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Neural Joint Source-Channel Coding via
Bernoulli Latent Straight-Through Estimator

Jiwan Seo, Sanghyuk Kim, and Joonhyuk Kang

Abstract—Under infinite block length, from Shannon’s sep-
aration theorem, it is well-known that by independent design
of source coding and channel coding, the optimal throughput –
the channel capacity – can be reached with careful design of
the corresponding functionalities. However, when restricted to
finite block length, the separation theorem does not necessarily
hold, and hence joint source-channel coding (JSCC) theorem
has been raised as an alternative strategy for achieving the
capacity of the channel. However, as JSCC formulates highly
non-convex problem which cannot be directly solved analytically,
recently, deep learning has been proposed as a key enabler for
JSCC. While most work on deep-learning-based JSCC focused
on transmission of continuous signals through wireless channels,
we focus in this paper the case of information-theoretic channel,
namely binary symmetric channel, which can give useful insights
on information-theoretic perspective on JSCC. Unlike recent
work on deep-learning-based, or neural, JSCC for discrete
channels that considered score function estimator to train the
JSCC, in this paper, we improve the performance of neural
JSCC by estimating the gradient more precisely as compared
to the previous approach. Key idea is to consider soft codeword
during training to enable path-wise gradient estimator which is
proven to have lower variance than the score-function estimator.
Experimental results on MNIST and CIFAR-10 datasets show
that the proposed neural JSCC outperforms the previous work
on JSCC for discrete channels, validating the effectiveness of the
proposed gradient computation technique.

Index Terms—Autoencoder, joint source-channel coding
(JSCC), straight-through (ST) estimator, variational autoen-
coder (VAE), variational inference for Monte Carlo objectives
(VIMCO).

I. INTRODUCTION

BASED on Shannon’s source-channel separation theorem
[1], modern communication systems are composed of

multiple modules in which source coding and channel coding
are treated independently as different modules. The practical
communication systems for data transmission across noisy
channel consist of source coding part that compresses tar-
get data to eliminate the inherent redundancy of the data,
and channel coding part that re-introduces redundancy for
error detection and correction purpose. Recently, these coding
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blocks have been block-wisely developed to further improve
their performance. For instance, maximum likelihood (ML)
decoding process is regarded as an NP-hard problem, which
means that there is a limitation to computational power [2].
Although prior studies on decoding process such as linear
programming (LP) of LDPC code are studied, these iterative
methods still have limitations by assuming an optimal system
block [3].

In particular, for image data transmission, source coding
with JPEG [4] or WebP along with channel coding via low
density parity check (LDPC) [5], Turbo [6], or Polar [7]
coding have demonstrated the performance that reaches the
Shannon capacity. However, since Shannon’s source-channel
separation theorem only holds for long enough codes, to
achieve Shannon’s capacity also for short codes, joint source-
channel coding (JSCC) model which combines source coding
and channel coding process has been proposed [8].

In the meantime, deep learning (DL) has been utilized as
a powerful tool for various fields including computer vision
(CV) [9], natural language processing [10], and wireless com-
munication systems [11], [12], [13], [14], [15] including JSCC
that considered wireless image transmission scheme over the
additive white Gaussian noise (AWGN) channel [16] and
Rayleigh fading channel [17] [18] based on the autoencoder
structure of machine learning.

While the works in [16], [17], [18] considered continuous
channels, reference [19] proposed JSCC via neural network
for discrete channels, coined neural error correction and source
trimming (NECST). Specifically, the authors considered binary
symmetric channel (BSC) and binary erasure channel (BEC),
along with a variational autoencoder (VAE) model to account
for stochastic encoding. By maximizing mutual information
between image source data and noisy latent codeword, the
authors showed that their model outperforms conventional
LDPC encoder/decoder.

Learning the discrete-distributed domain has been consid-
ered one of the most challenging tasks in machine learning
framework. While [19] presented a novel framework for dis-
crete representation learning, it suffers from noisy gradient
estimation that generally has large variance due to the nature
of the score function estimator [20].

In this paper, we aim at further improving JSCC over
discrete channels by proposing low-variance gradient estimator
for NECST by replacing score function estimator to pathwise
gradient estimator [20]. Key idea is to adopt a straight-
through (ST) estimator [21] that allows gradient flow over
non-differentiable functions, e.g., discrete sampling of the
stochastic message, akin to the way that ST estimator has been
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Figure 1. Block diagram of neural JSCC scheme. An image source data x is
encoded into fixed-length codeword y. This codeword is transmitted through a
discrete channel so that the decoder receives a noisy codeword ŷ. The decoder
reconstructs the image source data denoted as x̂ from the noisy codeword ŷ.

utilized in Gumbel-softmax [22] and concrete distributions
[23] for modeling VAE.

The rest of the paper is organized as follows. In Sec. II,
we describe the considered system model and summarize the
objective function of neural JSCC. Then, we introduce a naïve,
vanilla score function estimator to train the neural JSCC,
followed by an improved version that uses multi-samples
to reduce the variance of the gradient estimator, which is
essentially the NECST training framework. Then, in Sec. III,
the proposed training scheme for neural JSCC with path-wise
gradient computation with the aid of ST estimator is organized,
and the corresponding experimental results are presented in
Sec. IV. Lastly, Sec. V concludes the paper.

II. SYSTEM MODEL

In this section, we review NECST [19]. As mentioned,
since discrete latent variables are not directly differentiable,
the authors [19] used score function based stochastic gradient
estimation techniques (also known as REINFORCE [24]) with
variational inference for Monte Carlo objectives (VIMCO)
estimator [25]. In this section, we briefly summarize 1) the
overall neural NJSCC system model and coding scheme;
and 2) the VIMCO-based mutual information optimization in
NECST [19].

A. Coding Process over Discrete Channel

Coding process of JSCC is compromised with stochastic
encoder (𝑞𝜙) and decoder (𝑝𝜃 ) that are parameterized by
vectors 𝜙 and 𝜃, respectively. As illustrated in Fig. 1, the
encoder network 𝑞𝜙 (x) maps an input image data x to an
𝑚-bit codeword y as

𝑞𝜙 (y|x) =
𝑚∏
𝑖=1

𝜎
(
[ 𝑓𝜙 (x)]𝑖

)y𝑖 (1 − 𝜎
(
[ 𝑓𝜙 (x)]𝑖)

) (1−y𝑖 )

for y𝑖 ∈ {0, 1}, (1)

with parameterized function 𝑓𝜙 (·) defined from multi-layer
neural network with 𝐿𝑒 layers as [26]

Figure 2. The binary symmetric channel (BSC) with flip probability 𝜖 .

𝑓𝜙 (x) = 𝑓𝜙 (𝐿𝑒 ) ( 𝑓𝜙 (𝐿𝑒−1) (· · · 𝑓𝜙 (1) (x))), (2)

where 𝑓𝜙 (𝑙) (𝑥) = 𝑔(𝑊 (𝑙)𝑥 + 𝑏 (𝑙) ) represents the non-linear
activation function of the 𝑙th layer with parameter 𝜙 (𝑙) =

{𝑊 (𝑙) , 𝑏 (𝑙) } with weight matrix𝑊 (𝑙) and bias vector 𝑏 (𝑙) given
the vector of neural network parameters 𝜙 = {𝜙 (𝑙) }𝑙=1, · · ·,𝐿𝑒−1,
and [·]𝑖 stands for 𝑖th element of the corresponding vector. The
non-linear function 𝑔(·) can be, e.g., a Rectified Linear Unit
(ReLU) or a hyperbolic tangent function. While we design the
last layer of parameterized function 𝑓𝜙 (·) of (2) to set the size
of the output 𝑓𝜙 (x) ∈ R𝑚, so that it can represent the 𝑚-bit
codeword, still, it is in real domain which cannot be directly
expressed in 𝑚-bit codeword y. Accordingly, we transform the
length-𝑚 real vector 𝑓𝜙 (x) into probability vector of length 𝑚
with sigmoid activation function

𝜎(𝑥) = 1
1 + 𝑒−𝑥 . (3)

Note that this function is applied element-wise (see (1)
and maps negative infinity into probability value of zero,
and positive infinity to probability of one. Now, treating
𝜎( [ 𝑓𝜙 (x)]𝑖) as the probability of 𝑖th bit (among 𝑚 bits)
being 1, we have (1), the stochastic encoder that computes
probability of generating random bit y given input x. Note
that all-one vector y would have probability of 𝑞𝜙 (y|x) =∏𝑚
𝑖=1 𝜎

(
[ 𝑓𝜙 (x)]𝑖

)y𝑖=1, while all-zero vector y has the proba-
bility

∏𝑚
𝑖=1 (1 − 𝜎

(
[ 𝑓𝜙 (x)]𝑖)

) (1−y𝑖=0) .
From (1), the 𝑚-bit codeword y ∼ 𝑞𝜙 (·|x) will be trans-

mitted over discrete channel model, e.g., binary symmetric
channel (BSC). We focus on BSC channel in this paper since
BSC is commonly treated as a complex channel compared
to binary erasure channel (BEC) [27]. In case of BSC, each
element of the encoded codeword y ∈ {0, 1}𝑚 is independently
flipped with probability 𝜖 (e.g., 0 → 1 with probability 𝜖 ;
0 → 0 with probability 1 − 𝜖) to form a noisy codeword ŷ as
shown in Fig. 2.

Mathematically, the distribution of the noisy codeword ŷ
with BSC channel 𝑞channel can be formulated as

𝑞channel
(
ŷ|x; 𝜙, 𝜖) =

𝑚∏
𝑖=1

(𝜎( [ 𝑓𝜙 (x)]𝑖)) − 2𝜎( [ 𝑓𝜙 (x)]𝑖))𝜖 + 𝜖
) ŷ𝑖
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×
(
1 − 𝜎( [ 𝑓𝜙 (x)]𝑖)) (4)

+ 2𝜎( [ 𝑓𝜙 (x)]𝑖)) − 𝜖
) (1−ŷ𝑖 ) , (5)

with channel noise level 𝜖 . Given received noisy codeword
ŷ with length 𝑚, the decoder network 𝑝𝜃 (·|ŷ) then maps
ŷ to reconstructed source data x̂. The decoder network is
also defined by parameterized multi-layer neural network
analogously to the encoder network as

𝑝𝜃 (x|y) = N
(
𝑓
𝜙 (𝐿𝑑 ) ( 𝑓𝜙 (𝐿𝑑−1) (· · · 𝑓𝜙 (1) (y)))𝜎2

𝑥 𝐼

)
, (6)

with 𝐿𝑑 layers assuming Gaussian distribution N(·, ·). In
practice, mean of the probabilistic decoder 𝑝𝜃 (x|y) in (6) is
used as the estimated input x̂.

B. NECST optimization with score function estimator

Estimating and optimizing the mutual information between
unknown random variables (e.g., dataset, noisy codeword) is
intractable which hinders precise optimization of neural JSCC
over discrete channel. To this end, in [19], NECST approx-
imately optimized the variational bound based on amortized
inference [28], [29] by maximizing the mutual information
between input data x and noisy codeword ŷ as

max
𝜃,𝜙

𝐼 (x, ŷ; 𝜃, 𝜙, 𝜖) = 𝐻 (x) − 𝐻𝜃 (x|ŷ; 𝜙, 𝜖)

≥ 𝐻 (x) + E(x,ŷ)∼𝑞channel (x,ŷ;𝜙,𝜖 ) [log
(
𝑝𝜃 (x|ŷ)

)
], (7)

where 𝐻 (·) denotes differential entropy. To logically denote
the encoding distribution with the noisy channel in (7), we
define 𝑞channel(x, ŷ; 𝜙, 𝜖) as

𝑞channel(x, ŷ; 𝜙, 𝜖) = 𝑞channel
(
ŷ|x; 𝜙, 𝜖) × 𝑝(x), (8)

where 𝑝(x) is the ground-truth of input data distribution. Since
the expectation of (7) cannot be computed explicitly, (7) is
approximated to form an objective function for NECST as

max
𝜃,𝜙

LNECST
(
𝜃, 𝜙; 𝑥, 𝜖

)
=

1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (ŷ |x;𝜖 ,𝜙) [log

(
𝑝𝜃 (x|ŷ)

)
], (9)

with cardinality of the training dataset |D|. As optimization
of (9) requires gradient estimation due to discrete sampling,
for which [19] adopted score function estimator which suffers
from large-variance issue, NECST considers multi-sample
objective named VIMCO [25]. Precisely, VIMCO is a score
function-based gradient estimator that modifies the discrete
latent vector y into the average of the 𝐾-sampled variable
1
𝐾

∑𝐾
𝑖=1 y𝑖 for learning.

1) Vanilla Score Function Approach: First, we introduce
the vanilla score function estimator that solves (9) which
suffers from large variance, yet being an an unbiased gradient
estimator for (9). As computing the gradient with respect to
𝜙 for the NECST loss LNECST (𝜃, 𝜙; 𝑥, 𝜖) is the tricky part,
we first compute the gradient with respect to the decoder
parameter vector 𝜃 which is easier to estimate.

∇𝜃LNECST(𝜃, 𝜙; 𝑥, 𝜖)

= ∇𝜃
1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (ŷ |x;𝜖 ,𝜙) [log

(
𝑝𝜃 (x|ŷ)

)
]

=
1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (ŷ |x;𝜖 ,𝜙) [∇𝜃 log

(
𝑝𝜃 (x|ŷ)

)
] . (10)

Above (24) can be easily estimated with Monte Carlo
sampling as

∇𝜃LNECST (𝜃, 𝜙; 𝑥, 𝜖) ≃ 1
|D|

∑︁
x∈D

1
𝑁

𝑁∑︁
𝑛=1

[∇𝜃 log
(
𝑝𝜃 (x|ŷn)

)
];

y𝑛 ∼ 𝑞𝜙 (y|x). (11)

In detail, we sample y𝑛, hence the ŷ𝑛, at forward pass
from the conditional stochastic encoder distribution 𝑞𝜙 (y|x)
given the input x, then the function 𝑝𝜃 (x|y) given ŷ𝑛 can
be evaluated deterministically. Now we estimate the gradient
∇𝜙LNECST (𝜃, 𝜙; 𝑥, 𝜖) with respect to the parameters 𝜙, which
is more tricky part when training the NECST model. The
difficulty comes from dependency of parameter 𝜙 to the distri-
bution of the generated samples y through 𝑞𝜙 (·|x), while the
loss LNECST is computed using the samples y. Mathematically,
the corresponding gradient can be computed as

∇𝜙LNECST (𝜃, 𝜙) (12)

= ∇𝜙
1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (ŷ |x;𝜖 ,𝜙) [log

(
𝑝𝜃 (x|ŷ)

)
]

=
1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (ŷ |x;𝜖 ,𝜙) [∇𝜙 log 𝑞channel(ŷ|x; 𝜖, 𝜙)

× log
(
𝑝𝜃 (x|ŷ)

)
] . (13)

Similar to (10), we can also use Monte Carlo sampling to
estimate the gradient with respect to the encoder parameter as

∇𝜙LNECST (𝜃, 𝜙; 𝑥, 𝜖)

≃ 1
|D|

∑︁
x∈D

1
𝑁

𝑁∑︁
𝑛=1

[∇𝜙 log 𝑞channel (ŷ|x; 𝜖, 𝜙) × log
(
𝑝𝜃 (x|ŷn)

)
];

y𝑛 ∼ 𝑞𝜙 (y|x). (14)

2) Multi-Sample Score Function Approach: However, the
variance of score function estimator scales with the sample
vector dimension, it generally suffers from high gradient
variance issues [22] and [23]. Accordingly, [19] apply a Monte
Carlo variance reduction technique, VIMCO, leverages this
large variance via multi-samples in (14). Key idea is to sample
𝐾 latent variables y instead of single draw in (14) to reduce
the variance of the gradient estimate in (14). The NECST
optimizing objective with VIMCO can be written as

L𝐾
VICMO

(
𝜃, 𝜙; 𝑥, 𝜖

)
= max

𝜃,𝜙

1
|D|

∑︁
x∈D
Eŷ1:K∼𝑞channel (y |x;𝜖 ,𝜙) [log

1
𝐾

𝐾∑︁
𝑘=1

(
𝑝𝜃 (x|ŷ𝑘)

)
] .

(15)

From this modified objective function, the gradient with
respect to the decoder parameter vector 𝜃 can be written as
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∇𝜃L𝐾
NECST (𝜃, 𝜙; 𝑥, 𝜖)

= ∇𝜃
1
|D|

∑︁
x∈D
Eŷ1:K∼𝑞channel (ŷ |x;𝜖 ,𝜙) [log

1
𝐾

𝐾∑︁
𝑘=1

(
𝑝𝜃 (x|ŷ𝑘)

)
]

=
1
|D|

∑︁
x∈D
Eŷ1:K∼𝑞channel (ŷ |x;𝜖 ,𝜙) [log

1
𝐾

𝐾∑︁
𝑘=1

∇𝜃
(
𝑝𝜃 (x|ŷ𝑘)

)
],

(16)

and hence estimate with Monte Carlo sampling as

∇𝜃L𝐾
NECST (𝜃, 𝜙; 𝑥, 𝜖)

≃ 1
|D|

∑︁
x∈D

1
𝑁

𝑁∑︁
𝑛=1

[log
1
𝐾

𝐾∑︁
𝑘=1

∇𝜃
(
𝑝𝜃 (x|ŷ𝑛,𝑘)

)
];

y𝑛,𝑘 ∼ 𝑞𝜙 (y|x). (17)

Similarly, the gradient with respect to the encoder parameter
vector 𝜙 can be computed with lower variance thanks to multi
sampling as

∇𝜙L𝐾
NECST (𝜃, 𝜙)

= ∇𝜙
1
|D|

∑︁
x∈D
Eŷ1:K∼𝑞channel (ŷ |x;𝜖 ,𝜙) [log

1
𝐾

𝐾∑︁
𝑘=1

(
𝑝𝜃 (x|ŷ𝑘)

)
]

=
1
|D|

∑︁
x∈D
Eŷ1:K∼𝑞channel (ŷ |x;𝜖 ,𝜙) [∇𝜙 log 𝑞channel(ŷ1:𝐾 |x; 𝜖, 𝜙)

× log
1
𝐾

𝐾∑︁
𝑘=1

(
𝑝𝜃 (x|ŷ𝑘)

)
]

=
1
|D|

∑︁
x∈D
Eŷ1:K∼𝑞channel (ŷ |x;𝜖 ,𝜙) [∇𝜙 log

𝐾∏
𝑘=1

𝑞channel(ŷ𝑘 |x; 𝜖, 𝜙)

× log
1
𝐾

𝐾∑︁
𝑘=1

(
𝑝𝜃 (x|ŷ𝑘)

)
]

=
1
|D|

∑︁
x∈D
Eŷ1:K∼𝑞channel (ŷ |x;𝜖 ,𝜙) [∇𝜙

𝐾∑︁
𝑘=1

log 𝑞channel(ŷ𝑘 |x; 𝜖, 𝜙)

× log
1
𝐾

𝐾∑︁
𝑘=1

(
𝑝𝜃 (x|ŷ𝑘)

)
] . (18)

Finally, this gradient can be estimated with Monte Carlo
sampling as

∇𝜙L𝐾
NECST (𝜃, 𝜙; 𝑥, 𝜖)

≃ 1
|D|

∑︁
x∈D

1
𝑁

𝑁∑︁
𝑛=1

[∇𝜙
1
𝐾

𝐾∑︁
𝑘=1

log 𝑞channel(ŷ𝑛,𝑘 |x; 𝜖, 𝜙)

× log
1
𝐾

𝐾∑︁
𝑘=1

(
𝑝𝜃 (x|ŷ𝑛,𝑘)

)
];

y𝑛,𝑘 ∼ 𝑞𝜙 (y|x). (19)

III. LOW-VARIANCE GRADIENT ESTIMATOR FOR NEURAL
JSCC

Even though NECST utilized VIMCO to reduce the variance
of the estimated gradient as compared to vanila score function

estimator, it still suffers from large variance due to limitations
of score function estimator while it also requires increase
computational complexity due to multi sampling. Furthermore,
it requires different objective function for decoder (15) and
encoder (17) that requires careful design of the loss functions.
Recalling that the reason for such multi samples and different
objective function stemming from score function estimation
comes from the non-differentiable nature of sample y which is
a realization of sample draw from parameterized distribution
𝑞𝜙 (y|x), we simplify the problem by making the codeword
y a differentiable function, and hence reduce the variance of
the gradient estimation. Key idea is to use path-wise gradient
estimation instead of score-function estimation by replacing
the sampled codeword y with soft codeword y′ that can be
directly differentiated with respect to the encoder parameter
vector 𝜙.

1) Path-wise Gradient Approach: As mentioned, to opti-
mize the encoder (𝑞𝜙) and decoder (𝑝𝜃 ) at once, we introduce
an end-to-end optimized neural JSCC model without using
VIMCO that requires multi-sampling Bernoulli-distributed bi-
nary codeword during training step. Accordingly, we directly
minimize the loss function LNECST

(
𝜃, 𝜙; 𝑥, 𝜖

)
. However, the

problem lies in the discrete nature of the latent codeword y.
The Straight-Through (ST) estimator [21] is a novel method

to simply avoid its limitation. This technique is widely used
in recent discrete VAE researches [30] [31] to allow gradient
flow over non-differentiable backward pass. To this end, we
propose to utilize lower variance gradient estimator via path-
wise gradient estimation to solve (14) via ST estimator.
Precisely, the ST estimator replaces non-differentiable 𝑚-bit
latent codeword y into differentiable codeword y′ as

y′ = stop_gradient
(
y − 𝜎

(
𝑓𝜙 (x)

) )
+ 𝜎

(
𝑓𝜙 (x)

)
, (20)

where the function stop_gradient(·) removes dependency
with respect to the learnable parameters, i.e., 𝜃 and 𝜙 here.
Note that the value itself is same for y′ and y. Thus, the
gradient of Bernoulli-sampled noisy codeword ∇𝜙 ŷ can be
replaced by ∇𝜙 ŷ′.

ST gradient estimator in (20) lead to ignore the Bernoulli
distributed sampling in encoding part (1). Finally, we can
redefine end-to-end optimizing objective (9) for our neural
JSCC model with Bernoulli ST (BernST) method as

min
𝜃,𝜙

1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (y |x;𝜖 ,𝜙) [− log

(
𝑝𝜃 (x|ŷ)

)
]

≃ min
𝜃,𝜙

1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (y |x;𝜖 ,𝜙) [− log

(
𝑝𝜃 (x|ŷ′)

)
]︸                                                      ︷︷                                                      ︸

:=LBernST

(
𝜃,𝜙;𝑥,𝜖

)
, (21)

where ŷ′ is the output of the channel using the differentiable
codeword y′ generated from (18).

Given the loss function, the gradient with respect to the
decoder parameter 𝜃 can be computed as

∇𝜃LBernST(𝜃, 𝜙; 𝑥, 𝜖)

= ∇𝜃
1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (ŷ |x;𝜖 ,𝜙) [log

(
𝑝𝜃 (x|ŷ′)

)
]
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=
1
|D|

∑︁
x∈D
Eŷ∼𝑞channel (ŷ |x;𝜖 ,𝜙) [∇𝜃 log

(
𝑝𝜃 (x|ŷ′)

)
], (22)

which can be estimated using Monte Carlo sampling as

∇𝜃LBernST(𝜃, 𝜙; 𝑥, 𝜖) ≃ 1
|D|

∑︁
x∈D

1
𝑁

𝑁∑︁
𝑛=1

[∇𝜃 log
(
𝑝𝜃 (x|ŷ′n)

)
];

for y𝑛 ∼ 𝑞𝜙 (y|x) and

y′𝑛 = stop_gradient
(
y𝑛 − 𝜎

(
𝑓𝜙 (x)

) )
+ 𝜎

(
𝑓𝜙 (x)

)
. (23)

Similarly, the gradient for the encoder parameter vector 𝜙
can be obtained as

∇𝜙LBernST (𝜃, 𝜙; 𝑥, 𝜖)

= ∇𝜙
1
|D|

∑︁
x∈D
E𝛿 [log

(
𝑝𝜃 (x|ŷ′ (𝜙, 𝛿))

)
]

=
1
|D|

∑︁
x∈D
E𝛿 [∇𝜃 log

(
𝑝𝜃 (x|ŷ′ (𝜙, 𝛿))

)
], (24)

where the expectation E𝛿 is taken with respect to inherent
randomness that does not depend on the learnable parameter
𝜙 and 𝜃, e.g., channel noise in 𝑞channel(·), and we particu-
larly emphasize the direct dependency of ŷ′ with respect to
parameter 𝜙 and the inherent random variable 𝛿 by ŷ′ (𝜙, 𝛿).
Furthermore, the gradient can be estimated using Monte Carlo
sampling as

∇𝜙LBernST (𝜃, 𝜙; 𝑥, 𝜖) ≃ 1
|D|

∑︁
x∈D

1
𝑁

𝑁∑︁
𝑛=1

[∇𝜙 log
(
𝑝𝜃 (x|ŷ′n)

)
];

for y𝑛 ∼ 𝑞𝜙 (y|x) and

y′𝑛 = stop_gradient
(
y𝑛 − 𝜎

(
𝑓𝜙 (x)

) )
+ 𝜎

(
𝑓𝜙 (x)

)
. (25)

It is worth noting that, the objective of NECST (15) and
BernST (21) are essentially same except for that the proposed
objective (21) has lower variance with less computational
complexity which leads to an efficient and effective learning
of entire neural JSCC system.

IV. EXPERIMENTAL RESULTS

In this section, to validate our method, we demonstrate the
compression and error correction performance of BernST and
compare them to NECST. Our comparison is on the MNIST
[32] and CIFAR-10 [33] datasets using 50000/10000/10000
and 45000/5000/10000 split into the training, validation and
test sets, respectively. For fair comparison, the architecture
and hyperparameters of the encoder and decoder are set as in
[19]. All of our experiments are implemented using Pytorch,
which allows for automatic differentiation through the gradient
updates.

To begin with, Table I and Table II compare the performance
of compression and error correction with fixed number of bits
for MNIST of 28×28 gray scale images of handwritten digits
and CIFAR-10 of 32×32 RGB images dataset, an RGB image
dataset of 32x32 size, respectively. The results reported the
L2 distance between the original and reconstructed image in
test set per single image that showed the best performance
on the validation set during training. It can be easily checked

Table I
L2 DISTANCE BETWEEN ORIGINAL AND RECONSTRUCTED IMAGE ON

MNIST DATASET.

MNIST dataset

Noise 𝜖 100-bit NECST 100-bit BernST

0 9.826 8.298
0.1 15.05 12.58
0.2 22.62 20.31
0.3 32.11 31.33
0.4 45.51 47.76

Table II
L2 DISTANCE BETWEEN ORIGINAL AND RECONSTRUCTED IMAGE ON

CIFAR-10 DATASET.

CIFAR-10 dataset

Noise 𝜖 500-bit NECST 500-bit BernST

0 19.25 19.3
0.1 29.73 28.59
0.2 44.13 42.25
0.3 64.13 62.42
0.4 101.2 100.6
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Figure 3. Reconstruction error (lower is better) according to number of bits
used for NECST and BernST on MNIST dataset. The channel noise level is
fixed to 𝜖 = 0.1.

that the proposed method achieves better reconstructed image
compared to original NECST thanks to the proposed variance
reduction technique.

To investigate the effect of number of bits for transmission,
Fig. 3 shows reconstruction performance over BSC channel as
a function of the number of bits with fixed noise level 𝜖 = 0.1.
In Fig. 3, we can see that our proposed method outperforms
NECST over all regions while the gap becomes enlarged in
the sufficient bits regime due to the ability of neural joint
source coding that handles compression and noise correction
simultaneously.
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Figure 4. Reconstruction error (lower is better) comparison of BernST and
NECST on MNIST dataset. Noiseless channel (𝜖 = 0) and noisy (𝜖 = 0.1)
channel environments are considered. The loss is computed from validation
set during training. The number of samples for NECST is fixed to 𝐾 = 5.
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Figure 5. Reconstruction error (lower is better) comparison of BernST and
NECST on MNIST dataset. Noisy (𝜖 = 0.2 and 0.3) channel environments
are considered. The loss is computed from validation set during training. The
number of samples for NECST is fixed to 𝐾 = 5.

Figs. 4 and 5 shows the reconstruction error during the
training process for BernST and NECST according to the
channel noise level. There is not much difference in the
early stages of learning, but this is because the encoder is
not well trained in the early stages and there is not enough
information in the encoded codewords. Fig. 4 directly shows
that reconstruction performance of BernST is much higher
than NECST during entire training process. As shown in
Fig. 5, the advantages of BernST methods are not clearly
evident as the channel noise level is increased (𝜖 > 0.3), it
is meaningful that it consistently product good performance
at overall channel noise levels.

Lastly, as mentioned, while the proposed BernST encodes
source data with single-sampled Bernoulli codewords, NECST
with VIMCO requires multi samples. To examine the effect of
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Figure 6. Reconstruction error (lower is better) comparison of BernST and
multi-sample objective for NECST on MNIST dataset. The loss is computed
from validation set during training. Different number of multi-samples are
considered, i.e., 𝐾 = (2, 5, 10, 15, 20) (15). The channel noise level is fixed
to 𝜖 = 0.1.

multi samples, we plot the reconstruction error with respect
to training iterations for different multiple sample numbers.
In Fig. 6, increase in multi sample indeed achieves better
reconstruction performance thanks to variance reduction also
as reported in [19], our method outperforms NECST with
single sample thanks to the low-variance nature of pathwise
gradient estimator.

V. CONCLUSION

In this paper, neural JSCC for discrete channels has been
proposed with reduced variance for the gradient estimator that
leads to improved performance as compared to the state-of-
the-art neural JSCC, NECST. By utilizing path-wise gradient
computation with straight-through estimator, we were able
to show that the proposed BernST reconstructs the original
image better than NECST for almost all noise levels and
number of bits. Also, the proposed approach shows faster
convergence with lower computational complexity thanks to
the accurate estimation of the training gradient. Experimental
results on both MNIST and CIFAR-10 dataset demonstrate that
the proposed neural JSCC shows better compression and error
correction performance as compared to the previous neural
JSCC system for various channel conditions. As a final remark,
one of the limitations of the existing (including ours) neural
JSCC system is that the model must be trained separately on
various code lengths and dataset. Future work may consider
meta-learning [26], [34] of neural JSCC system for a variable-
length code to adapt to the new environment quickly.
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