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Deep-Fading Hole Avoidance for Secure Region
Detection using Channel State Information

Jihwan Suh, Yongjae Yoo, Jeongyeup Paek, and Saewoong Bahk

Abstract—One of the critical challenges in many wireless
systems is the deep fading hole problem where signals interfere
destructively to create an abrupt change in signal amplitude due
to multipath fading. In this work, we tackle this challenge in the
context of secure region detection (SRD) problem. Specifically, we
propose SHARD, a novel hole avoidance technique that analyzes
channel state information (CSI) to significantly improve the
accuracy of CSI-based SRD. SHARD identifies potential fading
holes in CSI amplitude, and removes an unreliable portion of data
while utilizing the remaining unaffected part. To compensate for
the loss of information, we define phase-distance for reliable use
of time-varying CSI phase, and neighboring reference points are
utilized for accurate matching. Our real-world experiments show
that SHARD can achieve a near-perfect 99.96% true-negative
ratio (successfully rejecting devices not in the secure region)
and an excellent true-positive of 98.01% for practical usage,
significantly better than state-of-the-art prior work. We believe
our ideas can be generalized to many RF-based localization
systems to mitigate the deep fading hole problem and improve
their accuracy.

Index Terms—Channel state information, deep fading hole,
finger-printing localization, Internet of things, secure region
detection.

I. INTRODUCTION

INTERNET of Things (IoT) is one of the most prominent
technology trends that have emerged in recent years, and a

vast number of IoT devices have infiltrated our personal lives.
Accordingly, the devices create, store, and use private infor-
mation, and therefore it is necessary to ensure that the devices
are used only under proper authorization or authentication.
Authorizing the user is one way to achieve this. However, the
sheer number of IoT devices often hinders this approach. A
more scalable and effective way to solve this problem is to
allow activation and participation only to devices located in
their predefined ‘secure’ regions. The problem of verifying
whether a device is within their designated region or not
for authentication/authorization purposes without obtaining an
absolute position is called secure region detection (SRD) [1].
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SRD is a new problem similar to the localization problem,
but different in nature. The main difference is that many
existing indoor localization techniques assume the use of pre-
acquired data in all areas where the device may potentially
exist unless completely out-of-range. This assumption is in-
appropriate for SRD because the device can be located where
no data collection has been made for. For example, it should
not be necessary to fingerprint the whole floor or room when a
secure region is a single desk. Since it is costly and sometimes
impossible to obtain all data from practically unbounded non-
secure region, SRD should work with data obtained only from
the predefined secure region without negative reference points.

One of the common challenges in many wireless systems,
including SRD and indoor localization, is the deep fading hole
problem [2]–[4]. At a certain physical location, the amplitude
of a signal is significantly smaller than its surroundings due
to destructive interference from multipath fading, resulting
in a deep fading hole. The signal obtained at a hole not
only has low received signal strength (RSS) compared to its
surroundings, but also exhibits a significant change in channel
state information (CSI). In other words, CSIs obtained at two
sub-centimeter apart points can show a big difference in reality
unlike what theoretical channel models suggest. The hole
makes it difficult to use fingerprinting techniques (e.g., [5])
which rely heavily on the assumption that signal signatures at
nearby locations will be similar [6], [7].

Furthermore, phase information has been difficult to utilize
for fingerprinting so far because it varies non-deterministically
over time. Although the phase change that occurs as the signal
passes through the channel should be constant, the phase
measured by a device changes due to asynchronous phase
locked loop (PLL) clock at transceivers [8], [9]. Thus, the
CSI phase obtained from the same location may be different
at different times, making it difficult to use for fingerprinting.

In this paper we propose SHARD, a CSI-based secure region
detection scheme with hole avoidance1. Hole elimination
identifies potential deep fading holes in CSI amplitude not to
be deceived by them, and removes unreliable portion of data
while utilizing the remaining unaffected part. Furthermore,
CSI phase-distance is defined for reliable use of time-varying
phase information to improve accuracy. Additionally, to com-
pensate for the loss of information due to hole elimination, a
1-2-4 matching technique is employed to utilize neighboring
reference points if applicable and beneficial.

We implement SHARD on commercial Wi-Fi NICs and

1The name of our proposed scheme, S‘HA’RD, embeds hole avoid-
ance (HA) inside secure region detection (SRD).
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Fig. 1. Example: Secure region on a table (green square area). An user
device can be unlocked only when in that region. Negative (non-secure) region
(orange square area) are used for evaluation purposes.

evaluate its performance through real-world experiments to
show that SHARD achieves an excellent true negative (TN)
of 99.96% while maintaining a true positive (TP) of 98.01%,
which means that devices outside the secure region are near-
perfectly rejected (TN) while legitimate devices are ade-
quately authenticated (TP). We also compare SHARD against
SWORD [1], a recent state-of-the-art SRD scheme, to show
that SHARD achieves significantly better performance on the
same testbed wireless environment.

The contributions of this paper are as follows;
• We demonstrate the existence of deep fading holes and

how they adversely affect wireless signature detection.
• We propose two novel hole avoidance techniques to

address the problem, hole elimination and phase-distance
estimation. We then design SHARD, a novel secure region
detection scheme that overcomes the deep fading hole
problem.

• We implement SHARD on a commercial Wi-Fi device for
evaluation through real-world experiments, and compare
it with a recent state-of-the-art SRD scheme to show its
improved performance.

The remainder of this paper is organized as follows: We
discuss the related work and our motivation in Section II.
Then, Section III presents the design of our proposed scheme
SHARD. We evaluate SHARD through real-world experiments
in Section IV, and conclude in Section V.

II. RELATED WORK AND MOTIVATION

In this section, we first introduce prior work in the literature
that discusses techniques to overcome multipath fading. Then,
we motivate our work by showing how significantly the deep
fading hole problem impacts SRD performance.

A. Related Work

Multipath fading adversely affects communication and lo-
calization in many wireless systems. Since it is mostly due
to reflections off the floor, ceiling, walls, as well as objects,

it is challenging if not impossible to predict nor estimate in
practical settings. Thus, instead of attempting to eliminate
multipath fading, various techniques have been proposed to
overcome it.

For example, Bhatti et al. [10] proposed an outlier detection
scheme using machine learning to eliminate outlier signal
data for indoor localization with IoT. Ock et al. [3] identified
from an electronic shelf labeling system that, almost always,
a few e-tags (out of a thousand) are disconnected from the
gateway even at a close distance due to deep fading holes. To
avoid deep fading holes and improve system reliability, they
used multiple radios since multiple channels are less likely
to experience deep fading at identical locations. Maric [11]
constructs frequency hopping patterns for cellular systems to
minimize bit errors caused by selective fading. For similar
reasons, Bluetooth and IEEE 802.15.4 standards both have
built-in frequency hopping techniques to mitigate the impact
of a few bad channels or deep fading holes.

For indoor localization, Xu et al. [12] used RSSI measured
at several random adjacent points to avoid deep fading holes.
Zhang et al. [2] derived lower bound for time-of-arrival based
localization error in the presence of fading. Xie et al. [13]
localized a moving person through analyzing fading CSI
pattern upon moving objects. Huang et al. [14] proposed a
localization method in which the errors caused by multipath
fading are estimated and compensated in a vector space.
Bao et al. [15] proposed a time-difference-of-arrival based
localization scheme that uses a new coding scheme to effec-
tively combat fading. Luo et al. [16] augmented Bluetooth low
energy (BLE) beacons to a Wi-Fi-based localization system at
places where it is difficult to distinguish Wi-Fi signals between
two different reference points.

Regarding SRD, the work by Yoo et al. [1] proposes
SWORD which uses one-class classification machine learning
technique to detect secure regions. However, their main focus
is in devising a classification model that works with positive
reference points only, and they did not discuss the deep fading
hole problem that inevitably occur in indoor environments.
Furthermore, their SRD performance (both TP and TN) is
significantly lower than that of SHARD.

B. Problem and Motivation

The simplest form of SRD would be to compare the
signal strength measured at current location to those in pre-
acquired fingerprint database, similar to RSSI fingerprinting-
based indoor localization [5]. If it is similar enough (within
a certain threshold) to one of the positive reference points
(RPs) in the database, then it is regarded as being in the secure
region. We will call this the ‘baseline SRD’. The key difference
with localization is the existence and scope of negative RPs
during the learning/setup phase which could be none for SRD.

To demonstrate the existence of deep fading holes, we
conducted a preliminary experiment using the baseline SRD
scheme (on the same setup as Section IV) and looked for false
negative (FN) points, the testing points that are considered
to be outside the secure region although they are within the
secure region. We use one Wi-Fi AP and set the secure region
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Fig. 2. RSSI contour map within the secure region (real measurements),
together with false negative (FN) points (red dots) from the baseline finger-
printing method.

0 50 100 150 200 250 300 350 400
Measured point index

0

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 c
or

re
la

tio
n 

di
st

an
ce

-60

-55

-50

-45
R

SS
I v

al
ue

 (d
B

m
)

Fig. 3. Deep fading hole problem (real measurements); RSSI and correlation
distance change abruptly and non-continuously even within a very short
physical distance. It is observed much more often than expected.

to be a two-dimensional 200 × 200 mm2 area on a table (as
shown in Fig. 1). All points at intervals of two millimeters are
set as reference points, and separate data obtained at intervals
of one millimeter are used as test input data.

Fig. 2 plots the color map of RSSI measurements together
with the FN points (red dots) determined by the baseline
SRD. The first thing to note from the figure is that, despite
being within a small area (200×200 mm2), RSSI values vary
significantly and non-monotonically. An area with RSSI of
−72 dBm is only a couple centimeters apart from an area
with −54 dBm, and there are areas with low RSSI in between
two areas with high RSSI. This result cannot be explained
using analytical fading models for wireless signals, and these
are the areas where deep fading holes are occurring due to
multipath. Secondly, the result shows that FNs (red dots)
usually occur when RSSI is low. These observations explain
why most RSSI/CSI fingerprinting-based localization or SRD
schemes perform miserably in many indoor environments.

To analyze this phenomenon deeper, we conducted another
experiment. We collected CSI values at 400 points; all points
are on a straight line, and adjacent points are two millime-
ters apart. Afterwards, we calculated the average correlation
distance (defined in Section III-A) of CSI amplitude at each
point with adjacent two points.

Fig. 3 plots the measured average RSSI and correlation

distance of CSI amplitudes at all 400 points. At a certain point,
RSSI is significantly and abruptly smaller than its surround-
ings, and the CSI amplitude tends to also change significantly
at those points (e.g., as shown with dotted lines in Fig. 3).
These are the points which we define as deep fading holes,
and we are showing through experiments that these holes
occur much more frequently than one may imagine. Thus,
without handling these deep fading holes, no fingerprinting
based schemes would be able to perform at satisfactory level.
To this end, the goal of this work is to design a mechanism
to detect deep fading holes and mask the problem, which we
discuss next.

III. DESIGN OF SHARD

SHARD is a hole avoidance scheme for solving the SRD
problem which includes the hole elimination, phase-distance
estimation, and 1-2-4 matching techniques.

A. Baseline Fingerprinting-based SRD

Before discussing the design of SHARD, we first describe
the baseline fingerprinting concept that are commonly used
in many SRD and indoor localization works. The baseline
fingerprinting technique measures some form of similarity
between the CSI amplitude at a reference point and that at a
test input point. Then, it determines whether the input is near
the corresponding reference point using the similarity and a
certain threshold. The key design factors are what ‘similarity’
measure to use and how to determine or derive the thresholds.

We measure the similarity between CSI amplitudes using
a metric called correlation distance which is widely used
for clustering in various applications [17]–[21]. Correlation
distance is defined as 1 − rxy , where rxy is the Pearson’s
correlation coefficient given by

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (1)

where n is the length of the sequence, and x̄ and ȳ are the
means of xi and yi, respectively.

When baseline fingerprinting is applied to the SRD problem,
it is infeasible to optimize the threshold to satisfy a desired FP
since negative (non-secure) region is unbounded2. Therefore,
the only option is to set a threshold that satisfies only a desired
TP using the pre-acquired training/learning data. A practical
approach for deriving appropriate thresholds is discussed in
Section III-F.

2The main difference between SRD and finger-printing based localization
is that the latter assumes the use of pre-acquired data in all areas where the
device may potentially exist unless completely out-of-range. This assumption
is inappropriate for SRD because the device can be located where no data
collection has been made for. Since it is costly and sometimes impossible to
obtain all data from practically unbounded non-secure region, SRD should
work with data obtained only from the predefined secure region without
negative reference points.
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Fig. 4. CSI amplitude (for 56 subcarriers) at two points that are two
millimeters apart. Although the shapes of the sequences look similar, their
correlation distance may diverge significantly.

B. Hole Elimination

Fingerprinting techniques work under the assumption that
the CSIs obtained from two physically nearby locations have
high similarity [22]. However, our real-world measurements
in Fig. 3 have shown that the similarity can be low at deep
fading holes even if the physical distance is small. To devise
a method to detect and avoid deep fading holes, we analyze
the CSI amplitudes at the holes in detail.

Fig. 4 plots the CSI amplitudes (for 56 subcarriers3) at two
sample points two millimeters apart. The shapes of the two
data lines look somewhat similar, but the correlation distance
between the two lines is approximately 0.17 which is much
larger than common 2 mm-spacing cases where the average
distance of 20,000 cases is 0.0078. We identified that the
correlation distance is larger at a hole even when most parts
of the amplitude distribution are similar. In other words, if the
correlation distance between two points is large, one of the
two points is likely to be, and can be regarded as being, at a
hole.

Therefore, we propose hole elimination which eliminates
parts of CSI amplitude data with high correlation distance, and
uses only the remaining parts for fingerprinting. When the CSI
amplitudes at the reference points are given, the correlation
distances for all pairs of adjacent points are calculated. Then,
if the average is bigger than a certain threshold, the point
is suspected to be a deep fading hole. The threshold is
calculated as a value which causes half of the reference points
to be considered as potential holes that must be examined
further (e.g., 0.02 from our dataset). For example in Fig. 4,
the correlation distance between the sequences for the last
30 subcarriers (27 to 56) is 0.0243, which is significantly
better(lower) than the 0.17 of the whole sequence.

However, if we calculate the correlation distance between
two too short sequences, the distance may look small regard-
less of the actual physical distance. In other words, reducing
the length of sequence decreases the uniqueness of each refer-
ence point and increases the probability of false positives (FP)
in fingerprint matching; i.e., there could be multiple points,

3The IEEE 802.11 standard defines 64 subcarriers with 20MHz bandwidth:
48 for data, 4 pilot, and 12 virtual. However, commercial Atheros chip
provides measurement from only 56 subcarriers. Intel allows 30.
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Fig. 5. ROC curves for baseline SRD and the SRD with hole elimination.
Hole elimination by itself has trade-off; Despite eliminating misleading (hole)
information, we need additional mechanism to compensate for the loss of
information.

positive or negative, with similar subsequences. To prevent
such a problem, we set the minimum length of a sequence
as 75% of the subcarriers (i.e., 42) and calculate the distance
only for sequences whose length is not less than the minimum.
Finally, when testing an input point, hole elimination is applied
to the input point if and only if the target reference point has
been determined as a potential hole.

Fig. 5 plots the receiver operating characteristic (ROC)
curves of the baseline SRD and the SRD to which hole
elimination is applied. It can be seen that, as we adjust the
threshold based on the desired TP, hole elimination improves
FP performance in the higher TP region while not in the lower
TP region. When the detection threshold (explained later) is set
tightly (i.e., conservative judgement on secure region), since
a lot of positive data not at the hole has already been well-
judged as TP, the increase in FP caused by information loss
is greater than the increase in TP due to the effect of hole
elimination. Conversely, when the threshold is more relaxed,
similar negative data are already judged to be positive due to
information loss, so the effect of hole elimination continuously
leads to an increase in TP, and the performance is reversed.
Thus, we need a way to compensate for loss of information
from hole elimination, especially for lower FP cases which is
regarded as more important metric than higher TP for security
purposes.

C. Phase-distance Estimation

When RF signal is transmitted, the phase change that occurs
as the signal experiences the channel should be constant the-
oretically. However, CSI phase information has been difficult
to utilize in fingerprinting techniques so far because it varies
significantly over time due to several practical reasons such
as the asynchronous PLL clock at transceivers [8], [9]. One
of the goals of this work is to devise a technique to utilize
this time-varying CSI phase information for more reliable
and accurate fingerprint matching. If this is possible, we
can not only compensate for the loss of information from
hole elimination, but also provide additional information for
improved fingerprinting that can be used in a variety of
localization systems.

Since several papers [8], [9] have shown that the form of
the change is linear, we define phase-distance to represent
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Fig. 6. ROC curves for baseline SRD using ‘amplitude-only’ and SRD using
‘phase-only’. ‘phase-only’ delivers insufficient performance on its own.

the similarity in phase similar to the correlation distance for
amplitude. The measured phase ϕk,t of subcarrier k at time t
is given by

ϕk,t = θk + λtk + βt, (2)

where θk is the ‘phase change’ of subcarrier k caused by
the channel, and λt and βt are the subcarrier-dependent and
-independent phase errors at time t, respectively.

To define a new similarity measure between two phases, we
examine the difference between two measured phases which
is given by

ϕk,t − ϕ′
k,τ = θk − θ′k + (λt − λ′

τ )k + βt − βτ . (3)

Applying linear regression to (3), the best fit of ϕk,t − ϕ′
k,τ

can be written as

ϕk,t − ϕ′
k,τ ∼ Λk +B. (4)

The ‘phase change’ may work similarly to the amplitude. In
other words, if the two points where the phases are measured
are close, θk − θ′k are expected to be small, and therefore ϕk,t

and ϕ′
k,τ +Λk+B should be similar like the amplitude. Now,

we define phase-distance as the correlation distance between
ϕk,t and ϕ′

k,τ +Λk +B. We define a similarity measure that
can be used for phase so that fingerprinting technique can be
applied on CSI phase.

However, even if the actual shapes of the two phases are
different, the compensation via linear regression has the effect
of decreasing uniqueness, thus a system using only phase
has lower performance than using amplitude. Fig. 6 plots the
performance of baseline SRD using either only-amplitude or
only-phase. When FP is 5%, the TP difference between the two
techniques is about 16.29%, indicating a large performance
gap. In other words, it can be seen that using only the
phase results in much worse performance compared to using
amplitude only.

Therefore, we use phase information together with, and
in addition to, amplitude. If the correlation distance between
input amplitude and reference amplitude is sufficiently small
OR phase-distance between input phase and reference phase
is sufficiently small, then the input data point is determined to
be within the secure region. Also, if the correlation distance
between input amplitude and reference amplitude is mod-
erately small AND phase-distance between input phase and
reference phase is moderately small, then the input data point

Fig. 7. The 1-2-4 matching technique considers neighboring reference points
for similarity matching in order to compensate for loss of information when
subcarrier elimination is necessary at a hole. Depending on the number of
eliminated subcarriers, either 1 or 2 or 4 RPs are utilized.

is determined to be within the secure region. Thus, we have a
total of four thresholds, two for amplitude and two for phase,
where the two for each type represent ‘sufficiently small’ and
‘moderately small’. Said differently, two thresholds for an OR
operation and two thresholds for an AND operation exist, and
we define them as ThOR

amp, ThOR
pha , ThAND

amp , and ThAND
pha .

D. 1-2-4 Matching

SHARD’s 1-2-4 matching technique works in conjunction
with the hole elimination. It not only compensates for infor-
mation loss but also uses information interactively for better
performance.

If an input point is being compared to a reference point
not at a hole, then only one reference point is considered for
matching in the same way as the baseline SRD scheme. How-
ever, when the input point is being compared to a reference
point that may be at a hole, then hole elimination is applied
and a subset of the subcarriers are compared for correlation
distance. If over 75% of the subcarriers in the amplitude
sequence is similar (42 or more subcarriers), we regard the
input to resemble the two adjacent reference points as the
blue dotted line in Fig. 7. Furthermore, if half (50%) or more
are similar, adjacent square-shaped four reference points are
compared as the green dashed line in the figure. By utilizing
the neighboring reference points, we can reduce the ambiguity
due to loss of information caused by deep fading holes.

E. Putting It All Together – SHARD

Finally, SHARD combines hole elimination, phase-distance
estimation, and 1-2-4 matching techniques to enable accurate
SRD with hole avoidance. First, SHARD filters the input test
data using the correlation distance threshold which achieves
99% TP on pre-acquired learning data. Empirically, the thresh-
old value is ∼0.05, defined as Thfilter

amp . The reason for not fil-
tering at 100% is because the relaxed threshold also increases
FP, and about ∼1% of the whole region is the trade-off point
for SHARD to rescue and correctly judge the positive data in
deep holes.

Then, SHARD attempts to determine whether the input test
data is from the secure region using CSI amplitude only. If
unsure, it uses phase-distance as a second criterion, which
can be seen as an OR operation. Then, it checks whether both
amplitude and phase satisfy the thresholds for an AND opera-
tion. If not determined to be within the secure region, SHARD
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Algorithm 1 SHARD
1: Input: (CSIamp,CSIpha)
2: S: a coordinate set of all reference points
3: fc: correlation distance between two amplitudes
4: f i

c : correlation distance between two amplitudes with minimum
length i hole elimination

5: fp: phase-distance between two phases
6: for coordinate (i, j) in S do
7: if fc(CSIamp,CSI(i,j)amp ) < Thfilter

amp then
8: if fc(CSIamp,CSI(i,j)amp ) < ThOR

amp or
9: fp(CSIpha,CSI(i,j)pha ) < ThOR

pha then
10: IN ← 1
11: break
12: else if fc(CSIamp,CSI(i,j)amp ) < ThAND

amp and
13: fp(CSIpha,CSI(i,j)pha ) < ThAND

pha then
14: IN ← 1
15: break
16: else if coordinate (i, j) is in the hole and
17: fc(CSIamp,CSI(i,j)amp ) < ThAND

amp then
18: if f42

c (CSIamp,CSI(i,j)amp ) < ThOR
amp and

19: (f42
c (CSIamp,CSI(i−1,j)

amp ) < ThOR
amp or

20: f42
c (CSIamp,CSI(i,j−1)

amp ) < ThOR
amp) then

21: IN ← 1
22: break
23: else if f28

c (CSIamp,CSI(i,j)amp ) < ThOR
amp and

24: f28
c (CSIamp,CSI(i−1,j)

amp ) < ThOR
amp and

25: f28
c (CSIamp,CSI(i,j−1)

amp ) < ThOR
amp and

26: f28
c (CSIamp,CSI(i−1,j−1)

amp ) < ThOR
amp then

27: IN ← 1
28: break
29: end if
30: end if
31: end if
32: end for
33: if IN == 1 then
34: CSI input is from secure region.
35: else
36: CSI input not is from secure region.
37: end if

executes hole elimination and 1-2-4 matching to rescue the
data points that fall in holes within the secure region. Finally,
if the test point passes none of these criteria, then it is regarded
as a location outside the secure region. Algorithm 1 concisely
summarizes the decision process of SHARD as a combination
of baseline SRD, phase-distance, hole elimination, and 1-2-4
matching. In addition when multiple Wi-Fi APs are used,
SHARD follows the principle of majority rule to improve
accuracy even further under such scenarios.

Since SHARD compares the input point and each reference
point, the maximum complexity is proportional to the number
of reference points in the secure region. Negative points
experience the maximum complexity, whereas positive points
can suffer from 0 to maximum complexity depending on its
location in the secure region.

F. Threshold Selection

Negative point training data cannot be used to optimize the
thresholds according to the basic concept of SRD problem in
which there is no data from unbounded exterior of the secure
region. This means, thresholds must be determined only from
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Fig. 8. eCDF of CSI amplitude correlation distance for 100 million data point
pairs.
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Fig. 9. eCDF of CSI phase-distance for 100 million data point pairs.

TP of positive training data without FP results. Nevertheless,
to get a sense of FP performance according to threshold
configurations, we examined ∼100 million uncorrelated CSI
pairs. We calculate the correlation distance of all amplitude
pairs, and then plot the empirical cumulative distribution
function (eCDF) in Fig. 8. It shows that the distances are
roughly uniformly distributed between 0 and 2. This means
that small exports of thresholds reduce FP linearly by the same
ratio; i.e., in order to make FP smaller, a smaller threshold
should be set. Nevertheless, since we do not have negative
data for FP calculation during training process, we set the
thresholds according to desired TP.

First, we set the desired TP to 80% when using a single
AP, and set ThAND

amp to a value that achieves about 55% by
baseline SRD because the result of AND operation on two
schemes achieving 55% is around 80% (1−(1−0.55)2 ≈ 0.8).
ThAND

amp is also used as the threshold in Subsection III-D because
satisfying the 2–4 condition can be seen as similar to the AND
operation. Similarly, we set ThOR

amp to a value that achieves
about 90% by baseline SRD because OR operation of two
90% schemes is around 80% (0.92 ≈ 0.8).

In the case of phase, we also examine the eCDF of phase-
distances as plotted in Fig. 9. It shows that when the threshold
is low, even a small increment in the threshold increases FP
more than in the case of amplitude. Therefore, we set ThAND

pha

and ThOR
pha so that the cumulative probability of them matches

the cumulative probability of ThAND
amp and ThOR

amp. When the
number of APs increases, the threshold values of the amplitude
increase with the same ratio as the increase in the number of
APs, and in the case of phase, they are set so that the same
cumulative probability is maintained.
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TABLE I
EXPERIMENT SETTINGS.

Measurement settings Value
Wireless chipset Atheros 9380

Number of {AP, station} {3, 1}
Wi-Fi PHY 802.11n

Measurement time per each test point 1–2 s
Office size 6.5 × 3.0 m2

Size of each region 800 × 800 mm2

Distance between RPs 4 mm
Distance between positive points for testing 1 mm
Distance between negative points for testing 8 mm

Number of RPs 51 × 51
Number of positive points for testing 201 × 201
Number of negative points for testing 101 × 101 × 4

Fig. 10. Equipment for millimeter-accurate fine-grained controlled Wi-Fi CSI
measurements.

IV. EVALUATION

This section describes the experiment setup and the evalua-
tion of SHARD’s SRD performance. Recall that in a SRD ap-
plication, rejecting devices outside the secure region (TN) is as
important as admitting devices within the secure region (TP).
Accidentally authorizing devices in non-secure region (FP) can
be a critical security vulnerability.

A. Experiment Setup

We use four laptops with Atheros 93804 Wi-Fi NICs op-
erating as three APs and a station, and use the Atheros CSI
tool5 [23] for CSI collection. The experiment environment is
a regular university office room. We first set a secure region
and four negative regions where the size of each region is
800×800 mm, and install three APs at fixed locations as shown
in Fig. 1.

We measure 200 CSI samples at each reference point which
takes approximately 1–2 s, and calculate the average of the first
100 samples for reference data and use the following 100 as
testing input. We obtain CSIs at 4 mm intervals for reference
points (RPs), at 1 mm intervals for positive testing points, and
at 8 mm intervals for negative testing points, which makes
the number of positive and negative points approximately
equal. This results in using 51 × 51 reference points for the
secure region, 201× 201 positive testing points within secure
region, and 101× 101× 4 negative testing points outside the
secure region. The movement of the antenna in millimeter

4Supports IEEE 802.11a/b/g/n, 3-stream 11n MIMO, with PCIe interface.
5Available at https://wands.sg/research/wifi/AtherosCSI/

TP
TN

Fig. 11. SRD performance of SHARD and its components on a single AP,
compared to the baseline finger-printing based SRD and SWORD (with 3
APs).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FP (%)

55

60

65

70

75

80

85

90

TP
 (%

)

Baseline fingerprinting
With hole elimination and 1-2-4 matching
With phase-distance estimation
SHARD
SWORD (TP=69.81%, FP=46.53%)

Fig. 12. SRD performance of SHARD and its components on a single AP,
together with that of SOWRD and the ROC curve of baseline SRD.

granularity is precisely controlled using an equipment called
‘laser engraver’ shown in Fig. 10. TABLE I shows the details
of the setup.

For comparison, we also implemented SWORD which is a
state-of-the-art SRD scheme. We use the same settings and
parameters as in [1]. Therefore, SWORD always uses 3 APs
while SHARD works with 1 AP.

B. SHARD Performance with Single AP

We first compare the performance of (1) baseline SRD,
(2) SRD with hole elimination and 1-2-4 matching, (3) SRD
with phase-distance estimation, (4) SHARD with all three
techniques combined, and (5) SWORD [1]. Fig. 11 plots
the TP and FP of each scheme on a single AP scenario
except for SWORD which requires three APs. It shows that
SHARD significantly improves the TP performance compared
to the baseline SRD while maintaining similar FP (1−TN)
performance. The figure also shows that the three techniques
of SHARD all contribute to the improvement6.

Furthermore, SHARD significantly outperforms SWORD
despite using only a single AP while SWORD uses three.
In fact, the performance of SWORD was lower than what
was presented [1]. This is because for SWORD, the size and
parameters of the neural network must be adjusted according

6Hole elimination, one of our key ideas, must go in conjunction with 1-2-4
matching to cope with information loss for performance improvement.
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TP
TN

Fig. 13. SHARD performance on multiple APs.

to the amount of data and the size of secure region. That
is, SWORD requires fine-tuning per environment where as
SHARD learns from data.

To examine the trade-off between FP and TP improvement,
Fig. 12 plots the ROC curve. It clearly shows that SHARD
outperforms baseline SRD with a 16.11% improvement in TP
(86.24%), and its three techniques are essential components
for the improvement. For example, for the same FP, TP with
phase-distance is 85.27% compared to 69.76% of the baseline
SRD. The data point for SWORD is not visible within the
range of the figure because of its poor FP performance, which
is insufficient to be used practically.

C. Impact of the Number of APs

In general, using additional Wi-Fi APs will improve finger-
printing performance since it provides more information for
higher probability of data uniqueness. It mitigates the deep
fading hole problem as well since two antennas physically
separated by a distance greater than half-wavelength are un-
correlated [24], and at Wi-Fi’s 2.4 GHz band, half-wavelength
is about 12 cm which is far smaller than distances between
two APs in typical deployments.

To investigate the impact of the number of APs, Fig. 13
plots the TP and TN performance of SHARD with varying
number of APs. The three APs case outperforms the one AP
case for both TP and TN. Specifically, SHARD with 3 APs
achieves a near-perfect TN of 99.96% with an excellent TP of
98.01% which are sufficient to be used for practical purposes.

However, in the cases of two APs, the tendency is different.
The majority rule cannot be applied if two opposite decisions
tie, and thus SHARD must choose a policy between OR
operation or AND operation. Accordingly, in the AND case, a
large performance improvement in TN but a large performance
reduction in TP is inevitable, and the opposite phenomenon
occurs for the OR case. Therefore, we recommend using odd
number of APs, preferably three than one.

Finally, as shown in Fig. 11, SHARD performs significantly
better than SWORD under the fair condition of using 3 APs.

D. Impact of RP Interval

We use dense RPs (e.g., 2 mm spacing) within a secure
region. The purpose is to obtain sufficient data for accurate
classification without any data from outside the secure region,

TP
TN

Fig. 14. SHARD performance with different RP spacing intervals.

which is a key requirement of the SRD problem. Several
papers point out that obtaining data for fingerprinting is labor-
intensive [25], [26]. Although our RP density within the secure
region may seem high, we claim that it is several orders of
magnitude more labor intensive to collect data from non-secure
region which is practically unbounded.

In order to examine the performance change according to
the distance interval between RPs, we run experiments with
varying RP intervals. Fig. 14 shows that both TP and TN
decrease as the interval increases, which is an intuitive result
because the amount of information decreases.

In the 1 mm spacing scenario, SHARD achieves TP of
99.95% and TN of 99.995%, which means it can be used
practically with one AP at the expense of data collection
effort. Conversely, TP of 85.02% and TN of 86.99% are
achieved with 8mm spacing, and the performance decreases
further as the interval increases. In this situation, pragmatic
performance can be achieved using multiple APs, as discussed
in the previous subsection.

E. Boundary Result

One of the key features of SRD problem is sharply dividing
off secure region from non-secure region for precise classifi-
cation. Then a natural suspicion would be “what happens at
the boundary of a secure region?” Even if we disregard the
deep fading hole problem and assume ideal single-path fading
model, the boundaries of a secure region would be a challenge
for SRD since the signal immediately outside the secure region
can be similar to the signal immediately inside.

To examine how SHARD distinguishes the secure region
from its periphery, we plots both FN and FP points for a 300×
300 mm2 area where only 200×200 mm2 is the secure region.
Fig. 15 plots this result together with the RSSI contour color
map. Note that FN points (red dots) are points that are in
the secure region but are determined as being outside, and FP
points (blue dots) are points that are outside the secure region
but are determined as being inside. The figure clearly shows
that SHARD well separates the secure region sharply with only
5–9 mm of slack margin (see blue dots concentrated around
200 mm for both width and length of secure region).

In addition, it shows hole avoidance removes the effect of
deep fading hole since there are only a small number of FN
points. The effect of hole avoidance is discussed more in the
next section.
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Fig. 15. RSSI contour within and near the secure region (real measurements),
together with FN points (red dots) and FP points (blue dots) from SHARD
with 3 APs.

Fig. 16. RSSI contour within the secure region (real measurements), together
with false negative (FN) points (red dots) from SHARD. There is clear
improvement from Fig. 2.

F. Effect of Hole Avoidance

FP result cannot be, and should not be, taken into account
when configuring the thresholds for SRD; SRD problem by
definition must work without negative RPs. However for
evaluation purposes only, we adjust the thresholds through
trial-and-error so that FP matches 5% in order to examine
how hole avoidance alleviates the effect of deep fading holes.

Fig. 16 plots the FN points from SHARD along with
the color map of RSSI measurements. Compared to that of
baseline SRD previosly shown in Fig. 2, Fig. 16 clearly shows
significantly fewer FN points, which is an achievement made
by our hole avoidance technique.

V. CONCLUSION

Deep fading hole is one of the critical challenges that many
indoor wireless systems face, especially in fingerprinting-
based localization. This work proposed SHARD, a Wi-Fi CSI
based secure region detection scheme with hole avoidance,
which addresses the deep fading hole problem. We have de-
vised techniques to identify abrupt changes in CSI amplitude,
eliminate unreliable data, and utilize time-varying CSI phase

for improved detection accuracy. Through our real-world ex-
periments, we have shown that our hole avoidance techniques
successfully address the problem and SHARD can correctly
reject devices outside the secure region with 99.96% accuracy
while detecting devices inside the secure region with 98.01%.
We believe that this work will advance not only secure region
detection schemes for security of IoT devices, but can also be
generalized to many fingerprinting-based indoor localization
schemes.
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