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Metaheuristics as Enablers for VNF Scheduling in
the Network Slice Set Up Process
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Abstract—Network slicing refers to the capability of composing
mobile networks by chaining a set of virtualised functions on
top of shared infrastructures. In the research domain, special
attention is paid on the problem of scheduling network slices, i.e.,
the challenge of managing efficiently computation resources when
multiple network slices share the same infrastructure. So far, the
rich toolset that has emerged from the studies on the spectrum
resource management, as well as the rapid development of cloud
computing, have provided the means for scheduling decisions in
5G networks. Capitalizing on the existing studies, we examine
the potential of using metaheuristic algorithms for providing
scheduling outputs that minimize the slice set up time. Perfor-
mance evaluation results show that evolution-based approaches
(e.g., a genetic algorithm) provide better overall performance
than swarm-based ones (e.g., an ant colony optimiser). However,
since the slice set-up process is a real-time process, the processing
time that is consumed by the scheduler itself is an important
evaluation factor, for which, the swarm-based approaches have
an advantage.

Index Terms—5G, ant colony optimisation, genetic algorithm,
job-shop scheduling problem, metaheuristics, network slicing,
service creation time, VNF.

I. INTRODUCTION

THE fifth generation (5G) of mobile networks has brought
a new era in telecommunications where new research

challenges and business potentials have emerged. The key
advances of 5G refer to i) the convergence of telecom sector
with the cloud infrastructures, through the virtualisation of
the network functions, and ii) the unprecedented performance
gains, due to the evolution of the radio access network (RAN)
part of the network. Already, a plethora of telecom operators
around the globe [1], have integrated 5G compliant equipment
in their infrastructures and they have set the scene for pro-
viding 5G-enabled services. The research community is also
intensively active on 5G-related topics. For instance, 5G PPP
projects [2] have provided a plethora of 5G experimentation
infrastructures around Europe. Academia has also produced
a great number of results in emerging 5G research fields,
such as network slicing [3], [4], mobile network openness [5],
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resource sharing [6], [7], and (radio) access technologies
engagement [8], [9].

The goals of 5G networks were set from ITU IMT
2020 [10], and they can be described briefly by the following
higher level key performance indicators (KPIs) compared to
the previous generation; namely: Increase by 1000 times the
wireless area capacity; reduce the average service creation time
cycle from 90 hours to 90 minutes; create secure, reliable
and dependable internet with a “zero perceived” downtime
for services provision; save up to 90% of energy per service
provided; support ultra-dense device deployments; and enable
advanced user controlled privacy. From the service perspective,
one of the ultimate goals of 5G, is to be able to handle
heterogenous services, with different, and sometimes compet-
itive requirements over a unified network infrastructure. The
three extremes of such services are [11]: i) Enhanced mobile
broadband (eMBB) – also called extreme mobile broadband,
ii) ultra-reliable and low latency communications (URLLC),
and iii) massive machine type communications (mMTC).

Towards the above-mentioned 5G developments and perfor-
mance gains, a set of technologies have been emerged, includ-
ing a game changer one; the “network slicing” [12]. The main
target of the network slicing concept is to enable the creation
of multiple virtual isolated networks on a shared physical
infrastructure, so that heterogeneous and conflicting service
requirements are fulfilled. A prerequisite for network slicing
implementation is the concept of decoupling network functions
from dedicated hardware, to make them software functions that
can be hosted in/migrated to virtual environments. The net-
work functions softwarization, requires the transformation of
physical network functions (PNFs) to virtualised/containerized
network functions (VNFs/CNFs). Thus, the network slices are
considered sets of VNFs, hosted on several virtual servers of
a provider’s network.

In this context, resources of whatever kind (compute, net-
work, storage, etc.) should be allocated efficiently to VNFs,
fulfilling functional requirements, such as the network slice
set up time. The slice set up process includes the instantiation
and the configuration of the VNFs/CNFs that compose a slice;
hence it affects a key 5G KPI, the service creation time [13]
(referring to the time needed for a network service at the
“zero” status to become fully functional).

In this article, the problem of minimising the time needed
for instantiation and configuration of VNFs is mapped to
the job-shop scheduling problem (JSSP) [14]. To resolve the
problem the toolbox provided by the metaheuristic processes is
examined. More precisely, we consider a system that receives
requests for setting up network slices and provides scheduling
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decisions based on nature-inspired metaheuristics. Expanding
our previous work on metaheuristics [15], the evolution-based
and the swarm-based metaheuristic categories are targeted
through two key representatives, namely: The genetic algo-
rithm (GA) and the ant colony optimisation (ACO), respec-
tively. For each one of the approaches, we study thoroughly
the impact of configuration parameters on their performance
in order to select the best-fitting solution for the VNF/CNF
scheduling problem. In the following, for simplicity, we use
only the term VNFs, and VNF scheduling; however the
proposed approach is valid for CNFs, as well.

The remaining of this paper is organised as follows. Sec-
tion II describes the network slicing concept, as well as related
resource allocation techniques for placement and scheduling of
VNFs that compose network slices. In Section III, the adopted
system model is presented by explaining how the problem of
minimizing the slice set up time is mapped to the well-known
JSSP. Section IV defines a case study, where metaheuristic
algorithms are utilized to solve the target problem. Section V
presents performance evaluation results. Finally, in Section VI,
conclusions and insights for further study are provided.

II. THE CONCEPT OF NETWORK SLICING

A. Network Slice and VNFs

The new era of telecommunications brings up plenty of
high-performance standards along with heterogeneous require-
ments set by emerging vertical services (e.g., Internet-of-
things, automotive communication), which cannot be satisfied
by the conventional/monolithic network deployments. High
data rates, low latency, seamless coverage, and dense con-
nectivity are few of the most important requirements that new
generation networks must fulfil. The network’s infrastructure
must be able to cope with resource demanding and competitive
services simultaneously. The countermeasure to this challenge
is the concept of network slicing, chosen to be the main pillar
in the new generation of mobile networks that will enable
innovative vertical services. Network slicing refers to the
process of setting up on demand end-to-end logical networks,
that: i) Run on a shared underlying (physical or virtual) net-
work, ii) are mutually isolated, and iii) can have independent
control and management planes [16]. The implementation of
the network slicing concept is based on two key technologies,
namely, the software defined networks (SDN) and the network
function virtualisation (NFV).

SDN architecture refers to decoupling routing (control
plane) and forwarding (data plane) functions in network nodes,
thus enabling the capability of programmable network control
and the import of an abstraction level in the underlying
infrastructure, suitable for application and network services.
SDN purpose is to address the fact that the static architec-
ture of traditional networks was decentralized and complex,
making the network unable to keep up to dynamic changes
and hard for troubleshooting. By disaggregating control and
data plane, SDN attempts to centralise network intelligence
in a set of limited network components, thus transforming
conventional networks to dynamic, manageable, cost-effective,

and adaptable ones. The basic architectural components of
SDN are: i) SDN controller, which is the logical centralized
entity responsible for every decision in the network, ii) SDN
application, which is the software component importing a
desired functionality in the network, iii) SDN datapath, which
is the logical network device providing the physical network
device with SDN capabilities, iv) SDN interfaces, divided
in two categories: Control to data-plane interface, between
SDN controller and SDN datapath, and northbound interface,
between SDN application and SDN controller.

NFV is the concept of virtualising network services, such as
firewall, encryption, routing etc., that have traditionally been
run on dedicated hardware. These services are packaged as
isolated logical entities (virtual machines or containers) on
commodity hardware, which allows service providers to run
these on standard servers instead of proprietary ones. NFV
implementation can improve scalability and agility by allowing
service providers to deliver custom network services and
applications on demand, minimising the need for additional
hardware resources [17]. According to ETSI [18] the NFV
framework consists of: i) Virtualized network function (VNF),
i.e., the software implementation of a network function, ii)
NFV infrastructure, including the resources to be virtualised
and iii) NFV management and orchestration (MANO), which
is responsible for the orchestration and lifecycle management
of physical and logical resources that support infrastructure
virtualisation.

Consequently, a “network slice” can be considered as a
set of VNFs that are hosted in compute nodes of a network
infrastructure to offer isolated and scalable network services
to vertical service providers.

B. VNF Placement and Scheduling
The research interest on network slicing lies mainly in the

so-called resource management problem (management of the
computation power), where two key algorithmic processes are
defined; the VNF placement, referring to the placement of
VNFs from a set of network slice requests to the physical
computing hosts, and the VNF scheduling, referring to the
order that the VNF are installed/served by the hosts.

VNF placement. In the literature the algorithmic part of
VNF placement is mainly addressed using the integer linear
programming (ILP). For instance, in [19], ILP is used to
deal with VNF placement problem, targeting at maximising
continuous available time of service chain functions (SCFs).
ILP is also used to formalise the problem in [20], where the
authors study VNF placement and chaining in network slicing
considering geographic location of network slice users. The
authors in [21] are dealing with VNF placement problem,
studying the degree that intra-slice isolation and end-to-end
delay restrictions affect resource utilization (CPU and band-
width). They adopt a MILP approach with AMPL to model
the optimization algorithm and CPLEX as MILP solver [22].
The problem is modelled as a MILP in [23] as well, where the
authors focus on how to place VNF instances in distributed
data centers and schedule the appropriate network flows to
minimise the total cost of VNF deployment and flow commu-
nication for big data processing.
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In addition to the above-mentioned set of approaches, online
solutions have been proposed as well. For instance, in [24]
the authors propose a mechanism of online placement and
reallocation of VNFs between core and edge networks, by
using a forwarding graph embedding algorithm, with major
objective to maximise the number of served users. Similarly,
the research study in [25] introduces an online method to
orchestrate VNFs and schedule traffic flow for network util-
ity maximisation, using deep reinforcement learning (DRL)
assisted by an optimization model.

VNF scheduling. The study in [26] implements Q-
learning, a Reinforcement Learning technique, to solve delay-
guaranteed VNF scheduling. The problem is handled as a time-
slot problem, where in each slot a decision on which VNF
will be executed is being made. The authors in [27] present a
solution for VNF scheduling problem, based on GA, adopting
three variations, i) feed the algorithm with deterministic initial
population, ii) use an adaptive crossover probability controlled
by the fitness value, and iii) apply mutation controlled by
simulated annealing. In [28], VNF scheduling with E2E delay
requirements among services is formulated first as MILP and
then as a Markov decision process (MDP) solved with Q-
learning algorithm. In [29], VNF scheduling is formulated
as a flexible job-shop scheduling problem, and the authors
propose a deep Q-Learning algorithm, named DQS, to solve
the problem. They also compare their approach with other four
algorithms, a greedy-based, a matching-based, a fair weighted
and GA. A metaheuristic approach, on the other hand, is used
by [30], developing two novel genetic-based algorithms, which
try to optimise VNF scheduling by maximising the number
of accepted service requests, and minimising the number of
bottleneck links and the overall processing time. An alternative
approach is presented by the authors of [31], who propose
a matching-based algorithm to solve both offline and online
VNF scheduling.

Joint VNF placement and scheduling. The authors in [32]
present a two-phase solution for joint optimization of VNF
chain placement and request scheduling problem. The authors
apply the theory of open Jackson network to model VNF
chains, formulate the VNF chain placement problem as a
variant of variable-sized bin-packing problem, and propose a
priority-driven weighted algorithm best fit decreasing using
smallest used nodes (BFDSU) to optimise resource utiliza-
tion and a heuristic algorithm reverse complete Karmarkar-
Karp (RCKK) to minimise response latency. A similar ap-
proach for the joint optimisation problem is proposed in [33].
The authors study stateful VNF placement along with routing
scheduling, formulate the problem as a Mixed Integer Linear
Programming (MILP) and use a two-phase fast algorithm to
deploy VNF instances and select appropriate routing paths.
The objective of placing and scheduling VNFs in [34] is to
minimise cost incurred by the service provider (SP) to lease
computing and networking resources. Also, latency require-
ments of service demands, which arrive dynamically, should
be satisfied. Cost-effective placing and scheduling scheme
are compared with a low-latency scheme and is formulated
with MILP and with a heuristic that consists of three sub-
algorithms, i.e., optimal zone determination (OZD), latency

requirement verification (LRV), and service demand provi-
sioning (SDP). The study in [35] proposes an approach to
jointly optimise the processes of VNF placement and VNF
scheduling. Authors first solve the optimal VNF placement
for all flows to simplify the problem, and then they use
Lagrangian multipliers to relax and decompose it into a series
of subproblems. A dynamic programming method is designed
to solve each subproblem and a heuristic method is presented
to construct a feasible solution for it. Finally, the solution
is optimised through the subgradient optimisation method.
The authors in [36] propose a graph-based algorithm to solve
VNF placing and scheduling on demand, taking also some
software requirements into consideration. On the other hand,
the author in [37] evaluates heuristic, metaheuristic and greedy
approaches for the joint optimisation of VNF placement and
scheduling.

Overall, the VNF placement problem, in practice, is ad-
dressed internally in the platform that implements the virtual-
isation environment (e.g., a cloud computing platform, such as
Kubernetes). Thus, the implementation details can affect the
efficiency of the solution. In this view, proof-of-concept solu-
tions have been developed, as for example the one presented
in [38], where VNF placement and chaining is concerned for
the interactive gaming use case. An implementation for VNF
placement is presented in [39] as well. The authors introduce
an ETSI NFV compliant, scalable, and distributed architecture,
called Megalos, which allocates VNFs via a custom variation
on top of the Kubernetes native VNF placement scheme. Thus,
the VNF scheduling problem seems to be more attractive, as it
is platform independent and, also, more critical, when it comes
to time optimization criteria, like the slice set up time. Thus,
the target of our work is to study the VNF scheduling problem.
The essentials of the proposed approach are presented in the
next section.

III. SYSTEM MODEL

A. Problem Statement

As already mentioned, a network slice is comprised of
VNFs which are chained in a specific order. We assume that
a network slice provider (NSP) is responsible for fulfilling
the performance requirements of a requested service, and for
providing the service-related network slice(s) ready (up and
running) in the shortest possible time.

Considering the ETSI MANO architecture and the 5G
service-based architecture (SBA), the responsibility for the
end-to-end deployment of a service-related network slice is
upon the network slice management function (NSMF), which
resides at the NSP [34]. Also, considering the 5G performance
targets initially set by ITU IMT 2020 [40], for the network
slicing preparation, the NSP targets to reduce the average
service creation time from 90 hours to 90 minutes; The service
creation time has been defined as the “time required to pro-
vision a service, measured since a new service deployment is
requested until the overall orchestration system provides a re-
sponse” [13], and it can be divided into many time-consuming
phases, each of them depending on different factors. In the
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TABLE I
THE MAIN PHASES OF SERVICE CREATION AND ACTIVATION TIME.

Service creation & activation phases
Phase Process Description

Phase 0 Platform provision Platform configuration, platform
deployment

Phase 1 Onboarding Onboard network slice template,
network slice descriptor, etc.

Phase 2
Instantiate,
configure &
activate

Instantiate network slice, instantiate &
activate network service, instantiate &
configure VNFs in service chain, etc.

Phase 3 Modify Modify slice, service or VNF
configuration

Phase 4 Terminate Terminate slice, service, VNF

attempt to identify the various phases of service creation,
5G-PPP has reported a collaborative reference timing flow.
This timing flow does not only separate the stages in network
service creation and activation process, but also defines clear
starting and ending time points. A representation of the timing
flow is presented in Table I. From the set of phases defined for
the service creation procedure, phase 2, (named as instantiate,
configure & activate) seems to be the most time-consuming
stage in the whole process, since it includes the processes of
instantiating, configuring and activating a slice. As a result,
the minimisation of the time spent in this phase would have
a positive overall effect in the network slice creation process.
In this view, our target is to minimise the time needed for
instantiation and configuration of a network slice, by studying
fast and robust schedulers that are able to schedule resource-
competitive VNFs of various network slices in a limited set
of physical machines (hosts).

In this context, let the NSP manage several processing
machines, located in multiple compute centers (at network
core, edge etc.) on which VNFs can be hosted. We assume
the following:
• Chunks of requests for deployment of network slices are

periodically received by the NSP.
• Each request includes the required execution plan (VNF

order) for each slice.
• The NSP, based on i) monitoring of past set-ups, ii)

knowledge of the capabilities of the available processing
machines and iii) network constrains and delays, esti-
mates the time needed for setting-up each specific VNF
and assigns it in the most suitable machine.

• An optimization algorithm is applied to schedule a chunk
of requests, taking all constrains into account. The algo-
rithm exports the total VNF execution plan.

To select the optimisation algorithm for the scheduling of
network slice chunks, the problem is mapped to JSSP, as
explained below.

B. Mapping VNF Scheduling to JSSP

In the literature, the scheduling problem mainly refers to
the challenge of selecting time slots for performing a set of
activities, with respect to a given set of constrains (such as re-
sources limitations or precedence order among the activities),
targeting at optimising a performance metric [41]. In most of
the network related scheduling approaches, the optimisation

metric is either the total processing time of the activities
(i.e., the minimisation of makespan [42]) or the amount of
processing resources allocated to run the activities. At the
dawn of the slice-enabled networks, scheduling procedures fit
well to procedures needed in sliced networks for allocating
VNFs to available processing resources. This mapping is clear
since every network service is modelled as a service chain, i.e.,
a set of network functionalities, implemented as VNFs, in a
specific order [43].

A well-studied example of scheduling problem is the Job-
Shop Scheduling Problem. The JSSP sets a combinatorial
problem, where its solving has been used widely in liter-
ature to address resource allocation and scheduling prob-
lems [44]–[48]. Here we assume the JSSP with the following
characteristics:
• Let a set of n jobs, denoted as 𝐽1, 𝐽2, · · ·, 𝐽𝑛;
• Within each job there is a set of operations
𝑂1, 𝑂2, · · ·, 𝑂𝑖 , of varying processing times;

• Each operation of every job must be executed is a
specific machine, among a set of m machines, denoted
as 𝑀1, 𝑀2, · · ·, 𝑀𝑚, according to initial plan;

• Each machine can process one operation at a time and
when an operation is assigned to a machine, the machine
can not interrupt its execution.

The objective is to find an execution plan of the activities,
w.r.t., precedence and resource constraints of the system, that
minimises the time in which all operations will be executed
(i.e., to find the minimum makespan). To formulate the VNF
scheduling, the following mapping is assumed:
• JSSP machines are mapped to network provider’s ma-

chines that host VNFs;
• Jobs correspond to network slicing requests;
• Operations are mapped to VNFs.

More specifically, based on this mapping, we use the following
notation:
• 𝑆 for the set of network slices;
• 𝑠 for the 𝑠th network slice, where 𝑠 ∈ [1, |𝑆 |];
• 𝐹𝑠 for the set of VNFs of slice 𝑠;
• 𝑓𝑠 𝑗 for the 𝑗 th VNF of the 𝑠th slice, where 𝑠 ∈ [1, |𝑆 |]]

and 𝑗 ∈ [1, |𝐹𝑠 |];
• 𝐻 for the set of hosts; and ℎ for the ℎth host, where
ℎ ∈ [1, |𝐻 |];

• ℎ𝑠, 𝑗 for the host where the 𝑗 th VNF of the 𝑠th slice is
deployed, ℎ𝑠, 𝑗 ∈ [1, |𝐻 |];

• 𝑡𝑠, 𝑗 for the starting time of the 𝑗 th VNF of the 𝑠th slice;
• 𝑇𝑠, 𝑗 for the deployment time of the 𝑗 th VNF of the 𝑠th

slice.
The constrains of this problem can be formalised as follows:
• 𝑡𝑠, 𝑗+1 − 𝑡𝑠, 𝑗 ≥ 𝑇𝑠, 𝑗+1, representing that each VNF must be

installed after the completion of the previous VNF of the
same network slice;

• 𝑡𝑠, 𝑗 ≥ 𝑡𝑠′ , 𝑗′ + 𝑇𝑠′ , 𝑗′ or 𝑡𝑠′ , 𝑗′ ≥ 𝑡𝑠, 𝑗 + 𝑇𝑠, 𝑗 for ℎ𝑠, 𝑗 = ℎ𝑠′ , 𝑗′ ,
representing that a host cannot process two or more VNFs
simultaneously.

Thus, the minimisation of makespan is defined as:

𝑀𝑖𝑛𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑖𝑛[𝑚𝑎𝑥 [𝑡𝑠, 𝑗 + 𝑇𝑠, 𝑗 ]], (1)
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where the quantity 𝑚𝑎𝑥 [𝑡𝑠, 𝑗+𝑇𝑠, 𝑗 ] defines the completion time
of the last VNF among all network slices.

C. Metaheuristics as a Candidate Solver

Based on the mapping presented in the previous section,
a solution of the VNF scheduling problem can be provided
by resolving the related JSSP [49]. The JSSP is known as an
NP-hard problem, meaning it cannot be solved in polynomial
time [50]. Thus, it makes ineffective the use of exact methods
(such as the dynamic programming, the branch & bound, etc.)
since they search exhaustively to the space of all the potential
solutions to find the optimal one.

Also, it is worth noted that the execution time (complexity)
of the optimisation algorithm to be used affects the overall
slice set-up time as well. In other words, the response time of
the algorithm that performs the scheduling must be negligible,
compared to the other procedures needed for setting the slice
up.

Based on the above observations, heuristic methods fit well
to the JSSP, as they can provide a near-optimal solution
by constructing solutions according to greedy decisions [51].
Heuristics have some remarkably interesting advantages. To
name some, they work well for dynamic problem sizes [52];
they find a solution in reasonable time [44]; and they can
be combined with other methods [53]. However, the ‘greedy’
nature of heuristics is not always preferable when the problem
size increases, and the near-optimal solution they provide tends
to be worse, or the algorithm may stick on local minima or
maxima. To compensate with the greediness of the heuristic
methods, metaheuristic methods have emerged.

The metaheuristic category of algorithms refers to high-level
heuristics that mimics the biological or physical phenomena.
Metaheuristics are refined scientifically to find near-optimal
solutions in reasonable computing time, and bring some ad-
ditional advantages compared with heuristics: i) Simple and
easy implementation, ii) avoiding stucking on local optima,
and iii) tunning of the execution time through execution pa-
rameters that can change based on the input size [54]. Another
unique feature that metaheuristics apply is the different search
process. As it is analyzed in [55], these algorithms apply
two phases of search: intensification and diversification. The
intensification phase finds the local best solution within its
adjacent location, called as local search. The diversification
phase starts the search process globally in the provided search
space which intend to attain the global solution, called as
global search. The most challenging task in the development
of any metaheuristic algorithm is to find a suitable balance
between intensification and diversification.

IV. SELECTED METAHEURISTIC ALGORITHMS

Digging into the plethora of metaheuristic methods, there
is a set of algorithms called ‘nature-inspired’. The nature-
inspired methods, as their name implies, adopt their behavior
from various nature functionalities and have been extensively
used in the last decade to solve various optimisation problems
in many research fields such as cloud computing [52], power
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Fig. 1. Block diagram of evolution-based approach.

consumption [53] and data-mining [54]. According to [51],
nature-based methods can be classified into four divisions:
Evolution-based, inspired by the theory of natural evolu-
tion, Physics-based, mimicking physical rules in the universe,
Swarm-based, mimicking the social behavior of groups of
animals, and Human-based, inspired by the advancement in
level of searching strategy. In this study, we focus on the most
efficient metaheuristic algorithms of the Evolution-based and
the Swarm-based categories, namely the genetic algorithm and
ant colony optimisation.

A. Genetic Algorithm (GA)

The GA is a genetic or evolution-based method to solve
combinatorial optimisation problems such as the one studied
in this paper. The block diagram of the adopted method is
depicted in Fig. 1, while each one of the blocks is explained
below.

1) Encoding: The encoding process refers to the process
of representing a set of initial (randomly selected) solutions
to arrays of VNFs with specific order. Using genetic-based
terminology, each VNF is a gene, and a solution (series of
VNFs) is a chromosome, as depicted in the example that
follows:

𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 :
{ 𝑓31, 𝑓21, 𝑓32, 𝑓41, 𝑓22, 𝑓11, 𝑓33, 𝑓42, 𝑓23, 𝑓34, 𝑓12, 𝑓43, 𝑓13, 𝑓44, 𝑓14, 𝑓24}

2) Crossover: Crossover is a genetic operator analogous
to biological reproduction, and it aims at breeding new
acceptable solutions from existing ones. This procedure
requires two VNF chains (chromosomes) referred to as
“parents”. First, from both the parent chromosomes, a
portion of the same lengh is selected. Then this portion is
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TABLE II
CROSSOVER EXAMPLE.

Partitioned chromosome of parent 1
𝑓31, 𝑓21, 𝑓32 𝑓41, 𝑓22, 𝑓11, 𝑓33, 𝑓42, 𝑓23, 𝑓34, 𝑓12, 𝑓43 𝑓13, 𝑓44, 𝑓14, 𝑓24

Partitioned chromosome of parent 2
𝑓21, 𝑓31, 𝑓32 𝑓11, 𝑓41, 𝑓33, 𝑓42, 𝑓22, 𝑓23, 𝑓34, 𝑓12, 𝑓43 𝑓44, 𝑓13, 𝑓24, 𝑓14

Crossover result for child 1
𝑓31, 𝑓21, 𝑓32 𝑓11, 𝑓41, 𝑓33, 𝑓42, 𝑓22, 𝑓23, 𝑓34, 𝑓12, 𝑓43 𝑓13, 𝑓44, 𝑓14, 𝑓24

Crossover result for child 2
𝑓21, 𝑓31, 𝑓32 𝑓41, 𝑓22, 𝑓11, 𝑓33, 𝑓42, 𝑓23, 𝑓34, 𝑓12, 𝑓43 𝑓44, 𝑓13, 𝑓24, 𝑓14

TABLE III
MUTATION EXAMPLE.

Chromosome of child 1 with selected genes for mutation
𝑓31, 𝑓21, 𝒇32, 𝑓11, 𝑓41, 𝑓33, 𝒇42, 𝑓22, 𝑓23, 𝑓34, 𝑓12, 𝑓43, 𝑓13, 𝑓44, 𝑓14, 𝑓24

Chromosome of mutated child 1 [Non-acceptable]
𝑓31, 𝑓21, 𝒇42, 𝑓11, 𝑓41, 𝑓33, 𝒇32, 𝑓22, 𝑓23, 𝑓34, 𝑓12, 𝑓43, 𝑓13, 𝑓44, 𝑓14, 𝑓24

Chromosome of mutated child 1 [Acceptable]
𝑓31, 𝑓21, 𝒇22, 𝑓11, 𝑓41, 𝑓33, 𝑓42, 𝒇32, 𝑓23, 𝑓34, 𝑓12, 𝑓43, 𝑓13, 𝑓44, 𝑓14, 𝑓24

exchanged between the chromosomes to create two new
chromosomes (children), as depicted in Table II. A portion is
valid for exchange, only if duplications and invalid crossovers
are avoided.

3) Mutation: Mutation is the genetic operator that
preserves the genetic diversity from one generation to the
next. This is succeeded by changing randomly the order of
the VNFs in the chain. However, a mutation can also produce
unacceptable solutions that violate constrains. To prevent
this, in our implementation, the randomness of mutation is
restricted to chromosome areas that the constrains are not
violated.

4) Evaluation (Fitness function): The process of evaluation
or fitness function is used on evaluating the solutions
produced from genetic operations. This evaluation happens
by calculating for every solution the objective value, that is
𝑚𝑎𝑥 [𝑡𝑠, 𝑗 + 𝑇𝑠, 𝑗 ] as defined in the objective function (1).

5) Selection: The selection mechanism is used for keeping
the most “genetically robust” children of a generation, thus the
solutions with the optimal service creation time. The selected
children serve as parents in the next generation.

B. Ant Colony Optimisation (ACO)

In the swarm-based metaheuristic category, the ACO is the
most representative paradigm. Marco Dorigo was the first
to introduce ACO in his PhD thesis in 1992 [56]. The idea
behind the algorithm was inspired by the foraging process of
ants. When an ant of a colony searches for food, it deposits a
special substance on every path that walks called pheromone.
The shorter the path, the bigger the portion of pheromone in
the path. Ants coming later, choose with greater probability
the path with increased amount of pheromone previously
deposited by other ants, thus a shorter path. As a result, ants
succeed to find the shortest path to the food source. The
block diagram of the algorithm is depicted in Fig. 2.
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Fig. 2. Block diagram of swarm-based approach.

1) Encoding to graph: The problem must first be encoded
as graph where:
• Each VNF is represented by a node.
• VNFs belonging to the same network slice request are

connected with unidirectional edges, respecting the order
of processing.

• The rest of the VNFs are connected with bidirectional
edges.

• The cost of its edge is an ant-inspired parameter 𝜏𝑗1→ 𝑗2 ,
called pheromone concentration. The pheromone con-
centration quantity refers to the amount of pheromone
deposited by each ant for transition from VNF/node 𝑗1
to VNF/node 𝑗2. The contribution of each ant m that has
passed from the VNF/node 𝑗1 to VNF/node 𝑗2 is given
by the following quantity:

Δ𝜏𝑚𝑗1→ 𝑗2
=


𝑄

𝑡𝑠, 𝑗2+𝑇𝑠, 𝑗2
, if ant 𝑚 used path from 𝑗1 to 𝑗2

0, otherwise,
(2)

where Q is a constant, selected to tune the size of
the ratio 𝑄/(𝑡𝑠, 𝑗2 + 𝑇𝑠, 𝑗2 ), based on the volumes of the
denominator (i.e., is a problem specific quantity). Thus,
the 𝜏𝑗1→ 𝑗2 is updated as follows:

𝜏′𝑗1→ 𝑗2
← (1 − 𝜌)𝜏𝑗1→ 𝑗2 +

𝑀∑︁
𝑚

Δ𝜏𝑚𝑗1→ 𝑗2
, (3)

where 𝜏𝑗1→ 𝑗2 current value and 𝜏′
𝑗1→ 𝑗2

the updated one.
Also, 𝜌 is the pheromone evaporation coefficient, M is
the number of ants, and the sum

∑𝑀
𝑚 Δ𝜏𝑚

𝑗1→ 𝑗2
is the
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contribution of the ants that passed from the representing
edge, as defined in (2).

2) Initialise ants: In this stage, the number of the ants
(usually being equal to the number of network slice requests)
is defined. For our analysis, we denote by M the number of
ants/agents in the system. For each ant, m, the number of
iterations is also defined, i.e., the number of times that an
ant is going to run through the graph (apply a local search as
explained below).

3) Local search: The local search refers to the path fol-
lowed by an ant in the graph. Each ant, starting from a
VNF/node 𝑗1 of the graph, moves to the adjacent node 𝑗2
with probability:

𝑃𝑚
𝑗1→ 𝑗2

=
[𝜏𝑗1→ 𝑗2 ]𝛼 [𝜂𝑠, 𝑗2 ]𝛽∑

𝑙∈𝐴𝑙𝑙𝑜𝑤𝑒𝑑𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑗1
[𝜏𝑗1→𝑙]𝛼 [𝜂𝑠,𝑙]𝛽

, (4)

where,
• Attractiveness 𝜂𝑠, 𝑗 , represents a heuristic value of the cost

of selecting the move, and it is equal to the reverse of
the duration of VNF deployment, i.e., 1/𝑇𝑠, 𝑗 .

•
∑

𝑙∈𝐴𝑙𝑙𝑜𝑤𝑒𝑑𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑗1
[𝜏𝑗1→𝑙]𝛼 [𝜂𝑠,𝑙]𝛽 is the cumulative

product of pheromone concentration and heuristic value
for all possible node transitions from 𝑗1.

• 𝛼 and 𝛽 parameters, are arbitrary values, 𝛼 ∈ [0,∞),
𝛽 ∈ [1,∞], that determine the degree of influence from
the heuristic and pheromone values, respectively.

4) Global search: When the ants finish their job and
produce their solutions, that is a valid sequence of VNFs, the
algorithm keeps the solution with the best makespan. Then the
pheromone trails in each edge are globally updated as defined
in (3). When one of the stopping criteria is met, then the output
of the algorithm is the VNF sequence with the best makespan
until that time.

V. PERFORMANCE EVALUATION

The two algorithms were tested for a wide range of values
for their configurable parameters, while a numerous set of runs
has been executed to extract each evaluation result. To evaluate
the algorithms, we adopted a 10×10 (i.e., #slices |𝑆 | = 10, and
#VNFs |𝐹𝑠 | = 10 per slice) and a 20 × 5 dataset (i.e., #slices
|𝑆 | = 20, and #VNFs |𝐹𝑠 | = 5 per slice), named “orb04” and
“ft20” (from [57]), with known minimum makespans equal to
1005 and 1165 time-units, respectively. We also assume known
deployment times and machines for the input, i.e., known
values for the 𝑇𝑠, 𝑗 , and ℎ𝑠, 𝑗 , parameters. More precisely, the
format of every dataset follows the rules listed below (we use
a 6 × 6 example for convenience):
• The first row defines the number of network slices re-

quests and number of VNF hosts for the specific instance,
e.g.: “6 6”, “10 10” or “20 5”.

Algorithm 1 Genetic algorithm (GA)
1: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ←

𝐶ℎ𝑜𝑜𝑠𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑃𝑙𝑎𝑛𝐹𝑖𝑙𝑒)
2: 𝑑𝑒 𝑓 𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓 𝑜𝑟 :
3: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,

4: 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,

5: 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠,

6: 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

7: for 𝑝𝑎𝑟𝑥 , 𝑝𝑎𝑟𝑦 𝑖𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do
8: for 𝑚 𝑖𝑛 [1, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠] do
9: for 𝑛 𝑖𝑛 [1, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2
] do

10: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡 𝑦 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1)
11: if 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡 𝑦 ≤ 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
12: 𝑐ℎ𝑖𝑙𝑑𝑖 , 𝑐ℎ𝑖𝑙𝑑 𝑗 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑝𝑎𝑟𝑥 , 𝑝𝑎𝑟𝑦)
13: end if
14: 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡 𝑦 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1)
15: if 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡 𝑦 ≤ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
16: 𝑐ℎ𝑖𝑙𝑑𝑖 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑖𝑙𝑑𝑖)
17: 𝑐ℎ𝑖𝑙𝑑 𝑗 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑖𝑙𝑑 𝑗 )
18: end if
19: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡.𝑎𝑝𝑝𝑒𝑛𝑑

(
𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒(𝑐ℎ𝑖𝑙𝑑𝑖),
𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒(𝑐ℎ𝑖𝑙𝑑 𝑗 )

)
20: 𝑝𝑎𝑟𝑥 ← 𝑐ℎ𝑖𝑙𝑑𝑖 , 𝑝𝑎𝑟𝑦 ← 𝑐ℎ𝑖𝑙𝑑 𝑗

21: 𝑠𝑜𝑟𝑡 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡)
22: end for
23: end for
24: end for
25: if 𝑓 𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜 𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ≤ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 then
26: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛← 𝑓 𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜 𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡

27: 𝑝𝑎𝑟𝑥 ← 𝑓 𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜 𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡

28: 𝑝𝑎𝑟𝑦 ← 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜 𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡

29: end if
30: 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

Algorithm 2 Ant colony optimisation (ACO)
1: 𝑔𝑟𝑎𝑝ℎ← 𝐶𝑟𝑒𝑎𝑡𝑒_𝐺𝑟𝑎𝑝ℎ(𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑃𝑙𝑎𝑛𝐹𝑖𝑙𝑒)
2: 𝑎𝑛𝑡𝑠← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐴𝑛𝑡𝑠(𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐴𝑛𝑡𝑠)
3: 𝑑𝑒 𝑓 𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓 𝑜𝑟 :
4: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠,

5: 𝛼,

6: 𝛽

7: for 𝑖 𝑖𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 : do
8: 𝑛𝑜𝑑𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑁𝑜𝑑𝑒(0)
9: 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑔𝑙𝑜𝑏𝑎𝑙 ← 𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡 ()

10: for 𝑎𝑛𝑡 𝑖𝑛 𝑎𝑛𝑡𝑠 do
11: 𝑝𝑎𝑡ℎ𝑎𝑛𝑡 ← 𝑙𝑖𝑠𝑡 (𝑛𝑜𝑑𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 )
12: 𝑈𝑛𝑡𝑖𝑙 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑝𝑎𝑠𝑠𝑒𝑑 :
13: for 𝑛𝑜𝑑𝑒𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑁𝑒𝑥𝑡 𝑖𝑛 𝑙𝑖𝑠𝑡𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑠 do
14: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 :
15: 𝑃𝑘

𝑖→ 𝑗
, 𝑖 ← 𝑛𝑜𝑑𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝑗 ← 𝑛𝑜𝑑𝑒𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑁𝑒𝑥𝑡

16: 𝑃𝑚𝑖𝑛, 𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡 = 𝑓 𝑖𝑛𝑑𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑃𝑘
𝑖→ 𝑗
)

17: 𝑝𝑎𝑡ℎ𝑎𝑛𝑡 ← 𝑝𝑎𝑡ℎ𝑎𝑛𝑡 .𝑎𝑑𝑑 (𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡 )
18: 𝑛𝑜𝑑𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 ← 𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡
19: end for
20: end for
21: end for
22: 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑎𝑛𝑡 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑝𝑎𝑡ℎ𝑎𝑛𝑡 )
23: 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑔𝑙𝑜𝑏𝑎𝑙 ← 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑔𝑙𝑜𝑏𝑎𝑙 .𝑎𝑑𝑑 (𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑎𝑛𝑡 )
24: 𝐺𝑙𝑜𝑏𝑎𝑙_𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒_𝑢𝑝𝑑𝑎𝑡𝑒()
25: 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛← 𝑓 𝑖𝑛𝑑𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑔𝑙𝑜𝑏𝑎𝑙)
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Fig. 3. JSSP dataset format.

• Each row contains a set of pairs whose number is equal
to the number of VNFs of each network slice.

• Each pair of numbers describes a specific VNF by defin-
ing the machine hosting the operation and the duration
of executing the operation in time units estimated by
the NSP e.g. “2 1” means that the VNF is hosted by
machine 2 and its execution will last 1 time-unit.

A. Numerical Results

The performance of the GA is tightly correlated with its
tunning parameters, namely, the number of generations, the
population size, the crossover and the mutation probability.
We first study the impact of crossover and the mutation
probabilities on the achievable makespan. The actions of
crossover and mutation help the algorithm to overcome the
problem of stucking on local optima by changing the order
of the VNFs. As it is depicted on Fig. 4, for 40 generations
and population size equal to 100, the performance of the
algorithm is improved as more crossover and mutation actions
are operated. However, for probabilities higher than 0.6, the
slope of the performance remains rather stable. In order to
define more exactly the best values for these parameters,
we conducted another experiment, shown at Fig. 5. In this
experiment we tried to clarify which is the best combination
of the two parameters. According to the graph, the algorithm
performs better when the number of crossovers and mutations
tends to be equal. It can be observed in Fig. 5 that the mutation
action results in reduced makespan compared to crossover,
thus having a greater impact on the overall algorithm. As a
result, for the rest of the experiments, we choose to set the
values of crossover and mutation equal to 0.7.

The next parameters we examined on the GA were the num-
ber of generations and the population size. These parameters
define the extend that the algorithm is going to search for a
near-optimal solution. As their number increases, a wider part
of the solution space is searched, and therefore, the proba-
bility of finding a better solution is also increasing. However,
increasing recklessly the number of these parameters cannot be
considered as a viable strategy, because it leads to enormous
and unacceptable execution time. Hence it is important to
choose the referred parameters in a way that both quality
and acceptable time are satisfied. According to the results
depicted in Fig. 6, the increase in the number of population
and generations is indeed helping the performance, though it

Fig. 4. Average service creation time in GA for “orb04” (5 runs per crossover-
mutation probability combination).

Fig. 5. Average service creation time in GA for “orb04” per probability value.

Fig. 6. Average service creation time in GA for “orb04” (5 runs per
generation-population size combination).

can be observed that makespan is minimised for population
and generation values between 150 and 200, respectively.

ACO on the other hand, as we have already mentioned in the
previous section, follows a swarm-based strategy, comprised
of many agents trying to find the optimal execution order of
VNFs. The most important factors in the specific algorithm
are the number of iterations, that is how many times the
agents will run, and the pheromone decay rate, which defines
the rate of system memory for previous runs of the agents.
In order to examine the impact of the above parameters on
the overall performance, we run the algorithm for multiple
iterations and for specific decay rates (0, 0.3, 0.7, 1) covering
its whole value space. According to the results presented in
Fig. 7, decay rate plays an especially important role on the
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Fig. 7. Average service creation time in ACO for “orb04” per iteration
number.

performance of the algorithm. More specifically, better results
seem to come out when rate is close to 0.7, while at the same
time, both full-memory (rate equal to 0) and no-memory (rate
equal to 1) schemes downgrade the performance. Concerning
the number of iterations, it can be deducted from the graph
that their increment improves the results. However, makespan
seems to stabilize after 4500 iterations. As a result, keeping
the iterations around 4500 guarantees satisfying results at
acceptable time.

A factor we had not included in our previous work [15],
was whether the characteristics of the problem play some role
in choosing the best parameters in each algorithm. To fill that
blank, we run GA and ACO for a 20 × 5 JSS problem. The
20× 5 problem is consisted of 20 slice requests, with 5 VNFs
each, that must be allocated in 5 hosts. While the number of
different VNFs is the same as the 10 × 10 problem, however,
the distribution of VNFs to hosts has changed. Following the
same approach with the previous series of experiments, we
first examine the impact of GA’s probability parameters on
the makespan. The results in Fig. 8, show a small difference
compared to the corresponding graph in 10 × 10. While the
increment in mutation probability improves the performance,
crossover probability does not influence the results that much.
The above can be observed in Fig. 9 as well, where the change
in crossover probability (blue line) does not have any crucial
effect on the makespan. Due to this fact, as it is also depicted in
Fig. 9, the total absence of crossover probability (green line) is
close to the condition that crossover and mutation probabilities
are equal (red line).

Generation and population parameters seem to follow the
same pattern in 20× 5 problem as in 10× 10. However, it can
be observed in Fig. 10 that the threshold defining the result
stabilization has been slightly increased to 200 generations
while the population parameter seems to have less effect on
the makespan than in the 10 × 10 problem.

The execution of ACO for 20 × 5 problem brought up an
interesting result, shown in Fig. 11. While in the 10 × 10
problem, the performance improved when the decay rate was
between 0.3 and 0.7, in 20×5 the situation has been inverted.
The total absence of decay seems to minimise the makespan,
which means that for a limited number of machines it is better
to keep a full-memory strategy among run of the agents.

Fig. 8. Average service creation time in GA for “ft20” (5 runs per crossover-
mutation probability combination).

Fig. 9. Average service creation time in GA for “ft20” per probability value.

Fig. 10. Average service creation time in GA for “ft20” (5 runs per generation-
population size combination).

Fig. 11. Average service creation time in ACO for “ft20” per iteration number.
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B. Overall Assessment and Insights

To assess which metaheuristic approach fits better to this
kind of scheduling problems, Table IV depicts the optimal
makespan for three sizes of the target problem (10 × 10,
20 × 5, and 20 × 20). Those optimal values are compared to
the actual makespan values for the two target algorithms. Both
approaches seem to achieve near-optimal results. The deviation
between the optimal and the actual results of the algorithms is
related to the number of slice requests. As it can be observed,
for the 10 × 10 problem, both GA and ACO, can achieve
a close to optimal makespan. According to the experiments,
GA leads to slightly better results than ACO. Specifically,
GA offers approximately an 8% performance improvement but
with longer execution times in exchange.

Based in the theoretical study and the performance evalua-
tion results:
• While both evaluation-based and swarm-based algorithms

perform well on small and medium problems (less than
100 VNFs), they are inappropriate for bigger problems
(more than 100 VNFs) due to the high increase of their
execution time. As a countermeasure, ACO, due to its
agent-based architecture, can be efficiently implemented
as a distributed /multi-threaded application to reduce the
execution time.

• The number of slice requests plays more crucial role on
the algorithms’ performance than the number of machines
used to host the VNFs. This observation reveals the
critical role of the way that the requests for network ser-
vice deployment are organized for feeding the scheduling
process. In other words, the performance can be increased
if we split the input pool of requests and address them in
small groups rather by adding more hosts in the system.

• ACO approach can be easily adapted to function on
dynamic arrival of network slice requests, in contrast
to GA. This is because the GA approach starts from a
random solution from a given number of requests, while
the ACO progressively builds a result, which allows the
addition of more requests by dynamically expanding the
representation graph that is used for the ants’ local search.

• In terms of complexity, the nature of metaheuristic algo-
rithms does not facilitate an absolute way of comparing
them. Indeed the complexity in both the selected algo-
rithms is affected by their tuning parameters. As such,
the GA’s complexity could be expressed as:

𝑂
©«
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ×

𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ×
𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2
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and ACO’s as:

𝑂
©«
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ×
𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐴𝑛𝑡𝑠 ×
𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑁𝑜𝑑𝑒𝑠

ª®¬
To better reflect the relation between complexity and effi-
ciency for the selected metaheuristic algorithms, Table IV
includes the tuning parameters used for each experiment.

TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED APPROACHES.

GA performance ACO performanceProblem
size

Optimal
makespan Results Parameters Results Parameters

N = 200
M = 140 iter = 4500

crossover = 0.7
mutation = 0.7 r = 0.710 × 10 1005 1042

time = 8 min

1126

time = 2 min
N = 280
M = 220 iter = 3000

crossover = 0.7
mutation = 0.7 r = 020 × 5 1165 1277

time = 36 min

1388

time = 3 min
N = 80

M = 120 iter = 6750

crossover = 0.7
mutation = 0.7 r = 0.720 × 20 826 1070

time = 76 min

1162

time = 37 min

VI. CONCLUSION

Service creation time is one of the fundamental KPIs in
5G systems, since it can have a great impact on the overall
system performance, and eventually to the quality of the
services that an operator provides to vertical industries. The
optimisation of the service creation time is a challenging task,
as it can be affected by multiple parameters that reside at the
implementation choices, as well as at the management methods
(algorithmic processes) that are used. In this context, we
examined metaheuristic methods as enablers for resolving the
VNF scheduling under various service requests in a 5G system.
The evaluation process revealed that metaheuristic algorithms
can efficiently contribute towards the minimization of service
creation time. From the various categories of metaheuristic
algorithms, the evolution-based approach (in our case the
GA) provides an overall better performance than the swarm-
based one (in our case the ACO). However, considering that
the slice set-up process is be real-time process, swarm-based
algorithms, such as the ACO, have the advantage of short
execution time, compared to the evolution-based ones.

Although metaheuristics seem to be an efficient solution
for VNF scheduling problem, the analysis revealed some
drawbacks, such as their low-fitting to dynamic scheduling
(on-line) problems (that is the case when new network slice
requests arrive and have to be scheduled on-line). Building on
top of this study, we plan to relax the assumption on the way
that the slice requests arrive and examine machine learning
approaches toward an automated alignment of the scheduling
to the dynamically changing input.
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