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Neural Myerson Auction for Truthful and
Energy-Efficient Autonomous Aerial Data Delivery

Haemin Lee, Sean Kwon, Soyi Jung, and Joongheon Kim

Abstract—A successful deployment of drones provides an ideal
solution for surveillance systems. Using drones for surveillance
can provide access to areas that may be difficult or impossible to
reach by humans or in-land vehicles gathering images or video
recordings of a specific target in their coverage. Therefore, we
introduces a data delivery drone to transfer collected surveillance
data in harsh communication conditions. This paper proposes a
Myerson auction-based asynchronous data delivery in an aerial
distributed data platform in surveillance systems taking battery
limitation and long flight constraints into account. In this paper,
multiple delivery drones compete to offer data transfer to a single
fixed-location surveillance drone. Our proposed Myerson auction
based algorithm, which uses the truthful second-price auction
(SPA) as a baseline, is to maximize the seller’s revenue while
meeting several desirable properties, i.e., individual rationality
and incentive compatibility while pursuing truthful operations.
On top of this SPA-based operations, a deep learning based
framework is additionally designed for delivery performance
improvements.

Index Terms—Auction, data delivery, deep learning, truthful-
ness, unmanned aerial networks (UAVs).

I. INTRODUCTION

IN recent years, an increasing number of enterprises, includ-
ing Amazon, DHL, and Federal Express (FedEx), has been

testing the viability of incorporating drone delivery into their
commercial package delivery services [1]. Due to the natural
trait of drones which can swiftly move and optimize their
path to quickly complete their mission, their role is getting
more extensive and diverse in delivery sector. Fig. 1 shows
the drone delivery usages from simple warehouse logistic
to various applications. Especially in the ongoing pandemic
situation, drones are used for timely vaccine distribution dur-
ing novel coronavirus (COVID-19) and future pandemics [2].
Furthermore, drones also facilitate the inspection of hard-to-
access areas configuring situational awareness [3]–[5], which
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Fig. 1. Drone for delivery usages.

is important for many applications such as remote sensing,
search and rescue, and disaster response. As presented in
Fig. 1, monitoring and data collection of smart sensor in
mountainous areas or in harbor facilities are also possible. Due
to the extensive purpose of UAVs in wireless systems, many
configuration scenarios, including functionally-heterogenous
UAV coordination, flexible UAV 3D deployment, and hierar-
chical architecture, have been addressed [6], [7]. The literature
above leads to the necessity of studying current proposals
and reorganizing such aerial access architectures toward a
comprehensive access infrastructure for 6G networks.

This paper proposes a data delivery service by the drone
network in a surveillance system. With advances to AI, mod-
eling, and simulation technologies, it has become essential to
analyze data to extract potential values and create additional
services [8], [9]. In this situation, a large amount of data ac-
cumulation is fundamentally required, including various range
of information. In a series of processes in a data platform, i.e.,
data collection, data processing, and data analysis., drones can
collect raw data and deliver it to the target point operating as
a component of the platform. The monitoring data enables
facility infrastructure management, spatial information acqui-
sition, and adequate response to rising problems. In this paper,
a surveillance drone is presented, locating at specific region,
to monitor important points of interest (PoI). We assume
the situation where the existing communication network is
temporarily destroyed or overloaded due to unexpected events
like natural disasters. It is sometimes unrealistic to allow
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surveillance drone to transmit or relay monitoring data to
nearby base station or other surveillance drone. In order to
achieve the purpose of surveillance, the collected data has
requirement that the total time should be no greater than a
given maximum delay time to ensure the freshness of the
data. Therefore, the accumulated data in destroyed network
infrastructure should be delivered to areas where cellular
communication is available. In this situation, transferring data
directly from hovering surveillance drones to base stations is
not efficient due to low power-to-data transmission efficiency.
If the distance between the surveillance spot and the final
destination, i.e., the base station where the data should be
transferred is far, path loss is severe proportionally affecting
reception sensitivity. In this regard, reliable and calamity-
resilient communication infrastructure is needed to deploy
drone application services effectively in poor communication
conditions.

This paper proposes an effective aerial data delivery surveil-
lance platform with the delivery drone that directly transmits
data by moving back and forth in the middle of two points. It
might cause some extent of delay but more efficient in terms
of the transmission rate. Surveillance drone collects data from
its specific monitoring spots. Delivery drones usually hover
around, and when they are eligible to transfer data, they fly
straight to the destination. Then, they return with the data to
the nearby base station contributing as a data provider in the
big data platform. As a sequence, flying drones can facilitate
rapid information dissemination by broadcasting common files
among ground devices despite of the communication adversity.
For example, it can bring the public interest by spreading
the necessary information to be aware in public. We assume
that the third-party operator pays the commercial delivery
drones in return for delivery. For this reason, the delivery
drones are willing to use up their energy to transfer the data
trying their best to fulfill the given task. However, due to
the destroyed infrastructure scenarios, surveillance drone can
not assign data to multiple delivery drones. In other words,
the delivery drones compete to deliver the collected data to
the destination. By taking an econometric approach, matching
between the two drones can be formulate as an auction where
delivery drones act as buyer and surveillance drone acts as
seller and auctioneer. Throughout the process, the objective
is to maximize the seller’s revenue and buyer’s utility in the
same time while guaranteeing truthful conditions. Then the
surveillance drone hand over the collected data in its queue
storage and gains the spatial benefit to take the new sensing
data. In addition, the information of delivery drones is partially
observable and therefore, the algorithm should be designed in
a fully distributed manner. The general convex optimization
method needs to know all the information of individual drones
to derive the global optimal solution, which is impossible in
high mobility and unpredictable connection situations in drone
networks. However, the auction algorithm works effectively
in resource allocation problems with partial information in a
distributed manner. Moreover, the bidding phase in auction
algorithm reflects the bidder’s intention used for realizing
resource allocation.

This paper operates the series of auction process with deep

learning auction networks. As the Myerson auction achieves
revenue-optimal by transforming the bids through monotonic
transformation functions, our neural network borrows the
concept. The amount of delivery data and final payment of
the winner are calculated through the neural network with the
collected bids. Based on our method, performance evaluation
confirms that the auction based matching between the delivery
drone and surveillance drone maximizes the sellers revenue
compared to the second-price auction (SPA).
Contributions. The main contributions of this research are
three-fold and are summarized as follows.

• This paper proposes a novel drone deployment for effi-
cient surveillance data delivery in harsh condition, which
is the first attempt to the best of our knowledge.

• In addition, our algorithm is designed and implemented
fundamentally based on SPA which is mainly used for
truthful resource allocation.

• Moreover, our proposed SPA-based algorithm is im-
proved using deep learning framework in order to maxi-
mize the seller’s revenue and buyer’s utility in the SPA-
based truthful auction settings. Finally, the performance
of deep learning-based auction structure is compared with
the traditional SPA.

II. PRELIMINARIES

A. Auction-based Resource Allocation

A traditionally well-known first-price auction (FPA) is a
common type of auction that the bidder who submits the
highest bid value to auctioneer (seller) is awarded and pays
its bid value to the auctioneer. Here, suppose that N bidders,
i.e., b1, · · ·, bN , and 1 auctioneer exist in the system, where
the bid values are v1, · · ·, vN . The auctioneer selects one bid
value v∗ with v∗ = max{v1, · · ·, vN}; and the winner bidder
b∗ will be the bidder who submitted bid value v∗. Suppose that
the second highest bid value is v†. Then, the winner bidder b∗

does not need to pay v∗ amounts of bid values because slightly
higher bid value than v† will guarantee the winning. Therefore,
individual bidders need to be strategic in FPA. However, the
advent of those untruthful bidders does not make the incentive-
compatible mechanism and FPA is not efficient [10].

On the other hand, the other type of auction mechanism is
called second price auction (SPA). With SPA, the mechanism
for selecting a winner is equivalent to FPA, where the payment
by the winner is not the winner’s highest bid value but the
second highest bid value. In the literature, the SPA is well-
known for its turthfulness [11], [12]. Therefore, SPA is widely
used for truthful resource allocation in various distributed
computing applications [13], [14]. However, one drawback
in SPA is that the SPA cannot achieve revenue-optimal, i.e.,
the auctioneer cannot obtain maximum benefits because the
second bid value will be given to the auctioneer rather than
the highest.

In order to pursue revenue-optimal in SPA, various ap-
proaches have been studied. Among them, Myerson auction
with the concept of virtual valuation is one of the well-known
approaches [11], [15]. In order to numerically formulate the
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virtual valuation, monotonic increasing functions are generally
used. According to the advances in deep neural network
(DNN) research, the Myerson auction computation procedure
can be approximated with the form of DNN. Therefore,
this paper designs our proposed DNN-based autonomous
aerial delivery scheduling algorithm with the name of neural-
architectural Myerson auction.

B. Related and Previous Work
1) Data Delivery Research in Multi-Drone Networks:

There have been several research on data acquisition frame-
works in wireless sensor networks using drones with the
goal of increasing the efficiency of the data gathering efforts.
The proposed algorithm in [16] introduces a priority-based
frame selection scheme to suppress the number of redundant
data transmissions between sensor nodes and the drones. In
addition, the algorithm in [17], [18] utilizes the drones as
mobile data collectors for the randomly deployed sensor nodes.
In this research, the proposed algorithm jointly optimizes
the wake-up schedules sensor nodes and the trajectories of
drones in order to minimize the maximum energy consumption
(i.e., min-max criteria for fairness). Moreover, the proposed
algorithm in [19] minimizes the drone’s total flight time while
allowing each sensor to successfully upload a certain amount
of data. Furthermore, the proposed algorithm in [20] provides
adaptive surveillance and event-telecast video streaming ser-
vices from drones to ground control stations with WiFi-direct
link scheduling its associated dynamic configuration settings.

Our aerial data delivery scheduling with neural Myerson
auction computation in this paper differs in scenario that the
delivery drones compete to directly transfer the data. This
approach superior from the other approaches because Given
that the above researches focus on priority and energy effi-
ciency aspects of the drone-based data collection process, our
methods works in extremely poor conditions by sustainably
enabling data transmission. Furthermore, our deep learning-
based auction reduces the costs through one optimal delivery
drone selection in the data collection process. This paper is
in line with leading research on drone-based data delivery
networks in that it considers the energy and coverage of drones
as the bid values of individual drones. However, it differs
from others in that it enables data delivery even when the
communication infrastructure is poor or destroyed.

2) Previous Work in Auction-based Resource Allocation:
The auction approach is an useful intuitive method for solving
distributed scheduling and resource allocation problems in
a distributed and truthful way. There exists inherent uncer-
tainty regarding valuations for both auctioneers/sellers and
buyers/bidders. The auctioneers is unsure about the values
that bidders attach to the object being sold, i.e., the maximum
amount each bidder is willing to pay. If the auctioneer knew
the values precisely, it could just offer the object to the bidder
with the highest value at or just below what this bidder is
willing to pay. No bidder knows with certainty the values
attached by other bidders and the knowledge of other bidders’
values would not affect how much the object is worth to a par-
ticular bidder [21]. With a massive volume of economic trans-
actions is conducted through auctions, numerous research on

limited resource allocation and scheduling problems has been
conducted through auction-based computation processes [22].
In [23], a carrier collaboration problem with pick and delivery
requests is considered in order to reduce their transportation
costs and consequently increase their profits. A multi-round
pricing-setting based combinatorial auction approach is pro-
posed to solve the problem. The proposed algorithm in [24]
sketches a self-organizing architecture for very large compute
clouds and provides a relatively simple, scalable, and tractable
solution to cloud resource allocation through the combinatorial
auction. On the other hand, the proposed algorithm in [25]
introduces an auction-based scheduling algorithm that plans
to transfer items between robots to conduct deliveries in a
more efficient way. The algorithm runs online and replans
in response to new requests, dead vehicles, and shared in-
formation. Authors in [26] propose an auction-based incentive
mechanism that achieves near-optimal long-term social welfare
in collaborative computation offloading.

Among various auction-based scheduling and resource allo-
cation algorithms, our considering Myerson auction is one of
the most efficient revenue-optimal single-item auctions [27]. In
order to numerically approximate the Myerson auction, DNN-
based architecture can be utilized; and thus, learning-based
Myerson auction algorithms for charging scheduling in wire-
less power transfer (WPT)-based multi-drone networks and
electric vehicles are proposed in [11] and [28], respectively.
In addition, the proposed algorithms in [29] and [30] solve
resource allocation problems using DNN-based auctions in
mobile edge computing and wireless virtualization, respec-
tively. Furthermore, the proposed algorithm in [31] is for
approximating auctions using deep learning to address the
concerns of fairness while maintaining high revenue and strong
incentive guarantees.

III. SYSTEM MODEL – AUTONOMOUS AERIAL MOBILITY

A. Overall Architecture

Our aerial data delivery for surveillance system consists of
three elements, i.e., surveillance drone, delivery drone and base
station. The computation during the auction is done on-device
within a surveillance drone. Surveillance Drone S collects
monitoring image while hovering over a specific region and
these surveillance drone is managed by third party operators.
Surveillance drone hovers around its specific area and collects
information in different observation angles and heights, not
being affected by its surrounded obstacles. However, due to
its finite capacity, the amount of data that a surveillance drone
can store is limited. These collected data contains features or
anomalies on a particular region and needs to be delivered
properly.

Delivery drone D moves toward to the surveillance drones
to deliver the collected data. The two drones communicate
using Wi-Fi Direct when it gets close. The transmission rate
is 250 Mbps, transmission distance is up to 200 m, and it
supports 1:N connection with devices at the same time. Note
that data transmission can vary depending on the delivery
drone’s battery capacity, specification, current location, etc.



LEE et al.: NEURAL ARCHITECTURAL MYERSON AUCTION FOR ... 733

(a) The corresponding queue model of SD.

(b) The bidding behavior of DD.

Fig. 2. Drone operation model.

In our auction, the delivery drones bid privately, strategically
based on their calculated valuation. In short, surveillance drone
in remote and insecure area collects monitoring data in real-
time and wants it to be processed. Delivery drones try to
provide assistance in delivery as much as possible while in
the air to earn revenue from third-party operators and deliver
data to their area in charge. Thus, the delivery drones flying
in the path naturally compete to deliver sensing data from the
Surveillance drone. It is shown in Fig. 2 and their specification
is in Table I. The operation of two types of the drone can be
modeled as following two subsections.

B. Drone Models

1) Surveillance Drone Model: Surveillance drone has its
own data buffer size B, and data flow can be formulated
with a queue. The surveillance drone stores image from the
mounted camera every time step, and a certain amount is
processed by the delivery drone. In this paper, the battery of
surveillance drone is not considered, assuming that the nearby
ground charging tower covers the surveillance drone. Suppose
that S is the set of delivery drones that can participate in an
auction of one-time steps, and let’s denote each delivery drone
as di,∀i ∈ {1, · · ·, |S|}. In following (1), Q(t) is the current
queue size in storage, αi(t) is the amount of single delivery
drone can take, and λ(t) is the size of stacking surveillance
image in every time t. The amount of the data leaving the
queue depends on the surveillance drone’s request, i.e.,

Q(t+ 1) = Q(t) +
∑

∀di∈S

(1− ISi ) · αi(t) + λ(t), (1)

where I =

{
0, scheduled,
1, otherwise.

(2)

Surveillance drone hands over data to the selected delivey
drone and acts in a way to maximize the profits as much as
possible during the process. For the rotary-wing drone, the
hovering power consumption Ph can be represented as the

TABLE I
DRONE SPECIFICATION.

Surveillance drone Delivery drone

Model Phantom4 PRO Mavic 2
Size 1 ft (diagonal) 322×224×84 mm
Weight 1388 g 907 g
Speed (max) 72 km/h 72 km/h
Flight time (max) 30 min 31 min
Battery capacity 5870 mAh 2970 mAh

sum of the power Po needed to turn the blade around (rotor)
and the power Pi needed to lift the weight of the drone, i.e.,

Ph =
δ

8
ρsAΩ3R3︸ ︷︷ ︸

Po

+(1 + k)
W 3/2

√
2ρA︸ ︷︷ ︸

Pi

, (3)

where the parameters in this equation are summarized in
Table II [34], [35].

2) Delivery Drone Model: In the case of a delivery drone,
the battery capacity determines its performance. The delivery
drone has two modes of flight: 1) Hovering along the path until
it matches with the surveillance drone through auction, and 2)
flying between two points for data delivery. In other words, the
energy expenditure of delivery drones is the sum of hovering
and traveling power consumption. The communication related
energy is used for various communication functions such
as signal transmission, computation, and signal processing.
Typically, communication-related energy is not considered
due to its relatively small value [17], [32], [33]. The energy
consumption for time T with speed V can be formulated as
follows where the value depend on several factors such as
weight, air density, rotor disc area, blade angular velocity and
etc as given in Table II [34], [35], i.e.,

E = T

[
P0

(
1 +

3V 2

U2
tip

)
+ Pi

(√
1 +

V 4

4v40
− V 2

2v20

)1/2

+
1

2
d0ρsAV 3

]
. (4)

The model for a delivery drone in this paper is DIJ Mavic
2, and its specification is shown in the following Table I.
The amount of energy can be calculated with the specification
parameters. Delivery drones make decisions whether to join
the auction in consideration of the amount of energy with the
energy model.

3) Mobility Planning for Delivery Drones: This section
presents the drone behavior while carrying out the delivery
mission and the movement can be divided into three steps as
shown in Fig. 3. The first step is to determine whether delivery
drone can perform a given task as described in Algorithm 1.
Surveillance drone in need of data transmission broadcasts
the maximum allowed latency T and amount of required data
D when requesting data to nearby delivery drones. Once the
data amount is known, delivery drones can calculate the time
ttransfer for data delivery based on the Wi-Fi direct where
the transmission rate is 250Mbps. Through the difference
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Fig. 3. Delivery Drone Trajectory.

TABLE II
NOTATIONS.

Notation Value

Aircraft weight, N 8
Rotor radius, R 0.4
Rotor disc area, A = πR2 0.503
Number of blades, b 4
Rotor solodity, s = 0.0157b

ϕR
0.05

Blade angular velocity, Ω 300
Tip speed of the rotor blade, Utip = ΩR2 120
Fuselage drag ratio, d0 = 0.0151

sA
0.6

Air density, ρ 1.225

Mean rotor-induced velocity in hovering, v0 =
√

W
sρA

2.54
Profile drag coefficient, δ 0.012
Incremental correction factor to induced power, k 0.1

between the maximum latency T and ttransfer, maximum flight
time tflight is computable. We assume that delivery drones
know the total flying distance li from their current location to
the final destination. The minimum required flight velocity
vmin is obtained via distance li and flight time tfly. Next,
using (4), we can calculate the amount of energy consumed
with constant flying speed vmin. Each delivery drone can
determine whether they participate in the auction or not by
comparing the remaining energy and the amount of energy
required. Among the eligible delivery drones, the one selected
as winner fly to the area where it can communicate with the
surveillance. The winner drone receives the collected data over
WiFi-direct. In the second step, the delivery drone flies all the
way to the BS coverage. We assume that the drone is in a
forward flight mode with constant speed on the journey. Refer
to the subsection III-B for energy consumption along the path.

In the final step, a delivery drone that reaches the BS
transfers the collected data. Then the BS distributes data to
mobile devices in coverage. Alternatively, it can also be passed
it to a big data platform, which enables data analysis through
distributed data collections. After completing the mission, the
delivery drone charges battery and start re-positioning.

IV. LEARNING-BASED OPTIMAL AUCTION FOR
AUTONOMOUS AERIAL DELIVERY

A. Auction Design Concepts

In a single-item mechanism M = (g(b), p(b)) with a set
of N of n bidders consists of an allocation and payment rule.
Allocation rule choose a feasible allocation g(b) ∈ X ⊆ Rn

as a function of the bids, which is
∑

gi(b) ≤ 1. Payment rule
choose payments p(b) ∈ Rn as a function of the bids. And
Bidder i has utility ui(b) = vi · gi(b)− pi(b). In our auction
settings, allocation and payment rule follows a standard SPA
and only the concept of Myerson’s virtual valuation is added.
To truthfully allocate items, the mechanism must deter the
presence of malicious bidders . Here are several desirable
properties that a truthful mechanism should hold.

Definition 1 (Individual Rationality (IR)): A truthful mecha-
nism M = (g(b), p(b)) is individually rational for all bidders,
if their utilities are more than 0.

Ui(b) ≥ 0,∀i ∈ N (5)

Definition 2 (Incentive Compatibility (IC)): A truthful mech-
anism g(b), p(b) is incentive compatible if no requester can
improve its utility by misreporting its bid.

Ui(bi, b−i) ≥ Ui(b̂i, b−i),∀b̂i ∈ η(i), ∀i ∈ N. (6)

Definition 3 (Budget Balance (BB)): A truthful mechanism
g(b), p(b) is individually rational for all bidders, if their
utilities are more than 0.

pi(b) ≤ Bi,∀i ∈ N. (7)

With the allocation, payment rule and the monotonic trans-
form function, the objective of maximizing the surveillance
drone’s revenue can be achieved. The computed revenue for
winning bidder is R(g(b), p(b)), which can be formulated as,

R(g(b), p(b)) = Eb∼F

{∑
i∈N

(pi(b)− c) · gi(b)

}
, (8)

where c is the processing cost of surveillance drone for
transmitting a unit of data to winner drone. And we assume
that every bidder’s private valuations follows the same dis-
tribution as in (19). Therefore, our auction problem can be
formulated as,

max R(g((b)), p((b))) (9)
s.t. IR : Ui(b) ≥ 0,∀i ∈ N (10)

IC : Ui(bi, b−i) ≥ Ui(b̂i, b−i),

∀b̂i ∈ η(i),∀i ∈ N (11)
BB : pi(b) ≤ Bi,∀i ∈ N, (12)

where this optimization program satisfies when ϕ is a strictly
monotone.

B. Auction Design for Delivery Drone Scheduling

1) Auction-based Delivery Drone Scheduling Process: To
start the auction process in Fig. 4, a surveillance drone in need
broadcasts an auction start message and its delivery conditions,
i.e., minimum data amount D, maximum delay time T . The
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Fig. 4. Auction computation process.

Algorithm 1 Candidate selection
Input: D, T , location, remain, i = 1, 2, · · ·, n

Output: Candidate list, bid
list

1: candidate← [ ]
2: ttransfer ← D × 8/250Mbps
3: tfly ← T − ttransfer
4: for i← 1 to N do
5: distance ← getDistance(di, si, bi) {location of

drones di, si and base station bi}
6: vmin ← distance /tfly
7: energy ← getEnergy(vmin) {Eq. 4}
8: if energy >= remain then
9: Append to candidate

10: end if
11: end for
12: for each item i in candidate do
13: bi =

di

pi

14: end for
15: return candidate, bid
16: System Initialization

delivery drone in coverage (1) receives the auction request
message and delivery conditions. (2) In the participation
decision stage, each delivery drone that receives the start
message first determines whether it is available to attend the
auction. A comparison between the minimum required energy
for data transport and the residual energy for each individual
drone is needed. (3) The participating delivery drones bid
based on their valuation to increase their utilities. (4) Then the
surveillance drone collects all bids from the delivery drone and
which are in transform form. (5) The drone with the highest
allocation probability becomes a winner and pays final the
determined payment and is detailed in Section IV-C.

2) Individual Bid Valuation: Drones independently deter-
mine the bid value according to their valuations. The valuation
of drones can be modeled with ground demand in area as di

and the sacrificed energy ratio as pi in (13).

vi =
di
pi
. (13)

Here, the demand of mobile devices in the base station
coverage, which is the drone’s final destination, can be denoted
as di, and its value is in range 0 to 1. The delivery drones have
the mission of providing information to the ground users in
the area covered by the drone. The initial amount of individual
energy can be denoted as ai, the amount of total energy for
the delivery mission as ei, and the residual energy as ri,
i.e., ei = ai + ri. Then the ratio of consumption energy
to initial energy can be denoted as pi = ai/ei. It can be
calculated with the drone energy model [33], in consideration
of minimum data amount, maximum delay time, distance, and
drone specification. In general, when the value of di is larger,
the drones are willing to join the auction and pay cost for the
chance to match with the surveillance drone. On the contrary,
when the pi is large, the drones would be less incentive to
join the auction. Bidders’ valuation profile is drawn from
a distribution fV (v). Thus, the distribution fV (v) can be
determined based on the distribution of di and pi denoted as
fD(d) and fP (p) respectively.

Due to the deficiency of prior knowledge, we assume the
two variables d, p are independent and uniformly distributed in
range di ∼ U [dmin, dmax] and pi ∼ U [pmin, pmax]. To apply
the Jacobian transformation, v is set as v = d

p and z is z = p,
then d and p is d = p × v, p = z respectively. The Jacobian
matrix is as follows and determinant J is equal to z, i.e.,

J =

∣∣∣∣∣∂d

∂v

∂d

∂z
∂p

∂v

∂p

∂z

∣∣∣∣∣ =
∣∣∣∣z v
0 1

∣∣∣∣ = z.

Given that the d and p follow uniform distribution, the joint
distribution fV,Z(v, z) can be obtained as,

fV,Z(v, z) = fD,P (d(v, z), p(v, u))|J(V,Z)| (14)
= fd(v, z)fp(z)|z| (15)

=
1

(dmax − dmin)(pmax − pmin)
|z|. (16)

As a sequence, the distribution of v, i.e., fV (v), which is
the marginal function can be derived as,

fV (v) =

∫
fV,U (v, u) du (17)

=

∫ pmax

pmin

1

(dmax − dmin)(pmax − pmin)
|u| du (18)

=
pmax + pmin

2(dmax − dmin)
. (19)

Therefore, each drone submits bid according to its private
value, where it is in between v ∼ [pmin/dmax; pmax/dmin].

When delivery drones compete for data delivery, there is a
possibility of malicious drone bids higher than its value. Our
auction needs to let the participants act truthfully to ensure
system stability and achieve revenue-optimal in the same time.
Since Myerson presents provable analytical results for single
item auction which can optimize the auctioneer revenue where
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Fig. 5. Deep learning auction framework.

each buyer has its own private valuation of the resource while
guarantees truthfulness [27], we used a variant of Myerson
auction using deep learning.

C. Neural Myerson Auction for Optimal Delivery
This section presents how deep learning-based auction max-

imizes the expected revenue of surveillance drone while guar-
anteeing truthfulness and revenue-optimal. The monotonic net-
work is used for random sampling for approximating pseudo-
optimal revenue values. In addition, allocation networks and
payment networks are for determining the winner drone and
the payment, respectively. Detailed neural architectures for
deep learning to solve our proposed auction-based problems
are organized in Algorithm 2 and presented as following
subsections, i.e., monotonic networks (refer to Section IV-C1),
allocation networks (refer to Section IV-C2), and payment
networks (refer to Section IV-C3)

1) Virtual Valuation Function: Our virtual valuation func-
tion in auction network is denoted as ϕi and takes the role
of virtual valuation in Myerson auction [30]. The input bids
bi of delivery drones are transformed to b̄i as it passes the
monotonic network which consists max/min operations over
several linear functions. Monotonic network ϕi uses K groups
of J linear functions and is defined as follows [30].

2) Winner Determination Function: The SPA allocation
network maps the surveillance drone and delivery drone with
the highest non-zero transform bid. The layer of softmax draws
the allocation probabilities as an output with the transformed
bids b̄i and dummy input ¯bN+1 = 0. Semantically, the softmax
is used for taking the maximum value. The allocation network
with softmax can be represented as follows,

gi(b̄) = softmaxi(b̄1, · · ·, b̄N+1; k) (20)

=
ekb̄i∑N+1

j=1 ekb̄j
,∀i ∈ N (21)

where k is a parameter of softmax function and it determines
the quality of the approximation [11], [30].

Algorithm 2 Deep learning-based auction algorithm
1: Input: Candidate bid sets b = (b1, b2, · · ·, bN )
2: Output: Allocation probability set gi = (g1, g2, · · ·, gN ),

payment set pi = (p1, p2, · · ·, pN )
3: repeat
4: Compute ϕi(bi) = min∀k∈K max∀j∈J

(
wi

kjbi + βi
kj

)
;

5: Compute gi(b̄) =
ekb̄i∑N+1

j=1 ekb̄j
;

6: Compute p0i (b̄) = ReLU(max∀j ̸=i b̄j) ;
7: Compute ϕ−1

i (y) =

max∀k∈K min∀j∈J

(
wi

kj

)−1 (
y − βi

kj

)
;

8: Compute R̂(w, β) = −
∑N

i=1 g
(w,β)
i (vs)p

(w,β)
i (vs) ;

9: until The loss function R̂(w, β) minimizes

3) Payment Function: The payment network determines
the final payment to the winner delivery drone. Payment
network uses a ReLU activation function as follows to make
the payment non-negative,

p0i (b̄) = ReLU(max
∀j ̸=i

b̄j),∀i ∈ N. (22)

Finally, the final payment of the winner delivery drone to
surveillance drone can be calculated as follows,

pi = ϕ−1
i

(
p0i (b̄)

)
. (23)

4) Neural Network Training and Complexity: Neural ar-
chitecture trains parameters wi

kj and βi
kj with the valuation

profiles as the training set and minimize the loss function.
Here, we defined the loss function as the negative revenue in
Myerson auction. The loss function R̂ is defined as follows,

R̂(w, β) = −
∑N

i=1
g
(w,β)
i (vs)p

(w,β)
i (vs). (24)

The results of allocation networks and payment networks
are used for training parameters, and we used the stochastic
gradient descent optimizer to train the loss function R̂.

In deep learning computation procedures, we have two
phases, i.e., (i) training phase and (ii) inference phase. During
the training phase, it takes time for training for cost function
minimization with iterative computation such as stochastic
gradient descent for backward propagation. Most work eval-
uates the complexity as a training time. The training time
was around 5 minutes running on the CPU (Intel i7, 8 cores)
and RAM (16GB). On the other hand, during the infer-
ence phase, conducting simple dense layer computation with
trained optimal/approximated parameters is required which are
the matrix computation and activation function computation.
Therefore, the computation time consists of a monotonic
network computation with several layers (i.e., the algorithm
complexity can be linearly scaled). It can be represented as
(OM (m) + OA(m)) × NL, where OM (m) and OA(m) is
the computation complexity of the matrix operation for each
layer [29]. Here, m and NL denotes node number and number
of layers. After the training, the real-time execution in the
inference phase can be done within a seconds.
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Fig. 6. Example of drone deployment.

5) Auction Properties: In previous section, we define the
truthful characteristics and the auction network consisting
allocation rule g and payment rule p. According to Myerson
theorem, we can guarantee the truthful condition IR and IC.

Theorem 1 (Myerson [27]): For single parameter environ-
ments, any set of strictly monotone functions ϕ1, ϕ2, · · ·, ϕN ,
an auction that assigns an item to the bidder with highest
virtual valuation ϕi(vi) and the payment is determined by the
second highest virtual valuation is IR and IC.

Let the neural architecture that have K groups and the
outputs are denoted by t1, t2, · · ·, tR. Let hr denote the number
of hyperplanes within group r, r = 1, 2, · · ·, R. The parameters
of the hyperplanes are denoted by w(r,1),w(r,2), · · ·,w(r,hr),
where the matrix of all weights and biases is denoted by
W. Then, the output at group r is tr(x) = min

j
(w(r,j) ·

x + θ(r,j)), 1 ≤ j ≤ hr and the final output is Ox =
max

r
tr (x ) [37], which is same as our virtual valuation network

in IV-C1. This network obeys increasing monotonicity when
all weights in the first layer are constrained to be positive [37],
which is the satisfied condition in our system.

V. PERFORMANCE EVALUATION

A. Evaluation Setup

1) Simulation Environment: For the simulation study, we
placed four base stations are placed at the edge of 7 km ×
7 km size map and surveillance drone was placed in the center
and delivery drones were randomly placed at 150 to 150 m
high. Fig. 6 shows an example of drone deployment in 3D
space and their position is listed in Table III checked with
candidate availability. In this example, 15 delivery drones exist
around the surveillance drone and only 5 of them are available
to attend the auction. Each delivery drones consider its energy
and, total round-trip distance from the initial location to the
base station via surveillance drone.

2) Algorithmic Setting - Bid Valuation: We constructed the
bid sets by randomly allocate the parameter value of the drone
energy model. The initial energies of the drone battery are
randomized in [2300, 2970] mAh with an output voltage of
7.6V. For the stable drone operation, we calculated the actual

TABLE III
LOCATIONS.

Location Availability

Surveillance drone (3.5000, 3.5000, 0.1500)

Delivery drone 1 (5.3891, 6.4843, 0.1018) ✓
Delivery drone 2 (1.0263, 6.9607, 0.1159) ✓
Delivery drone 3 (2.1797, 3.9923, 0.1275) ✓
Delivery drone 4 (5.4356, 4.6516, 0.1272) ✓
Delivery drone 5 (5.5366, 2.5679, 0.1233) ✓
Delivery drone 6 (3.9473, 3.9079, 0.1090) ✗
Delivery drone 7 (1.0103, 3.1432, 0.1151) ✗
Delivery drone 8 (5.8648, 1.8963, 0.1249) ✗
Delivery drone 9 (5.1225, 4.2144, 0.1005) ✗
Delivery drone 10 (2.2145, 3.5348, 0.1146) ✗
Delivery drone 11 (1.6754, 1.7261, 0.1365) ✗
Delivery drone 12 (4.2649, 3.7917, 0.1014) ✗
Delivery drone 13 (5.5730, 6.9398, 0.1363) ✗
Delivery drone 14 (3.8859, 5.2690, 0.1314) ✗
Delivery drone 15 (1.8138, 4.2915, 0.1307) ✗

Base station 1 (6.5000, 0.5000, 0.0700)
Base station 2 (0.5000, 0.5000, 0.0700)
Base station 3 (0.5000, 6.5000, 0.0700)
Base station 4 (6.5000, 6.5000, 0.0700)

TABLE IV
DATA SAMPLE OF DELIVERY DRONES’ BIDDING VALUE.

No. Drone 1 Drone 2 Drone 3 Drone 4 drone 5

1 0.6802 0.4398 0.8589 0.7860 0.9420
2 0.4552 0.5123 0.7315 0.7600 0.8045
3 0.5243 0.5373 0.7308 0.8233 0.8677
4 0.6319 0.7585 0.8090 0.8902 0.9144
5 0.4284 0.4567 0.5891 0.7790 0.8126

6 0.3749 0.6617 0.7290 0.8664 0.9306
7 0.3347 0.6277 0.4597 0.6433 0.9502
8 0.3958 0.6565 0.7721 0.8753 0.9711
9 0.5070 0.5135 0.5687 0.6221 0.8643
10 0.1269 0.4253 0.5004 0.8880 0.9848

available amount based on 80 percent of the initial energies
of the battery. As a sequence, we can derive the value pi
which is the sacrificed energy ratio. And for the di other
component of private valuation, we randomly selected within
[0, 1]. Table IV shows the 10 computed bidding samples of five
actual participating delivery drones’. The values are various in
the range between 0 to 1.

However, neither the prior knowledge of the valuation’s
distribution nor the real-world data is available in our situation.
So the bid set is constructed based on the valuation of drones
with the distribution assumptions. The auction simulation
works through a randomly constructed bid set and infer results
from it.
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Fig. 7. Revenue comparison graph by auction method and number of participating bidders.
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Fig. 8. The gap between DLA and SPA.

TABLE V
SIMULATION PARAMETERS.

Parameter Value

Number of bidders (N) 5, 7
Number of groups (K) 5
Number of linear functions (J) 3
Number of iterations 500
Approximate quality k 1
Distribution of valuation fV (v) ∼ U [0.5, 1]

B. Evaluation Results

This section presents the DLA (deep learning-based optimal
auction) for data delivery and the proposed deep learning
based optimal auction compared with SPA as a baseline. The
neural network runs on the pyTorch library. Evaluation was
performed under where the numbers of delivery drones are
5 and 7 with the distribution of valuation fV (v) ∼ U [0.5, 1]
and the neural network has 5 groups and 3 linear functions.
Overall 500 iterations were done with approximation quality
k is 1. The simulation parameters are organized in Table V.

The results in Fig. 7 shows revenue comparison between
SPA and DLA in 4 different plottings. In Fig. 7(a), revenues
comparison for 5 bidders and 10 bidders are shown over
the iterations. The revenue obtained from the deep learning
auction is higher than the baseline SPA for all cases. Fig. 7(b)
represents the case where the participation of the five and
ten bidder’s in each of the DL and SPA process is shown
as a CDF of their revenue. The graph shows that the revenue
of the 10 bidders is higher than that of 5 bidders. It can be
confirmed that our simulation reflects the obvious phenomenon
that the bidding value increases as the number of competitors
increases. The experiment results compare the top 25 per-
centile, 50 percentile, and 75 percentile value of CDF as listed
in Table VI. The mean value (i.e., 50 % of CDF) is 0.7055,
0.7660, 0.7357, and 0.8480, confirming the revenue increase
through numerical values.

Fig. 8(a) shows the 300 individual deep learning auction
results. The revenue gap between spa and DLA is obtained
for each iteration, and sorted in ascending order. That is,
the corresponding graph shows the range of gaps that can
occur over iterations. Overall, the revenue is improved, and
the largest increase was up to 0.6. Fig. 8(b) shows the 10
cases of experiments in random order. The number on the
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TABLE VI
STATISTIC OF CDF IN FIG. 6(B).

SPA with 5 bidders DLA with 5 bidders SPA with 10 bidders DLA with 10 bidders

25 % 0.4987 0.7514 0.7059 0.8222
50 % 0.6598 0.8672 0.7970 0.9132
75 % 0.7684 0.9368 0.8601 0.9578
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Fig. 9. The changes from the advent of false bidder.

X-axis represents the indices of individual cases. The result
compares the revenue of surveillance drone via deep learning
auction with SPA in barplot. Fig. 8 confirms that the value is
generally larger than the SPA. Through the barplot, we can
confirm DLA can improve SPA’s undervalued revenue due to
its mechanism.

Fig. 9 presents the changes from the advent of a false
bidder drone. Fig. 9(a) shows the revenue changes due to
the particular bidder’s untruthful behavior. The experiment
assumes the situation when five bidders bid for the item and
one drone happens to false bid. The second-highest bid is
0.7832, and the truthful value of the malicious drone is 0.8408.
We set the fake value by adjusting the false rate from 0.2 to
2.0. False rate is a multiplying value that indicates how much
to adjust from the initial truthful value. The black line is the
actual value taken by the winner drone in a deep learning
auction, and the blue line is the fixed payment of the winner
in the SPA. The payment change of the fake bidder over the
false rate is in a red line. When the fake bidder drone submits a
bid 0.2-0.8 times larger than the actual value, it has no chance
to win the auction. When the fake bidder drone submits a
bid 1.2-2.0 times larger than the actual value, it becomes the
winner but overpays its valuation. In terms of the utility of
individual drones, the loss leads the utility negative. Therefore,
there is no reason for a delivery drone to fake bid suffering
the needless loss and shows our system prevents untruthful
behavior. Fig. 9(b) shows that bidders have no incentive to
false bid in the same manner. The probability increases as the
false rate increases, but the utility gradually decreases. With
the false rate is equal to 1, the left and right sides of the graph
show polar opposite characteristics. When the false rate is in
0.2–0.8, there is a little chance of winning, and when it is in

1.2–2.0, there is a high probability. However, when the false
rate is 0.2–0.8, the false bidder cannot win the auction, thus
the utility is zero. In addition, when it is 1.2–2.0, it has to pay
more than its valuation, so it goes negative.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, an asynchronous data drone delivery is pos-
sible in aerial surveillance big data platforms. With the deep-
learning auction, our platform achieves the initial objective
of maximizing the revenue of the surveillance drone. The
evaluation results confirm that the auction-based matching
problem between the delivery drone and surveillance drone
gives distinct revenue benefits compared to the traditional
SPA. The results also give the reasonable inference that the
participating drones are avoided from fake bidding.

For future research directions, a deep learning-based multi-
item auction can be considered to extend our proposed al-
gorithm, e.g., the multi-item auction which processes data
from multiple surveillance drones in distributed regions can
be operated in realistic environment. Furthermore, we can
redesign our proposed algorithm based on various realistic
assumptions, e.g., various types and operators among drones
and the corresponding limitations in terms of control and
coordination. We will also redesign our proposed algorithm
based on various realistic assumptions, e.g., various types and
operators among drones and the corresponding limitations in
terms of control and coordination. Lastly, we will also research
whether reverse or other auction methods can be applied to
drone-based emerging applications.
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