when action a is selected for the kth time step.

∞∑
k=1

α2
k(a) <∞ (2)

∞∑
k=1

αk(a)→∞ (3)

The discount factor γ determines the impact of the future
expected reward for the current reward. The value of the γ
varies in the range of [0,1]. When higher discount factor is
selected, future rewards are taken into consideration where
for lower discount factor more focuses on the current value.

Initial values in the parameter set are known best values. The
effort of the algorithm is to examine whether there is a better
set than the known parameter set. For this reason the algorithm
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Fig. 3. Flow chart of the adaptive learning algorithm.

needs to explore more before selecting another parameter set
as the optimal solution. Also the optimal solution must be
selected with considerable number of observations. For this
reason, the Q value that has the action converging towards
the known best parameter combination is set to 1, which is
a non-zero positive value in order to encourage exploration
before convergence. The rest of the Q values are set to zero.
All the Q values are stored in a static array and the values are
updated according to the update rule each time exploration or
exploitation is carried out.

The update rule for Q values is as follows:

Q(S,A)← Q(S,A)+α · (R+ γ ·maxaQ(S′, a)−Q(S,A)),
(4)

where Q(S,A) is the Q value for particular state and action,
α is the step size, R is the reward obtain for taking the action
A in the state S and γ is the discount factor. Q(S′, a) refers
to the Q value of the new state taking the action a. With the
update rule, new Q value for that parameter set with the action
is calculated by considering the reward for taking that action
and maximum expected future reward given in the new state.

Since our work is focused on a static environment, initially
learning parameters were set with the best combination and ϵ
was reduced after the network reaches the stable state. Hence
initially the ϵ value was set to 0.1 and after 300 exploration
or exploitation ϵ value was reduced as the packet delivery rate
(PDR) value tend to converge. In each learning cycle after 300
explorations, the ϵ value is multiplied by a constant which
is less than 1. A cycle includes a number of self-generated
packets specified by the window size w which is set to 3. Once
a node transmits w packets, ϵ is updated as shown in (5).

ϵt+w = ϵt × 0.99993, (5)

where ϵt is the current ϵ value and ϵt+w is the new value after
the number of packets specified by w have been transmitted.
Therefore once the convergence is initiated, the probability of
exploration is reduced.

The exploitation or exploration is also initiated at the
beginning of a window of 3 transmitted packets. The window
size was decided after conducting a series of simulation
experiments with a network of 10 randomly deployed nodes.
If the packet window is long, it will give better performance
evaluation but the convergence gets delayed. If the packet
window is too short, accurate performance of the parameters
cannot be obtained hence reward and the Q value calculation
will not be accurate.

The flow chart of the algorithm is illustrated in Fig. 3.

VII. EVALUATION METHODOLOGY: SIMULATION AND
REAL-WORLD EXPERIMENTS

A. Methodology for Simulation

To evaluate the performance of the adaptive protocol, the
Cooja simulator2 was used. Cooja was selected as it has
already implemented CTP using Contiki and for real world
testing, nodes could be programmed directly with the code
developed in Cooja [36], [37]. Z1 sensor nodes were selected
as the node model and the unit graph disk medium (UGDM)
distance loss model was used to simulate the wireless medium.

The simulations were conducted for networks with 10, 20
and 30 nodes. Each set of nodes were randomly deployed for
12 different topologies and each topology was repeated with
different random seeds for 10 times. Networks with 10 nodes
were deployed within an area of 125 m× 125 m, in case of
networks with 20 or 30 nodes the area was 150 m× 150 m.
For all topologies, the average packet transmission rate was
one packet per 10 seconds, the time interval between two
consecutive packets were randomized to avoid collision. The
Rime protocol was used on top of ContikiMac as the MAC
protocol. The simulations were terminated once each node had
sent 2500 packets.

Initially each adaptive parameter was set to the default value
as in the original protocol and the parameter range was defined
including five adjacent values. The minimum, maximum and
unit step values were given as the input for the adaptive
algorithm.

2http://anrg.usc.edu/contiki/index.php/Cooja Simulator
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Fig. 4. PDR for different fixed settings of the parameters α, ϵ and γ.

Fig. 5. Average PDR and confidence interval achieved with network of 10
nodes simulation.

B. Methodology for Real-World Experiments

To validate the performance of the adaptive protocol with
real world network, a WSN was set up with 10 Zolertia Z1
nodes3 running Contiki OS. In the network, the maximum
hop distance was 2 and multiple runs were performed. As
in the simulation, each node created and sent a packet in
average every 10 seconds. To avoid collisions, each packet
was transmitted at a randomized time within the 10 seconds
duration. Experiments were carried out using both the adaptive
protocol and the original CTP, for 8 hours each round.

To evaluate the performance of the overall network, the
average number of Packet Delivery Ratio was considered.

VIII. RESULTS

A. Learning Parameters

The values for the learning parameters were obtained by
checking 80 learning parameter combinations and conducting
10 rounds of simulations for the same combination.The value
range for each variable was selected after investigating several
previous works in the literature such as [38], [39]. For ϵ, the
values 0.1, 0.2, 0.4, 0.6, and 0.8, for γ the values 0, 0.3, 0.5,
and 0.8 and for α the values 0.2, 0.4, 0.6, and 0.8 were tested
to obtain the best combination with a randomly deployed 10-
nodes network. Fig. 4 illustrates the PDR obtained for different
learning parameters ϵ, γ, and α. The best packet delivery rate
values of the network were obtained when γ is 0.3, ϵ is 0.1
and α is 0.2 as marked in Fig. 4.

B. Performance of the Adaptive Parameter Algorithm

The results obtained by two evaluation methods, simulations
and the real-world experiments, are presented in the next two
subsections.

3https://zolertia.io/
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Fig. 6. Average PDR and 95% confidence interval achieved with network of
20 nodes simulation.

Fig. 7. Average PDR and confidence interval achieved with network of 30
nodes simulation.

1) Simulation Results: The average PDR values were cal-
culated for the adaptive protocol and the original CTP. Figures
5, 6 and 7 illustrate the PDR and confidence interval of each
network topologies with 10, 20, and 30 nodes respectively.
The graphs show that the performance improvement gained
by the adaptive protocol increases with the number of nodes
in the topology. For the topologies with 10 nodes, the average
performance improvement is 0.79%. But for the topologies
with 20 and 30 nodes the average performance improvement
is 13.44% and 29.41% respectively. Along with the number
of nodes within the network, the amount of traffic that needs
to be routed towards the sink increases. Also the number of
packet collisions, network congestion, limitation of the queue
of routing nodes impacts highly on the performance once
the traffic is high. For this reason individual nodes identify
their optimum parameter set according to their position in the
network.

We furthermore analysed how many percent of the nodes
changed their parameter settings away from the default set-
tings, dependent on the number of the node’s hop distance
to the sink. The results given in Fig. 8 illustrate the number
of nodes which have changed their parameter set away from
the default for different hop counts. The results show that the

Fig. 8. Percentage of nodes from different hop distances, which changed their
parameter set from the default value in simulated networks.

TABLE IV
COMPARISON OF PDR WITH DIFFERENT HOP DISTANCES.

Number of Nodes Hop Adaptive Original
in the Network distance protocol protocol

20 2 84.3% 63.5%
20 3 14.5% 3.9%
30 2 33.4% 16.2%
30 3 2.5% 0.23%

optimum parameter set differs from the default parameter set
when the hop count is increased and the number of nodes
increases in the network. Also their performance is tabulated
in Table IV. With the PDR values it can be seen that Adaptive
Protocol improves the performance with changed parameter
sets.

Fig. 9 illustrates the PDR percentage at sink node for a
network with 20 nodes. 10 different curves in the Fig. 9
illustrate 10 rounds of simulation results for the same topology.
The convergence of the network is important to obtain a
consistent performance. Hence the convergence time of each
topology is analysed. All nodes within the 10-node topology
converge to their optimum parameters after generating 500
packets respectively 5000 s. Most nodes in 10 nodes network,
the original parameter set is identified as its best parameter set.
Hence the required time for convergence is less. For networks
with 20 nodes convergence occurs after 10000 seconds. The
networks with 30 nodes converged between 10000 and 12000
seconds. Fig. 9 illustrates the convergence of the packet deliv-
ery rate after about 10000 packets when optimum parameter
set is identified by each node. In most WSN applications long
term deployment is required, so even spending 3 hours to
identify the best parameter set will be beneficial to obtain a
better performance of the network.

2) Results from Real World: Fig. 10 illustrates the packet
delivery rate obtained with real nodes for the same topology in
different rounds. The mean value obtained from the adaptive
protocol and the original protocol are 94.6% and 81.4%
respectively. Hence percentage improvement by the adaptive
protocol is 16.21%. The confidence intervals for adaptive
protocol and the original protocol are ±6.27% and ±11.73%
respectively. The simulated scenarios had a static environment
compared to the real world scenario. Due to the fact of
changing environmental conditions, the real world scenarios
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have a higher variation in the PDR results. Fig. 11 illustrates
the confidence interval in different simulation topologies and
real world scenario. ST: Indicates the simulation topology and
RW indicates the real world topology in Fig. 11. In real world
setup none of the nodes were away from more than two hops
from the sink. However 30% of nodes with a distance of two
hops had parameter sets different from the original. Even in
changing real world scenario, the adaptive algorithm improves
the performance of the network by identifying optimum pa-
rameter values.

IX. CONCLUSION AND FUTURE WORK

In this work we demonstrate that the individual performance
of nodes in a network differs when a protocol with static
parameter settings is deployed in different applications. For
this reason we formulated an adaptive algorithm on top of
the original protocol to learn from the environment and adapt
the optimum parameter set to improve the performance of
the network. The algorithm works in a distributed manner,
hence an individual node evaluates its best parameter set
without exchanging signalling packets with other stations. The

Fig. 11. Comparison of confidence interval in different simulation topologies
and real world experiment.

optimum learning parameters were obtained using series of
simulations with a network of 10 nodes. Using the best learn-
ing parameters we show that the formulated adaptive protocol
performs above the original protocol using simulations and
real world scenarios. The adaptive algorithm increases the
performance over the original protocol. The identified solution
might not be the optimum one, however Q learning is known
to find a solution near to the optimum.

The performance of the adaptive algorithm is significant in
networks with a higher number of nodes and networks with
nodes placed several hops away from the sink node. We believe
that the performance of large networks which are randomly
placed will significantly improve with the introduced adaptive
protocol.

In our work, the adaptive algorithm has been applied only
on top of CTP. The best learning parameters, that is epsilon,
alpha and gamma were evaluated using a network with 10
nodes. However this can be different for larger networks.
Hence it is important to identify best learning parameters
irrespective of the number of nodes in the network. As our
future work we plan to implement the adaptive algorithm on
top of another standard protocol with best learning parameters.
For that initially local parameters which contributes to the
performance significantly should be identified with their range
of parameter values which can be vary. With the feedback of
selected performance metrics, the parameters should be tuned.
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Andreas Könsgen works as a Postdoctoral Re-
searcher at the Sustainable Communication Net-
works Working Group at University of Bremen
since 2009. He has obtained his Diploma degree
in Electrical Engineering at Aachen University of
Technology, Germany, and his PhD degree at Uni-
versity of Bremen. His current research interest is the
deployment of machine learning in different network
architectures such as in sensor networks or in the
area of future Internet.

Thushara Weerawardane is working as Senior
Lecturer at the Department of Computer Engineer-
ing, Sir General Kotelawala Defence University, Sri
Lanka. He has obtained BSc. Hons in Electrical
Engineering, University of Moratuwa, Sri Lanka,
MSc in Information & Communication Technology
and PhD in Mobile Communication, University of
Bremen, Germany. His research interests are in
wireless sensor networks, Internet of things, 5G net-
works, machine learning, data science and statistical
analysis.



KARUNANAYAKE et al.: Q LEARNING BASED ADAPTIVE PROTOCOL ... 87

Anna Förster is currently a Professor at the Uni-
versity of Bremen in Germany. She has obtained
her MSc degree in Computer Science from the Free
University of Berlin in 2005 and her PhD from the
University of Lugano in 2009. Her research interests
lie in the areas of opportunistic networks, wireless
sensor networks for challenged environments and
network simulation. She is especially interested in
applications of ICT to achieve the sustainable de-
velopments goals.


