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ENERGENT: An Energy-Efficient UAV-Assisted
Fog-IoT Framework for Disaster Management

Forough Shirin Abkenar, Saeid Iranmanesh, Athman Bouguettaya, Raad Raad, and Abbas Jamalipour

Abstract—In this paper, we propose ENergy-efficient disastER
manaGmENT (ENERGENT) as a novel framework for disaster
management in the unmanned aerial vehicle (UAV)-assisted Fog-
Internet of things (IoT) networks. ENERGENT optimizes the
energy consumption of the terminal nodes (TNs), as well as
the UAVs, using three proposed algorithms. The first algorithm
optimally adjusts the 3D placement of the UAVs such that these
nodes consume the minimum energy to reach the desired cluster
of the TNs. Besides, the transmit power and the transmission
rate of the TNs are set in a way that their energy consumption
is minimized and the outage probability requirements are met
in the network. In the second algorithm, we propose an optimal
task offloading scheme where tasks are offloaded to the UAVs
in order to meet the network delay constraints. Finally, the
third algorithm takes advantage of wireless power transfer to
transfer energy to the TNs when their remaining energy degrades
a predefined threshold. This scheme guarantees a minimum
throughput for all TNs within a cluster by which the total
network throughput is maximized. Simulation results reveal
that ENERGENT outperforms the existing methods in terms of
optimized network energy consumption, delay, and throughput.

Index Terms—Disaster management, energy efficiency, fog-
IoT networks, throughput optimization, unmanned aerial vehicle
(UAV), wireless power transfer (WPT).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) or drones, which
operate autonomously or are flown under remote control,

have the characteristics such as versatility, mobility, and flex-
ibility. These features give UAVs the potential to be widely
used in different Internet of things (IoT)-based applications
such as disaster management, agriculture, military, network
communications, and smart healthcare [1]–[4]. The versatil-
ity of the UAVs becomes paramount when these nodes are
adopted as fog nodes (FNs) that will fly over the terminal
nodes (TNs) at the edge of the network (See Fig. 1). In such
scenarios, UAVs can take advantage of either a relay (UAV-
relay) or an FN (UAV-FN) to provide the required services to
the TNs. Each UAV-relay is responsible for delivering the tasks
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to the nearby base stations (BSs) for further processing [2],
whereas a UAV-FN receives the tasks from the TNs and pro-
cesses them locally. The role of UAV-FNs is more significant
than UAV-relays in scenarios, such as disaster management,
where accessing the stationary BSs is difficult, challenging, or
even impossible for the TNs. However, the computing capacity
of UAV-FNs is limited. To cope with this shortcoming, UAV-
FNs can cooperate with the terrestrial BSs or cloud servers [5].

The tasks generated by TNs are highly delay-sensitive,
especially in disaster management scenarios such as fire and
flood [6], wherein making urgent decisions is critical. Apart
from the importance of the latency in such scenarios, the
limited energy budget of TNs imposes a limitation on them
for processing their tasks, locally. This is more significant
for the highly important tasks, such as map navigation and
exploring applications, which consume a remarkable amount
of energy. To tackle the aforementioned issues, complementary
resources need to be leveraged at the shortest distance with the
TNs. UAV-FNs are suitable candidates in this regard thanks to
their mobility and versatility. The UAV-FNs can hover in an
optimal 3D position above TNs such that the TNs consume
less energy for offloading the tasks to them. Besides, the
shorter distance between the UAV-FN and TNs alleviates the
transmission delay of the tasks [5]. However, managing net-
work communications and computations to achieve the highest
performance is always challenging. Thereby, schemes with
optimal task offloading and energy consumption management
are required to improve the efficiency of Fog-IoT networks.

A. Literature Review

The studies in the literature show a large research body in
improving the efficiency of UAV-enabled IoT networks. For
example, Wu et al. [7] investigate trajectory planning and com-
munication power control for a multi-UAV multi-user system.
This work aims to maximize the throughput over ground users
in a downlink scenario. Similarly, in [8], the authors consider
the energy efficiency of the UAV-assisted communication
networks and propose a UAV trajectory planning for hovering
above a single ground communication terminal. Tang et al. [9]
study a game-based channel assignment scheme for UAVs
in D2D-enabled communication networks. UAVs have also
been utilized to enhance the flexibility of a mobile edge
computing system in [10] and [11], where UAVs act as relay
nodes to be involved in the computation of the offloading
process. More recently, the researchers utilized UAVs as aerial
cloudlets to provide edge computing services. For example,
Jeong et al. [12] investigate the UAV’s path planning to
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minimize the energy consumption of communication for task
offloading at mobile users. This is while the energy budget
of UAV cloudlet is constrained. In [13], the authors consider
the computation offloading strategy in an IoT network when
the UAV trajectories are pre-determined. The objective is to
minimize the computing delay, user energy consumption, and
server computing cost.

Pandey et al. propose a new method in [14] to address
the seamless indoor IoT connectivity of the farthest multiple
users. The method optimizes the transmission power of all
users, which are randomly located in the network, such that
all of them can receive the transmitted data from the UAV-
FN with a minimum path loss. A joint offloading method
is proposed in [15] for the hierarchical fog-cloud computing
system, including multiple mobile users and multiple UAVs,
to minimize the total weighted consumed power of the system.
The authors in [16] consider a system model, including
multiple UAVs and multiple TNs, in which TNs are activated
randomly over time. Accordingly, a framework is proposed
to jointly optimize 3D placement and mobility of the UAVs,
device-UAV association, and uplink power control such that
the total transmission power of TNs is minimized and the
network path loss is alleviated. However, this approach suffers
from large delay as it disregards the delay factor in allocating
UAV-FNs to clusters.

Liu et al. [17] investigate the control of the power consump-
tion of the IoT devices which is a challenge as most of the
devices are battery-powered. They utilize a UAV to assist in
a heterogeneous IoT for emergency communications. Hence,
a distributed non-orthogonal multiple access (NOMA) scheme
is proposed regardless of successive interference cancellation
(SIC). To provide communication coverage for the alive users
and IoT devices efficiently, a multi-objective resource alloca-
tion (MORA) scheme is proposed. Briefly, the initial MORA
problem is formulated and decoupled with the user power ini-
tialization. A reweighted message-passing algorithm (ReMPA)
is used to assign the sub-channels to the devices and the
users step by step. Lastly, the transmitting power of users and
devices are jointly fine-tuned using an iterative access control
scheme.

The authors in [2] study an overview of different UAVs-
based, IoT-based, and IoT, coupled with UAVs platforms to
efficiently manage disasters. They propose an energy-efficient
task scheduling scheme for UAVs to collect data from the
ground IoT devices. The main contribution is to optimize the
flight path of UAVs such that their energy consumption is
minimized. To this end, the scheme analyzes the collected
vital signs data by UAVs for people involved in disaster areas.
Moreover, the decision tree classification algorithm is carried
out to determine their health status.

Nowadays, wireless power transfer (WPT) has attracted the
attention of many researchers, where the UAVs can wirelessly
transfer power/energy to the TNs and hence, compensate
for the shortage of the limited energy budget of the TNs.
For instance, Iranmanesh et al. [18] consider a scheme in
which the UAVs take over the parcel delivery. The authors
propose a heuristic flight path planning (HFPP) scheme that
utilizes wireless charging stations to prolong the flight time

of UAVs for joint parcel delivery and data communication
provisioning. Leng [19] analyzes the utilization of UAVs to
charge wireless sensor networks using wireless power trans-
fer. Moreover, the author evaluates the impact of different
parameters on the networks’ lifetime. In [20], the UAV is
employed to charge the sensors to maximize the lifetime of
the wireless sensor network. Basha et al. [21] also consider
the benefit of leveraging the UAVs to power the sensors and
the conditions needed. In both of these works, the authors
only investigate a one-shot charging process. In [22], the
UAVs are utilized as energy providers to charge the D2D
pairs for which two phases are conducted in each time slot,
namely the energy harvesting phase, and the information
transmission phase. The energy required for the information
transmission phase is limited by the energy received in the
energy harvesting phase. However, the dynamic character-
istic is not considered in the resource allocation problem.
The authors in [23] introduce another UAV-enabled charg-
ing system in which the sum energy maximization problem
and the minimum received energy maximization problem are
optimized separately. Li et al. [24] address the problem of
radio-frequency-based wireless charging for wireless sensor
networks by considering energy harvesting and information
transmission together. In their approach, frequency division
multiplexing and time-division multiplexing are adopted. The
authors mainly focus on the power allocation problem. In [25],
the utilization of UAV-assisted wireless power transfer in
mobile-edge computing is investigated, where UAVs are used
to provide energy for the devices and perform computation-
intensive tasks for the devices. However, the energy constraint
of the UAV is not considered.

B. Motivation

The existing schemes and frameworks in the literature
optimize the energy consumption of all the UAVs and the
TNs by adjusting the 3D placement of the UAVs, optimizing
the transmit power of the TNs, or optimizing task allocation
mechanisms in the UAV-assisted Fog-IoT networks. On the
other hand, research efforts have been devoted to improving
the UAV-assisted Fog-IoT networks in disaster management
in terms of delay and energy consumption of nodes. However,
in all of them, the UAVs are the main nodes for controlling
the situation, collecting the data, and reducing the energy
consumption of the TNs by optimally adjusting their 3D
placement or efficiently flying over the TNs. This is while
the UAVs suffer from the limited energy budget themselves.
Moreover, the energy budget of TNs is limited, which leads to
throughput degradation if the TNs need to process their tasks
locally. Based on the aforementioned gaps in the literature,
we take advantage of UAVs for charging the TNs, and their
flexibility in optimizing the transmit power of the TNs.

C. Contribution

To deal with the challenges in the literature, for the first
time, we propose a framework, named ENergy-efficient disas-
tER manaGmENT (ENERGENT), wherein each TN takes over
the processing of a portion or whole of a task in collaboration
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with the UAV-FNs. ENERGENT includes an energy harvesting
scheme to transfer power to UAV-FNs and TNs to prolong
the network lifetime. Overall, ENERGENT comprises three
schemes as discussed below that aim to improve the energy
efficiency of the Fog-IoT networks in disaster management
while meeting the quality of service (QoS) requirements in
the network. Specifically, the contributions of the paper are
summarized as follows:

- An assignment scheme is proposed to optimally allocate
each UAV-FN to a different and unique cluster of TNs
such that the UAV-FNs consume the minimum energy to
fly toward the corresponding cluster. Hence, an optimiza-
tion problem is defined to optimize the 3D placement of
the UAV-FNs so that the TNs reach their maximum trans-
mission rate and transmit power while meeting the outage
probability constraint in the network. Subsequently, the
energy consumption of TNs is optimized.

- A task offloading scheme is proposed to boost the battery
life of the TNs. In this scheme, which is a partial
offloading scheme, each TN can process a portion of
a task locally, and offload the rest to the corresponding
UAV-FN. Therefore, the optimal partial amount of the
tasks needs to be found in a way that the delay constraints
are met and the TNs consume the minimum energy for
processing the tasks.

- An energy harvesting scheme is proposed in which
a UAV-FN transfers energy to the TNs belonging to
the corresponding cluster when the available energy is
below a predefined threshold. Moreover, a WPT-UAV
with enough energy resources, e.g., the solar-powered
Facebook Aquila, is used to transfer wireless power to
the UAV-FNs when required.

D. Organization

The rest of this paper is organized as follows: Section II
presents the system model, including channel model, outage
probability model, delay model, energy model, and throughput
model. Section III includes the proposed ENERGENT frame-
work and the corresponding schemes. Numerical results are
provided in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider a system model shown in Fig. 1, including
N UAV-FNs and M TNs. The set of UAV-FNs is shown by
V = {v1, v2, · · ·, vN}. Moreover, there exists a WPT-UAV to
transfer energy to the UAV-FNs when necessary. It is assumed
that the TNs group together to form the clusters based on
their location. The k-means clustering [26] method is used in
this regard. Each cluster c is composed of Mc TNs, where
TN(i, c) represents i-th TN belonging to cluster c. Without
loss of generality, we assume that each TN(i, c) generates
one task in each time slot with an average size of L(i,c).
Every task can be partially/completely processed at the TN
locally and/or offloaded to the corresponding UAV-FN. The
transmission mode between the TNs and the corresponding

Fig. 1. System model.

UAV-FN is full-duplex. Also, multiple TNs within a cluster
can simultaneously transmit their tasks to the UAV-FN. In
light of that, the TNs utilize the frequency division multiple
access (FDMA) method to access the shared channel. Among
all available UAV-FNs in the network, only one UAV-FN is
assigned to each cluster at a time slot. Besides, a cluster can
only be assigned to one and only one UAV-FN at each time
slot. Each UAV-FN covers an area with a radius of R.

The 3D placement of the UAV-FNs, especially the flight alti-
tude of the UAV-FNs, plays an important role in providing the
QoS requirements in the network. For instance, by increasing
the flight altitude, the outage probability of delivering the tasks
generated by TNs to the corresponding UAV-FN increases.
In such a situation, the TNs need to consume more energy
to offload their tasks to the UAV-FN and suffer from larger
delays. Therefore, optimizing the flight altitude of the UAV-
FNs is an essential objective behind this work. In the rest of
this section, we study the channel model of TN-UAV pairs, the
outage probability model, the delay model, the energy model
of nodes, and the throughput model in the network.
Notations: In this paper, scalars are denoted by italic letters.
Boldface lower-case letters denote vectors. For a vector a,
∥a∥, aT , and aH represent its Euclidean norm, its transpose,
and its conjugate transpose, respectively. Pr(·) denotes the
probability. Γ(·) and Γ(·, ·) denote the Gamma function and
the upper incomplete Gamma function, respectively; Finally,
U [·] indicates the uniform distribution.

A. Channel Model

According to assumptions of the considered system model,
the line-of-sight (LoS) propagation is established between a
TN-UAV pair. Among all available practical distributions for
the LoS transmission, the Nakagami-m distribution with the
shape parameter m is a well-known model which can capture
a wide range of fading scenarios (m < 1 for Hoyt, m = 1
for Rayleigh, and m > 1 for Rician) [27]–[29]. Therefore, the
channel capacity between a TN and the corresponding UAV-
FN is defined as
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C(i,c)j = B log2

(
1 +

P(i,c)g0ℏ(i,c)jd−α
(i,c)j

I(i,c) + σ2

)
, (1)

where B is the bandwidth, P(i,c) is the transmit power of
TN(i, c), g0 denotes the channel gain at the reference distance
dm = 1 m, α shows the path loss exponent, σ2 is the additive
white Gaussian noise (AWGN) power, and ℏ(i,c)j represents
the fading coefficient of the channel, following Gamma distri-
bution, with a mean of 1. I(i,c) =

∑Mc

i′=1
i′ ̸=i

P(i′,c)g0ℏ(i′,c)jd−α
(i′,c)j

is the interference derived from interfering BSs. Finally, d(i,c)j
stands for the distance between TN(i, c) and vj , which is given
as

d(i,c)j =
√
z2j + ∥uj − u(i,c)∥2, (2)

where zj is the flight altitude of vj , uj = [xj , yj ]
T and

u(i,c) = [x(i,c), y(i,c)]
T are the horizontal coordinate of vj

and TN(i, c), respectively. Moreover, the height of TNs is set
to zero.

In the considered system model, the interference power
produced by other transmitters is much larger than the AWGN.
Hence, the interference is dominant over the noise, and the
network performs in an interference-limited regime [30]. Ac-
cordingly, we ignore the noise in our calculations. Therefore,
signal to interference ratio (SIR) is expressed as

C(i,c)j = B log2

(
1 +

P(i,c)g0ℏ(i,c)jd−α
(i,c)j

I(i,c)

)
. (3)

B. Outage Probability Model

In the considered system model, the outage probability hap-
pens when the transmission rate of a TN exceeds the channel
capacity between the TN and the corresponding UAV-FN be-
yond which the UAV-FN cannot receive the tasks. Accordingly,
considering R(i,c) as the transmission rate of TN(i, c), the
outage probability is defined as Pout = Pr(C(i,c)j < R(i,c))
[31], [32]. We assume that the fading coefficient of all channels
in a cluster is the same, i.e., ℏ(i,c)j = ℏ,∀ TN(i, c) ∈ cluster c.
By employing the methods and assumptions provided in [33],
we have

P out =
m(m−1)A2m

1 Γ(2m,mℏ2)
Γ2(m)

− Γ(m,mℏ2)
Γ(m)

,

where A1 =

(
2R(i,c)j/B − 1

)
dα(i,c)j

∑Mc

i′=1
i′ ̸=i

d−α
(i′,c)j

P(i,c)g0
.

(4)

C. Delay Model

The delay model depends on the allocation scheme of the
tasks. If the corresponding TN processes the task locally, the
delay model is equal to the processing delay at the TN. We
assume that the queuing model in the TNs follows the first
in first out (FIFO) model. By considering t0 as the time that
a TN needs for processing one bit and L̂(i,c) as the number

of bits buffered at TN(i, c), the processing delay of a task at
TN(i, c) is calculated as

Dcomp
(i,c) = L̂(i,c)t0 + L(i,c)t0. (5)

In the case of offloading, a task suffers from two types of
delay. The first delay is the transmission delay for sending
the generated task from the corresponding TN to the corre-
sponding UAV-FN; and the second type of delay, referred to
as computing delay, is the required time for processing the
task at the corresponding UAV-FN. The transmission delay of
a task generated by TN(i, c) is expressed as [34], [35]

Dtx
(i,c) =

L(i,c)

R(i,c)
. (6)

By respectively considering µj , λj , and Lj as the service rate,
the average traffic rate, and the average size of tasks per arrival
at vj , the computing delay for L(i,c) at vj is calculated as [36]

Dcomp
(i,c)j =

L(i,c)

µj − λjLj
. (7)

D. Energy Model

In the following, the energy models of TNs and UAV-FNs
are represented separately.

1) Energy model of TNs: The energy consumption of TNs
comprises three parts: the required energy for processing a
task locally; the required energy for transmitting a task to the
corresponding UAV-FN; and as a novel contribution of our
proposed framework, the harvesting energy that the UAV-FN
transfers to the TNs.

a) Task processing energy model: By considering e0 as
the energy for processing one bit by a TN, the task processing
energy is expressed as

Ecomp
(i,c) = L(i,c)e0. (8)

b) Offloading energy model: The energy consumption for
offloading a task to the corresponding UAV-FN depends on the
transmit power, as well as the transmission rate of a TN, which
is given as [35], [37]

Etx
(i,c) = Pi

L(i,c)

R(i,c)
. (9)

c) Energy harvesting model: When the remaining en-
ergy of TNs in a cluster degrades a threshold, Eth, the
corresponding UAV-FN is responsible to transfer the energy
to the TNs. The received power at TN(i, c) is given by
P rx
(i,c) = Pj∥ℏ(i,c)j∥2d−α

(i,c)j , where Pj is the transmit power
of the UAV-FN. We adopt a piece-wise linear EH model
[38], in which the harvested power is linearly boosted with
the received power up to a threshold, called the saturation
point. Let η(i,c) and Psat show the linear energy conversion
efficiency and the saturation power, respectively. Therefore,
the harvested energy by TN(i, c) is modeled as

Ph
(i,c) =

{
η(i,c)P

rx
(i,c) 0 ≤ η(i,c)P

rx
(i,c) < Psat

Psat η(i,c)P
rx
(i,c) ≥ Psat.

(10)
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2) Energy model of UAV-FNs: The energy consumption
of a UAV-FN is composed of two parts. The major part
is the propulsion energy, i.e., the energy that the UAV-FN
consumes to fly towards the corresponding cluster and hover
there. The minor part is communication-related energy, i.e.,
the energy consumption for processing the tasks. Since the
propulsion is dominant on the communication-related energy,
the latter is usually ignored in the calculations [39]. However,
according to the assumption of the proposed framework in
this paper, the communication-related energy can affect the
optimal association of the UAV-FNs and the clusters. Hence,
we consider both energy consumption of the UAV-FNs for
flying toward the corresponding cluster. It is worth mentioning
that, the UAV-FNs are responsible for transferring energy to
the TNs within the corresponding cluster during the computing
time, which leads to the reduction of the UAV-FNs’ energy
budget. To compensate for such a reduction, the WPT-UAV
takes over to recharge the UAV-FNs when their energy budget
degrades a predefined threshold.

a) Propulsion energy model: We assume that each UAV-
FN moves with a constant speed V towards the correspond-
ing cluster. The center of a cluster shows the horizontal
coordinate of the cluster, which is defined as the mean of
coordinate of the TNs belonging to the cluster, i.e., uc =
[xc =

∑Mc

i=1 x(i,c)/Mc, yc =
∑Mc

i=1 y(i,c)/Mc]
T . Accordingly,

the energy consumption of vj to flight toward cluster c in dcj
meters is calculated as

Ef
(i,c)j = E0dcj , (11)

where E0 is the required energy for flying per meter unit which
is given as [39]

E0 = P0

(
1

V
+

3V

U2
tip

)
+ Pin

(√
V −4 +

1

4V 4
0

− 1

2V 2
0

) 1
2

+
1

2
d0ρsAV 2,

(12)

where P0 and Pin are the blade profile power and induced
power in hovering status, respectively; V0 denotes the mean
rotor induced velocity in hover; ρ and A are known as the air
density and rotor disc area, respectively. Utip represents the
tip speed of the rotor blade; d0 stands for the fuselage drag
ratio; and finally, s is the rotor solidity.

After arriving above cluster c, the UAV-FN must adjust
its flight altitude for which the UAV-FN changes its altitude
for z̃j meter. It also can stay for a time period with fixed
power consumption above the cluster to process the tasks
generated by TNs. By respectively considering efa and Ph

as the required energy for adjusting one meter and the power
consumption of the UAV-FN for hovering in Watt, the energy
consumption for flight altitude adjustment and hovering by vj
is calculated as

Ealt
j =

adjusting︷ ︸︸ ︷
efaz̃j + Phτ︸︷︷︸

hovering

, (13)

where τ shows the time that vj spends to hover, which is
known as the time-slot duration in this paper. Overall, the total
energy consumption of vj for flying toward the corresponding
cluster c and hovering there is given as

Et
cj = E0dcj + efaz̃j + Phτ. (14)

b) Communication-related energy model: Let ẽ0 indicate
the energy that a UAV-FN consumes to process one bit. Hence,
the total energy for processing a task with a size of L(i,c) is
expressed as

Ecomp
j = L(i,c)ẽ0. (15)

E. Throughput Model

In a time slot with a duration of τ , the system throughput is
defined as the total number of bits that the TNs offload to the
corresponding UAV-FN. Therefore, the throughput of TN(i, c)

with respect to vj is defined as

T(i,c)j = B log2

(
1 +

P(i,c)g0ℏ(i,c)jd−α
(i,c)j

I(i,c)

)
τ. (16)

III. PROPOSED ENERGENT FRAMEWORK

The ENERGENT framework is proposed in this section
to improve the energy efficiency of the Fog-IoT networks
in disaster management. In this regard, the ENERGENT
employs three schemes, which are optimal UAV-FN assign-
ment scheme, optimal task-offloading scheme, and optimal
energy transferring scheme. The schemes are explained in the
following sub-sections.

A. UAV-FN Assignment Scheme

The main objective of this scheme is to assign the UAV-
FNs to the clusters in a way that each UAV-FN consumes the
minimum energy for flying toward the corresponding cluster.
Thereafter, the 3D placement of the UAV-FN is optimized with
respect to the TNs within the corresponding cluster such that
the TNs reach the optimal transmission rate, as well as transmit
power, while the network outage probability constraint is met.
As a result, the TNs will consume less energy to offload
the tasks to the corresponding UAV-FN with respect to the
obtained optimal transmission rate and transmission power.
Therefore, the UAV-FN assignment scheme is divided into two
phases: the allocation phase and the 3D placement phase.

1) Allocation phase: The main objective of the allocation
phase is to assign the UAV-FNs to the clusters so that each
UAV-FN flies toward the corresponding cluster with the least
energy consumption. We define acj to be an indicator function,
which is equal to one if vj is assigned to cluster c, and zero
otherwise. Let assume that the optimal number of clusters in
the network is Nc, where N ≥ Nc. By considering Eav

j as the
available energy of vj , the allocation problem is formulated
as
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(P1): minimize
acj

E0dcjacj , (17)

s.t.

Nc∑
c=1

acj = 1, 1 ≤ j ≤ N, (17a)

N∑
j=1

acj = 1, 1 ≤ c ≤ Nc, (17b)

Mc∑
i=1

L(i,c)ẽ0acj ≤ Eav
j , 1 ≤ j ≤ N, 1 ≤ c ≤ Nc, (17c)

acj ∈ {0, 1}, 1 ≤ j ≤ N, 1 ≤ c ≤ Nc. (17d)

Constraint (17a) implies that each UAV-FN can be assigned
to one and only one cluster. According to (17b), that is
complementary of (17a), each cluster is associated with only
one UAV-FN. Constraint (17c) emphasizes that the available
energy of the candidate UAV-FN must be greater than the
total energy for processing the incoming tasks from the
corresponding TNs. Finally, (17d) indicates that acj is a binary
variable.

a) Convergence, optimality, and complexity: P1 is linear
in terms of acj . Moreover, since acj is a Boolean, P1 is
Boolean linear programming (LP) problem. To solve P1, we
use relaxation method, by which acj ∈ {0, 1} is relaxed to
0 ≤ acj ≤ 1, 1 ≤ j ≤ N, 1 ≤ c ≤ Nc. The relaxed problem
is convex, thus the convex optimization toolbox, namely CVX,
is used to solve it [40]. The relaxed problem is solved in a
polynomial time in terms of the number of clusters and the
UAV-FNs, i.e., O(N ×Nc).

2) 3D placement phase: After successful association be-
tween the UAV-FNs and the clusters, each UAV-FN needs
to optimally adjust its 3D placement with respect to the
corresponding cluster. Accordingly, the TNs within the cluster
reach their optimal transmission rate and transmit power by
which the energy consumption of the TNs for offloading the
tasks to the UAV-FN is minimized. Moreover, the outage
probability requirement is met in the network.

The average signal to noise ratio (SNR), Ω, is defined
as [41]

Ω =
P(i,c)d

−α
(i,c)j

σ2
E[ℏ(i,c)j ] =

P(i,c)d
−α
(i,c)j

σ2
. (18)

According to the assumptions provided in [42], Ω is bounded
as

Pmin
(i,c)

Pmax
(i,c)

Ω ≥ Ωth, (19)

where Ω is the SNR threshold. Therefore, the transmit power
of TN(i, c) is calculated as [41]

P(i,c) ≥

√√√√Pmax
(i,c) d

α
(i,c)jσ

2Ωth

Pmin
(i,c)︸ ︷︷ ︸

P lb,1
(i,c)

. (20)

On the other hand, the outage probability must be less than
a threshold, β, i.e., P out ≤ β. By substituting the obtained
value from (4) in the aforementioned inequality and solving it
in terms of R(i,c), we have

R(i,c) ≤ B log2

1 +
Γ1/m(m)

(
β + Γ(m,mℏ2)

Γ(m)

)1/2m
A4

m(m−1
2m )Γ1/2m(2m,mℏ2)


︸ ︷︷ ︸

Rup
(i,c)

,

(21)
where A4 = P(i,c)g0d

−α
(i,c)j/

∑Mc

i′=1
i′ ̸=i

d−α
(i′,c)j .

According to the energy model defined for the UAV-FNs,
each vj consumes efa|zinitj − zj | energy unit for adjusting its
altitude, where zinitj is the initial non-optimal altitude of vj .
We consider the aforementioned energy consumption in the
proposed optimization problem for the 3D placement scheme.
Therefore, for each vj and the corresponding cluster c with
acj = 1, we have

(P2):

minimize
P(i,c),R(i,c),zj

Mc∑
i=1

P(i,c)L(i,c)

R(i,c)
+ efa|zinitj − zj |,

(22)

s.t.

z2j + ∥uj − u(i,c)∥2 ≤ R2, ∀i ∈ c, (22a)

P(i,c) ≥

√√√√Pmax
(i,c) d

α
(i,c)jσ

2Ωth

Pmin
(i,c)

, ∀i ∈ c, (22b)

R(i,c) ≤ Rup
(i,c), ∀i ∈ c, (22c)

P(i,c) ≤ Pmax
(i,c) , R(i,c) > 0, ∀i ∈ c; zmin ≤ zj ≤ zmax. (22d)

According to (22a), the optimal flight altitude of vj must be set
so that all TNs belonging to the cluster are under the coverage
of vj . Constraint (22b) indicates the minimum value of the
transmit power for each TN that meets the QoS requirements.
Constraint (22c) implies that the transmission rate of a TN
should not exceed the obtained value in (21). Finally, (22d)
shows the boundaries of the decision variables.
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a) Convergence, optimality, and complexity: The objec-
tive function provided in (22), constraint (22b), and con-
straint (22c) all are non-convex because the objective variables
P(i,c) and R(i,c) are functions of the other objective variable,
i.e., zj . However, it can be found that the objective function
is minimized if P(i,c) and R(i,c) reach their minimum and
maximum value, respectively. Moreover, the minimum value
of zj results in minimizing the objective function. On the
other hand, it can be concluded from (22b) and (21) that the
minimum value of zj leads to the minimum value of P(i,c) and
the maximum value of R(i,c). Therefore, the optimal value of
zj is the solution of P2. After obtaining the optimal value of
zj , the optimal value of P(i,c) is found for a given value of
R(i,c). By manipulating (21), we have

P(i,c) ≥

P lb,2
(i,c)︷ ︸︸ ︷(

2R(i,c)/B − 1
)
A5,

where A5 =

m(m−1
2m )Γ1/2m(2m,mℏ2)

∑Mc

i′=1
i′ ̸=i

d−α
(i′,c)j

Γ1/m(m)
(
β + Γ(m,mℏ2)

Γ(m)

)1/2m
g0d

−α
(i,c)j

.

(23)

Therefore, the optimal value of P(i,c) is given as

P ∗
(i,c) = min

{
max

{
P lb,1
(i,c), P

lb,2
(i,c)

}
, Pmax

(i,c)

}
. (24)

Thereafter, the optimal value of the transmission rate of
TN(i, c) is calculate as

R∗
(i,c) = B log2

(
1 +A6P

∗
(i,c)

)
,

A6 =
Γ1/m(m)

(
β + Γ(m,mℏ2)

Γ(m)

)1/2m
g0d

−α
(i,c)j

m(m−1
2m )Γ1/2m(2m,mℏ2)

∑Mc

i′=1
i′ ̸=i

d−α
(i′,c)j

.

(25)

We adopt the proposed algorithm in [43], where a bisection
algorithm has been designed to find the optimal flight altitude
of the UAV-FN such that the transmit power and the transmis-
sion rate of the TNs reach the optimal values. Algorithm 1
shows the procedure of obtaining the optimal transmission
rate, as well as transmit power, for TNs and the optimal flight
altitude for the corresponding UAV-FN by using the bisection
algorithm. The algorithm first finds the optimal flight altitude
of the UAV-FN such that all TNs are within its coverage area.
Then, it calculates optimal transmit power and transmission
rate for all TNs. By considering ϵ = Mc − covered, the
complexity of Algorithm 1 will be O(Mc(log ϵ)/2).

B. Task-Offloading Scheme

Due to the delay constraints and limitations in the compu-
tation capacity of the TNs, a task can be partially offloaded to
the corresponding UAV-FN. The optimal portion of the task
for offloading can significantly improve the energy efficiency
of the TNs. This can be achieved because the TNs consume

Algorithm 1 Optimal 3D placement of the UAV vj

1: Input: ε > 0, R, zmax
j , zj , Mc, 1 ≤ c ≤ Nc;

2: zmin = zmin;
3: zmax = zmax;
4: repeat
5: zm = ⌊(zmin + zmax) /2⌋;
6: covered← total # of TNs under coverage of vj ;
7: if covered == Mc then
8: zmin = zm;
9: else

10: zmax = zm;
11: end if
12: until (covered− Mc < 0)
13: z∗j = zm;
14: for i = 1 : Mc do
15: Calculate P ∗

(i,c) by using (24);
16: Calculate R∗

(i,c) by using (25);
17: end for
18: Return u∗

j , z∗j , P ∗
(1,c), · · · , P

∗
(Mc,c)

, R∗
(1,c), · · · , R

∗
(Mc,c)

;

more energy to process the tasks locally than offloading them
to the corresponding UAV-FN. To this end, we define ρ(i,c) as
the portion that needs to be offloaded to the UAV-FN. Let Dth

indicates the delay threshold of processing a task. Therefore,
for every task generated in the network, the optimal offloading
portion is obtained by solving the following optimization
problem.

(P3): minimize
ρ(i,c)

(1− ρ(i,c))L(i,c)e0 + ρ(i,c)
P(i,c)L(i,c)

Ri,c
, (26)

s.t.

(
L̂(i,c) + (1− ρ(i,c))L(i,c)

)
t0 +

ρ(i,c)

(
L(i,c)

R(i,c)
+

L(i,c)

µj − λjLj

)
≤ Dth,

(26a)

0 ≤ ρ(i,c) ≤ 1, 1 ≤ i ≤ Mc, , 1 ≤ c ≤ Nc. (26b)

Constraint (26a) implies that the optimal portion should be
set in a way that the sum of the processing delay at the corre-
sponding TN locally and the offloading delay does not exceed
the predefined delay threshold. Constraint (26b) indicates the
boundaries of ρ(i,c).

1) Convergence, optimality, and complexity: P3 is an LP
problem with respect to ρ(i,c). Therefore, the CVX toolbox is
used to solve the problem. The time complexity of the problem
is linearly increased with the number of TNs in the network,
i.e., M .

C. Energy Transferring Scheme

In time slot k, when the average available energy consump-
tion of the TNs reaches below a predefined threshold, the
corresponding UAV-FN starts its mission to transfer energy to
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Fig. 2. Block structure of the considered system model.

the clusters. Fig. 2 shows the block structure of the considered
system model. At the beginning of a time slot, the UAV-
FN transfers energy in a time duration τhc ; Thereafter, the
cluster starts transmitting data to the corresponding UAV-FN
within the time duration τ tc . It is noticeable that each τhc
and τ tc for cluster c are divided into Mc parts, respectively
termed as τh(i,c) and τ t(i,c), corresponding to the TNs within
the cluster. However, the UAV-FNs consume a lot of energy
by transferring power to the TNs. Therefore, the WPT-UAV
is employed to compensate for the energy reduction of the
UAV-FNs by transferring energy to them when required.

The main objective of the proposed scheme is to find
the optimal information transfer duration, as well as the
optimal harvested energy, for each cluster in a way that a
minimum throughput is guaranteed for all TNs in the cluster.
Therefore, the corresponding problem with respect to cluster
c is formulated as

(P4): maximize
τt
(i,c)

,Ph
(i,c)

,T
T , (27)

s.t.

B log2

(
1 +

Ph
(i,c)g0ℏ(i,c)jd

−α
(i,c)j

I(i,c)

)
τ t(i,c) − T ≥ 0, (27a)

Mc∑
i=1

(
τh(i,c) + τ t(i,c)

)
≤ τ, (27b)

τh(i,c)P
h
(i,c) ≥ (1− ρ(i,c))L(i,c)e0 + ρ(i,c)

P(i,c)L(i,c)

Ri,c
,

1 ≤ i ≤ Mc,

(27c)

Ph
(i,c) ≤ min{η(i,c)P rx

(i,c), Psat}, 1 ≤ i ≤ Mc, (27d)

τ t(i,c), P
h
(i,c) > 0, 1 ≤ i ≤ Mc, T > 0. (27e)

Constraint (27a) ensures a minimum throughput for all TNs
within the cluster. Constraint (27b) indicates that the sum of
the time duration for harvesting the energy and transmitting the
data to the corresponding UAV-FN for a cluster must be equal
to the time slot duration. According to (27c), the harvested
energy must be equal to or greater than the required energy
for offloading the task to the UAV-FN. Constraint (27d) implies

Table I
SYSTEM SETUP FOR NUMERICAL SIMULATIONS.

Parameter B α β Psat zmax zmin

Value 10 MHz 3 0.01 1 W 120 m 30 m

Fig. 3. Impact of saturation power and transmit power of UAV-FNs on the
network throughput.

that the harvested power cannot exceed the minimum value of
the saturation power and a predefined threshold. Finally, (27e)
shows the lower bound of the objective variables.

a) Convergence, optimality, and complexity: The main
objective of the proposed model P4 is to jointly optimize the
information transfer duration and the harvested energy in each
time slot such that a minimum throughput is guaranteed for
each cluster. To solve P4, we first assume that τ t(i,c) is fixed
for all TNs within the cluster c. Hence, we find the optimal
value of the corresponding harvested power, i.e., Ph,∗

(i,c). Then,
the optimal information transfer time, i.e., τ t,∗(i,c), is obtained.
Since P4 is an epigraph problem form [44], the CVX toolbox
is used to solve P4 and obtain the results.

IV. NUMERICAL RESULTS

We consider a system in which M = 100 TNs are uniformly
distributed in a region with a radius of r = 2000 m. Each
TN(i, c) generates a task in each time slot, where the task’s
size follows a uniform distributed value of U [60, 80] KB. All
TNs have the same maximum transmission power, which is
equal to 23 dBm [31]. The rotary UAV-FNs are considered
with a coverage radius of R = 200 m, where E0 = 55 J/m
and Ph = 170 W [45]. The following setup is used for
other network parameters: µj = 100 Mbps, Pj = 0.1 W
∀j; η(i,c) = 0.2∀i, c [46]; The CVX toolbox of MATLAB is
used to develop the simulation models. It is worth mentioning
that the simulations are performed for 15 replicas. The rest of
simulation parameters are given in Table I.

We compare ENERGENT with the proposed method
in [25], which is called “Baseline” in this paper. The main
objective of the Baseline is to maximize the total weighted
network throughput, where a weight factor is assigned to each
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Fig. 4. Comparison of the proposed ENERGENT and the Baseline method with respect to different values of the transmit power of UAV-FNs, Pj : (a)
throughput and (b) fairness index, F .
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Fig. 5. Comparison of the proposed ENERGENT and the Baseline method with respect to different numbers of TNs: (a) fairness index, (b) energy consumption
of UAV-FNs, (c) network delay, (d) throughput, and (e) energy consumption of TNs.

TN belonging to a cluster. To this end, Baseline optimizes the
transmit power of TNs with respect to the harvested power,
as well as their central processing unit (CPU) frequency. It
is noticeable that Baseline has been designed for a network
including one UAV-FN and multiple TNs, in which the UAV-
FN flies toward the TNs at the minimum altitude and assumes
that there is no interference among TNs.

Fig. 3 shows the impact of saturation power and transmit
power of UAV-FNs on the network throughput. Since the
harvested power of each TN is bounded to the minimum of
the saturation power and the received power from the cor-
responding UAV-FN, by increasing the saturation power, the
minimum value is also increased. Hence, the TN can harvest

more power which accordingly results in more throughput.
The next step is to evaluate the impact of the transmit power

of UAVs on the network throughput. In this regard, we perform
simulations for different values of the transmit power of UAV-
FNs, Pj . Fig. 4 includes the corresponding results. Fig. 4(a)
shows that by increasing the saturation power of the UAVs,
TNs can harvest more energy to process more bits, and hence,
the network throughput increases.

Other objective of ENERGENT is to ensure a minimum
throughput for all TNs belonging to a cluster. For this reason,

we define the fairness index as F =
(
∑Mc

i=1 T(i,c))
2

Mc

∑Mc
i=1 T 2

(i,c)

[47] for

every cluster c, where T(i,c) is the throughput of TN(i, c). The
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Fig. 6. Comparison of the proposed ENERGENT and the Baseline method with respect to different numbers of clusters: (a) fairness index; (b) energy
consumption of UAV-FNs; (c) network delay; (d) throughput; and (e) energy consumption of TNs.

results obtained in Fig. 4(b) indicates that ENERGENT can
provide a minimum throughput for all TNs belonging to a
cluster as the index value is equal to 1. This is while the
fairness index is less than 1 for the Baseline, which means
there is no trade-off for the throughput of TNs.

In another scenario, the simulations are fulfilled for different
numbers of TNs, whereas the number of clusters in the
network is fixed. This leads to the fixed number of UAV-FNs,
where N = 10. Fig. 5 indicates the results corresponding
to the fairness index, the energy consumption of UAV-FNs,
the network delay, the network throughput, and the energy
consumption of TNs. Fig. 5(a) shows that ENERGENT could
provide the throughput fairness among TNs, whereas Baseline
is not successful in this regard. According to Fig. 5(b), the
energy consumption of UAV-FNs in ENERGENT is much less
than the Baseline’s because the Baseline does not consider the
optimal assignment of UAV-FNs to the clusters. Moreover,
according to assumptions of the Baseline, UAV-FNs move
toward each TN within a cluster to minimize their distance
with the TNs. Fig. 5(c) indicates that ENERGENT could
alleviate the network delay compared to the Baseline as the
ENERGENT optimizes the transmit power, as well as the
transmission rate, of TNs alongside the offloading portion
of tasks with respect to the delay constraint in the network.
This is while the Baseline mainly focuses on optimizing the
transmit power of TNs with respect to the harvested power.
Fig. 5(d) illustrates that by increasing the number of TNs for a
fixed number of clusters, the network throughput is decreased.
However, ENERGENT outperforms the Baseline in providing
more network throughput. Finally, Fig. 5(e) shows the energy

consumption of TNs affected by increasing the number of TNs
in the network.

In the end, we compare ENERGENT and the Baseline
method for different numbers of UAV-FNs, where there exist
500 TNs in the network. Fig. 6 illustrates the corresponding
results. Fig. 6(a) shows that ENERGENT still ensures a min-
imum throughput for all TNs within a cluster in the network.
Also, it can be seen that the fairness index value is increased
for a larger number of clusters because by increasing the num-
ber of clusters for a fixed number of TNs, there would be fewer
TNs within a cluster. Therefore, the probability of existing a
trade-off between TNs is increased. However, this value is still
less than 1. With the same reasons provided for Figs. 5(b)
and 5(c), Figs. 6(b) and 6(c) imply that ENERGENT could
outperform Baseline in terms of the energy consumption of
UAV-FNs and network delay, respectively. Fig. 6(d) indicates
that by increasing the number of clusters for a fixed number
of TNs, less number of TNs remain in each cluster, which
leads to the increment of the network throughput. According
to Fig. 6(e), by decreasing the number of TNs within a
cluster, the interference between TNs decreases. Accordingly,
the transmission rate of TNs is boosted and the TNs need to
consume less power to transmit their data. Hence, the energy
consumption of TNs is alleviated. This is while the energy
consumption of TNs increases in the Baseline as the TNs
have been designed so that they harvest power as much as
possible without considering the transmission rate of TNs and
the interference among them. Fig. 6(e) also implies that the
proposed offloading scheme in ENERGENT is more efficient
than Baseline.



708 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 6, DECEMBER 2022

V. CONCLUSION

This paper proposed a novel framework, named ENER-
GENT, for disaster management in the UAV-assisted Fog-
IoT networks. ENERGENT aims to optimize the energy
consumption of all TNs and UAV-FNs. For this reason, three
algorithms proposed to optimally adjust the 3D placement
of the UAV-FNs for minimizing energy consumption, offload
the tasks to the UAV-FNs in order to meet the network
delay constraints, and prolong the network lifetime through
witlessly transferring power to the TNs when their remaining
energy degrades a predefined threshold. Simulation studies
show that ENERGENT ensures a minimum throughput for
all TNs within a cluster, which results in maximizing the total
network throughput. In future work, we focus on the flight
path planning of the WPT-UAV in the network.

REFERENCES

[1] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A tutorial
on UAVs for wireless networks: Applications, challenges, and open
problems,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2334–2360,
Mar. 2019.

[2] W. Ejaz, A. Ahmed, A. Mushtaq, and M. Ibnkahla, “Energy-efficient
task scheduling and physiological assessment in disaster management
using UAV-assisted networks,” Comput. Commun., vol. 155, pp. 150–
157, Apr. 2020.

[3] S. Iranmanesh, R. Raad, M. S. Raheel, F. Tubbal, and T. Jan, “Novel
DTN mobility-driven routing in autonomous drone logistics networks,”
IEEE Access, vol. 8, pp. 13,661–13,673, Dec. 2020.

[4] S. Iranmanesh et al., “The impact of 5G drones on the performance of a
dtn destination based routing protocol,” in Proc. IEEE TSSA, Nov. 2020.

[5] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (UAVs) for energy-efficient Internet of things communi-
cations,” IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7574–7589,
Nov. 2017.

[6] K. M. Kafi and M. B. A. Gibril, “GPS application in disaster manage-
ment: A review,” Asian J. Appl. Sci., vol. 4, no. 1, Feb. 2016.

[7] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-UAV enabled wireless networks,” IEEE Trans. Wireless
Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018.

[8] Y. Zeng and R. Zhang, “Energy-efficient uav communication with
trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, Jun. 2017.

[9] F. Tang, Z. M. Fadlullah, N. Kato, F. Ono, and R. Miura, “AC-POCA:
Anticoordination game based partially overlapping channels assignment
in combined UAV and D2D-based networks,” IEEE Trans. Veh. Technol.,
vol. 67, no. 2, pp. 1672–1683, Feb. 2018.

[10] S. Garg, A. Singh, S. Batra, N. Kumar, and L. T. Yang, “UAV-
empowered edge computing environment for cyber-threat detection in
smart vehicles,” IEEE Netw., vol. 32, no. 3, pp. 42–51, Jun. 2018.

[11] M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci, “Compu-
tation offloading game for an UAV network in mobile edge computing,”
in Proc. IEEE ICC, May. 2017.

[12] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning,”
IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049–2063, Mar. 2018.

[13] N. Cheng et al., “Space/aerial-assisted computing offloading for IoT
applications: A learning-based approach,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 5, pp. 1117–1129, May. 2019.

[14] A. Pandey, D. Kushwaha, and S. Kumar, “Energy efficient UAB place-
ment for multiple users in IoT networks,” in Proc. IEEE GLOBECOM,
Dec. 2019.

[15] N. T. Ti and L. Bao Le, “Joint resource allocation, computation offload-
ing, and path planning for UAV based hierarchical fog-cloud mobile
systems,” in Proc. IEEE ICCE, Jul. 2018.

[16] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (UAVs) for energy-efficient Internet of things communi-
cations,” IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7574–7589,
Nov. 2017.

[17] M. Liu, J. Yang, and G. Gui, “DSF-NOMA: UAV-assisted emergency
communication technology in a heterogeneous Internet of things,” IEEE
Internet Things J., vol. 6, no. 3, pp. 5508–5519, Jun. 2019.

[18] S. Iranmanesh and R. Raad. (2019). A novel data forwarding strategy for
a drone delay tolerant network with range extension, Electronics, vol. 8,
no. 6 [Online]. Available: https://www.mdpi.com/2079-9292/8/6/659

[19] J. Leng, “Using a UAV to effectively prolong wireless sensor network
lifetime with wireless power transfer,” Ph.D. dissertation, Univ. of Ne-
braska, Lincoln, May 2014. [Online]. Available: https://digitalcommons.
unl.edu/computerscidiss/72/

[20] J. Johnson, E. Basha, and C. Detweiler, “Charge selection algorithms
for maximizing sensor network life with UAV-based limited wireless
recharging,” in Proc. IEEE ISSNIP, Apr. 2013.

[21] E. Basha, M. Eiskamp, J. Johnson, and C. Detweiler, “UAV recharging
opportunities and policies for sensor networks,” Int. J. Distributed Sensor
Netw., vol. 11, no. 8, p. 824260, Aug. 2015.

[22] H. Wang et al., “Resource allocation for energy harvesting-powered D2D
communication underlaying UAV-assisted networks,” IEEE Trans. Green
Commun. Netw., vol. 2, no. 1, pp. 14–24, Mar. 2018.

[23] J. Xu, Y. Zeng, and R. Zhang, “UAV-enabled wireless power transfer:
Trajectory design and energy optimization,” IEEE Trans. Wireless Com-
mun., vol. 17, no. 8, pp. 5092–5106, Aug. 2018.

[24] Q. Li, J. Gao, H. Liang, L. Zhao, and X. Tang, “Optimal power allocation
for wireless sensor powered by dedicated RF energy source,” IEEE
Trans. Veh. Technol., vol. 68, no. 3, pp. 2791–2801, Mar. 2019.

[25] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless-powered mobile-edge computing systems,”
IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927–1941, Sep. 2018.

[26] R. Yamasaki and T. Tanaka, “Properties of mean shift,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 42, no. 9, pp. 2273–2286, Sep. 2020.

[27] Y. J. Chun et al., “A comprehensive analysis of 5G heterogeneous
cellular systems operating over κ – µ shadowed fading channels,” IEEE
Trans. Wireless Commun., vol. 16, no. 11, pp. 6995–7010, Nov. 2017.

[28] P. K. Sharma, D. Gupta, and D. I. Kim, “Cooperative af-based 3D mobile
UAV relaying for hybrid satellite-terrestrial networks,” in Proc. IEEE
VTC, May. 2020.

[29] C. Wang, X. Yang, Q. Du, and J. Wang, “Outage performance of
satellite-UAV network framework based on NOMA,” in Proc. IEEE CSP,
Jan. 2021.

[30] M. Ebrahimi and A. K. Khandani, “Rate-constrained wireless networks
with fading channels: Interference-limited and noise-limited regimes,”
IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 7714–7732, Dec. 2011.

[31] F. S. Abkenar and A. Jamalipour, “A reliable data loss aware algorithm
for fog-IoT networks,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp.
5718–5722, May. 2020.

[32] F. S. Abkenar, Y. Zeng, and A. Jamalipour, “Energy consumption
tradeoff for association-free fog-IoT,” in Proc. IEEE ICC, May. 2019.

[33] S. Iranmanesh, F. S. Abkenar, R. Raad, and A. Jamalipour, “Improving
throughput of 5G cellular networks via 3D placement optimization of
logistics drones,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1448–
1460, Feb. 2021.

[34] F. S. Abkenar and A. Jamalipour, “Energy optimization in association-
free fog-IoT networks,” IEEE Trans. Green Commun. Netw., vol. 4,
no. 2, pp. 404–412, Jun. 2020.

[35] F. S. Abkenar, K. S. Khan, and A. Jamalipour, “Smart-cluster-based
distributed caching for fog-IoT networks,” IEEE Internet Things J.,
vol. 8, no. 5, pp. 3875–3884, Mar. 2021.

[36] M. Horani and M. O. Hasna, “Latency analysis of UAV based commu-
nication networks,” in ICTC, Oct. 2018.

[37] F. S. Abkenar, M. Z. Alam, and A. Jamalipour, “Transaction throughput
maximization under delay and energy constraints in fog-IoT networks,”
in Proc. IEEE GLOBECOM, Dec. 2020.

[38] P. Ramezani and A. Jamalipour, “Two-way dual-hop WPCN with a
practical energy harvesting model,” IEEE Trans. Veh. Technol., vol. 69,
no. 7, pp. 8013–8017, Jul. 2020.

[39] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing UAV,” IEEE Trans. Wireless Commun.,
vol. 18, no. 4, pp. 2329–2345, Apr. 2019.

[40] Z.-q. Luo, W.-k. Ma, A. M.-c. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May. 2010.

[41] F. S. Abkenar and A. Jamalipour, “Eba: Energy balancing algorithm for
fog-IoT networks,” IEEE Internet Things J., vol. 6, no. 4, pp. 6843–
6849, Aug. 2019.

[42] T.-S. Kim, H. Lim, and J. C. Hou, “Improving spatial reuse through
tuning transmit power, carrier sense threshold, and data rate in multihop
wireless networks,” in Proc. MobiCom, Sep. 2006.



FOROUGH et al.: ENERGENT: AN ENERGY-EFFICIENT UAV-ASSISTED FOG-IOT ... 709

[43] A. Jamalipour and F. S. Abkenar, “Efficient task allocation protocol for
a hybrid-hierarchical spatial-aerial-terrestrial edge-centric IoT architec-
ture,” IEICE Trans. Commun., vol. 2, pp. 116–130, 2021.

[44] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-
versity Press, 2004.

[45] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing UAV,” IEEE Trans. Wireless Commun.,
vol. 18, no. 4, pp. 2329–2345, Apr. 2019.

[46] P. Ramezani and A. Jamalipour, “Optimal resource allocation in
backscatter assisted WPCN with practical energy harvesting model,”
IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12,406–12,410, Dec.
2019.

[47] A. B. Sediq, R. H. Gohary, and H. Yanikomeroglu, “Optimal tradeoff
between efficiency and Jain’s fairness index in resource allocation,” in
Proc. ACM IEEE PIMRC, Sep. 2012.

Forough Shirin Abkenar received her B.Sc. and
M.Sc. degrees, both in Information Technology. She
is currently pursuing her Ph.D. degree in Electri-
cal and Information Engineering at The University
of Sydney with a thesis entitled Towards Hyper-
efficient IoT Networks Using Fog Paradigm. For-
ough’s research topic mainly focuses on improving
energy efficiency and providing QoS requirements in
edge computing-driven IoT networks via novel opti-
mization problems and innovative machine learning-
based methods. Her research interests include wire-

less/optical communications, edge computing, IoT, IoT, UAVs, ML, FL, and
EONs.

Saeid Iranmanesh is a Senior Lecturer and Head
of Discipline (Telecommunication and Networking)
at Polytechnic Institute of Australia. He has received
his PhD in Electrical, Computer and Telecommuni-
cation Engineering from the University of Wollon-
gong, Australia, in 2015. He was appointed as an
Assistant Professor with Azad University, Tehran,
for a year and 1.5 years at Melbourne institute
of Technology in Sydney, Australia. He is also
a Senior IEEE member and Honourable Research
Member within the School of Electrical, Computer

and Telecommunication Engineering at the University of Wollongong, Aus-
tralia. His research interests include wireless networks, vehicular networks,
Internet of things, intelligent transportation systems, and smart cities.

Athman Bouguettaya is Professor in the School
of Computer Science at the University of Sydney,
Australia. He received his PhD in Computer Science
from the University of Colorado at Boulder (USA)
in 1992. He was previously Head of School of
Computer Science at the University of Sydney and
RMIT University. He was also Science Leader in
Service Computing at CSIRO ICT Centre, Canberra.
Australia. Before that, he was a Tenured Faculty
member and Program Director in the Computer
Science Department at Virginia Tech. He is a Fellow

of the IEEE and a Distinguished Scientist of the ACM.

Raad Raad received a B.E. degree in Electrical
Engineering (Hons.) from the University of Wol-
longong, in 1997. He received the Australian Post-
Graduate Award (APA) and Telstra Research Lab-
oratories (TRL) schoalrship which allowed him to
complete a Ph.D degree entitled Neuro-Fuzzy Logic
Admission Control in Cellular Mobile Networks, in
2006. He worked for Telstra and Motorola Research
Laboratories and since 2004, he has been with the
School of Electrical, Computer, and Telecommu-
nications Engineering, University of Wollongong,

where he is the Head of School. His current research interests include wireless
communications, CubeSat, the IoT, and antenna design.

Abbas Jamalipour (S’86–M’91–SM’00–F’07) re-
ceived the Ph.D. degree in Electrical Engineering
from Nagoya University, Nagoya, Japan. He holds
the positions of Professor of Ubiquitous Mobile
Networking with the University of Sydney and the
Editor-in-Chief of the IEEE Transactions on Ve-
hicular Technology. He has authored nine technical
books, eleven book chapters, over 550 technical
papers, and five patents, all in the area of wireless
communications. Prof. Jamalipour is a recipient of
the number of prestigious awards, such as the 2019

IEEE ComSoc Distinguished Technical Achievement Award in Green Com-
munications, the 2016 IEEE ComSoc Distinguished Technical Achievement
Award in Communications Switching and Routing, the 2010 IEEE ComSoc
Harold Sobol Award, the 2006 IEEE ComSoc Best Tutorial Paper Award,
as well as 15 Best Paper Awards. He was the President (2020-21) of the
IEEE Vehicular Technology Society. Previously, he held the positions of the
Executive Vice-President and the Editor-in-Chief of VTS Mobile World and
has been an elected member of the Board of Governors of the IEEE Vehicular
Technology Society since 2014. He was the Editor-in-Chief IEEE WIRELESS
COMMUNICATIONS, the Vice President-Conferences, and a member of
Board of Governors of the IEEE Communications Society. He sits on the
Editorial Board of the IEEE ACCESS and several other journals. He has been
the General Chair or Technical Program Chair for a number of conferences,
including IEEE ICC, GLOBECOM, WCNC, and PIMRC. He is a Fellow of
the Institute of Electrical, Information, and Communication Engineers and
the Institution of Engineers Australia, an ACM Professional Member, and an
IEEE Distinguished Speaker.


