
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

710 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 6, DECEMBER 2022

Parallelized and Randomized Adversarial Imitation
Learning for Safety-Critical Self-Driving Vehicles

Won Joon Yun, MyungJae Shin, Soyi Jung, Sean Kwon, and Joongheon Kim

Abstract—Self-driving cars and autonomous driving research
has been receiving considerable attention as major promising
prospects in modern artificial intelligence applications. According
to the evolution of advanced driver assistance system (ADAS),
the design of self-driving vehicle and autonomous driving systems
becomes complicated and safety-critical. In general, the intelligent
system simultaneously and efficiently activates ADAS functions.
Therefore, it is essential to consider reliable ADAS function
coordination to control the driving system, safely. In order to
deal with this issue, this paper proposes a randomized adversarial
imitation learning (RAIL) algorithm. The RAIL is a novel
derivative-free imitation learning method for autonomous driving
with various ADAS functions coordination; and thus it imitates
the operation of decision maker that controls autonomous driving
with various ADAS functions. The proposed method is able to
train the decision maker that deals with the LIDAR data and
controls the autonomous driving in multi-lane complex highway
environments. The simulation-based evaluation verifies that the
proposed method achieves desired performance.

Index Terms—Autonomous driving, deep reinforcement learn-
ing, imitation learning, random search.

I. INTRODUCTION

RECENTLY, the various forms of advanced driver assis-
tance system (ADAS) for self-driving and autonomous

vehicle are receiving a lot of attentions [1], [3]–[6]. For
facilitating the various ADAS systems in realistic applications,
it is required to form efficient long-term assistance strategies
under the consideration of safety according to the fact that
the malfunctions in safety can lead to on-road accidents and
road congestion. The various ADAS systems developed in
modern self-driving and autonomous driving are highly inter-
dependency; therefore it does not need to be a single integrated
system. Therefore, the strategies that properly and seamlessly

This research was supported by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2022-2017-0-01637) supervised by the IITP (Institute for
Information & Communications Technology Planning & Evaluation).

Manuscript received July 22, 2021; revised Jenuary 11, 2022; approved for
publication by Yin Sun, Division III Editor, February 20, 2022.

Preliminary versions were appeared in Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI) [1] and presented at ICML
Workshop on AI for Autonomous Driving 2019 [2].

W. J. Yun and J. Kim are with the Department of Electrical and
Computer Engineering, Korea University, Seoul, Korea, email: {ywjoon95,
joongheon}@korea.ac.kr.

M. Shin is with Mofl Inc., Daejeon, Korea, email: mjshin.cau@gmail.com.
S. Jung is with the Department of Electrical and Computer Engineering,

Ajou University, Suwon, Korea, email: jungsoyi20@gmail.com.
S. Kwon is with the Department of Electrical Engineering, California State

University, Long Beach, CA, USA, email: sean.kwon@csulb.edu.
W. J. Yun and M. Shin are equally contributed to this work (first authors).
S. Jung and J. Kim are the corresponding authors of this paper.
Digital Object Identifier:10.23919/JCN.2022.000012

Driving policies of supervisor(s)

Low-level ADAS controller(s)

Actuators LIDAR

Mechanical components

Fig. 1. Simplified learning hierarchy to control vehicle systems.

control the autonomous vehicle considering various ADAS
systems are required.

A self-driving and autonomous vehicle system hierarchy
with a supervisor is as presented in Fig. 1. The low-level
ADAS controllers are directly connected to LIDAR sensors
accessible in the self-driving and autonomous vehicle. The
ADAS controllers determine the information needed to ef-
ficiently control the vehicle and transmit the determined
operations to in-vehicle mechanical components. As a single
integrated system, it is expected that multiple ADAS functions
simultaneously cooperate to manage the autonomous driving
operation. Thus, a supervisor that coordinates the low-level
ADAS controllers needs to select suitable ADAS functions
when the vehicle operates in on-road driving environments [7].
The main objective of the supervisor is decision-making for
self-driving and autonomous vehicles during driving operations.

The system architecture of autonomous vehicle is as illus-
trated in Fig. 2 where the autonomous driving vehicular system
is divided into three parts by task, i.e., perception, decision
and planning, and control [8], [9]. As a major component of
the autonomous vehicle system, the supervisor decides and
plans the operation of vehicle in order to realize safety-critical
operations. If perception modules cover a sufficient range for
autonomous vehicles, the data fusion module generates the
high-dimensional observations, e.g., the process of forming the
environmental information consisting of object locations, the
position and type of path delimiters and the semantic meaning
of drivable paths around the vehicle [10]. Then, the supervisor
generates a control plan based on the sensed information by
using the decision and planning module. The driver is able
to intervene in the operation of the vehicle through the user
interface module.

The challenge is that the driving policies of the autonomous
vehicular supervisor has to make decisions for the extremely
high robustness in any kinds of various traffic environments.
One of the major previous research results on self-driving and

1229-2370/22/$10.00 © 2022 KICS



W. J. YUN AND M. SHIN et al.: PARALLELIZED AND RANDOMIZED ... 711

Drivable area
recognition module

Data fusion 
module

Object
recognition module

Vehicle pose
estimation module

Decision 
module

Trajectory 
planning module

Control 
module

User 
interface 
module Accelator

motor

Break motor

Steering 
wheel motor

Perception Decision & planning Control

Real-time local map

Fig. 2. Simplified system hierarchy of autonomous vehicle.

autonomous driving is rule-based driving policy optimization.
However, the policy has serious problems for coping with time-
varying environments, i.e., extremely large observation spaces
and action spaces which can introduce high computational
complexity for training [11]–[16]. Recently, deep reinforce-
ment learning (DRL) based algorithms have been proposed
that utilize powerful function approximations such as neural
networks, allow the vehicular supervisor to train robust driving
policies [17]–[23]. However, DRL-based algorithms are also
with serious problems when the driving policies conduct policy
training that maximizes the expected rewards during operation
in real-time. This is due to the fact the determining the reward
function values for autonomous driving is still in progress.
Moreover, due to the fact that there are undesirable policies
to maximize the expected rewards while violating the implicit
rules of the given driving environments, it is difficult to train
the safe and robust policies via DRL-based algorithms in self-
driving and autonomous driving [24].

Based on these problems, many researchers start to consider
imitation learning for optimizing the driving policy [25]. The
imitation learning trains the driving policies based on the
desired expert behavior demonstrations rather than the con-
figuration of the reward functions. Furthermore, the imitation
learning is able to leverage domain knowledge. Based on these
advantages, it is verified that the imitation learning performs
remarkably in many artificial intelligence research areas such
as navigation, autonomous vehicle, robotics, and so forth [24],
[26], [27].

However, the main challenge is that the combination of
deep reinforcement learning and imitation learning algorithms
require huge data for achieving reasonably acceptable perfor-
mance, and one of the most well-known and famous one is
generative adversarial imitation learning (GAIL) [28], [29]. In
order to take care of this problem, the proposed models can be
complicated; and therefore, the models introduce reproducibility
crisis. Furthermore, the models are sensitive to the imple-
mentation of the algorithms and rewards from environments.
For instance, in GAIL, the discriminator designed inspired by
generative adversarial network (GAN) acts as reward function.
With the combination of discrimination and the complex deep
reinforcement learning algorithms such as TRPO and PPO,
the GAIL learns the its own policies. As a result, the policies
based on the reconstruction results do not have always introduce

reasonably acceptable performance, and might converge to sub-
optimal. These problems introduce the difficulties in training
robust and safety-critical autonomous self-driving policies;
the trained policies have not been successfully deployed to
autonomous vehicles yet [30], [31]. Recently, augmented
random search (ARS) which is based on the natural gradient
policy is proposed [32], [33]. According to the fact that the ARS
is based on derivative-free simple linear policy optimization, it
is relatively easy to reconfigure the robust trained policy that
works with reasonably acceptable performance.

In this paper, a novel imitation learning based algorithm
is proposed which combines the concepts of ARS and GAIL.
For more details, a parallelized and randomized adversarial
imitation learning (RAIL) algorithm is discussed; and the RAIL
algorithm trains its own policies via randomly generated matri-
ces where the matrices are used for searching update directions
which introduce optimal policies. This RAIL-based approach
is advantageous in computation overhead reduction (in back-
propagation) whereas deep reinforcement learning algorithms
which utilize gradient descent optimization for computing
weight parameters. Furthermore, our imitation learning based
system is able to learn the supervisor’s driving policies which
achieves almost equivalent performance with the expert in
terms of average speeds and lane changes by leveraging expert
demonstrations. Based on intensive simulation-based evaluation,
it has been demonstrated that the RAIL algorithm is able to
train the autonomous self-driving decisions as expected.

A. Contributions

Our proposed RAIL shows that the random search in the
space of policy parameters can be adapted to imitation learning
for autonomous driving policies. More details are as follows.

• First of all, self-driving mechanism is proposed inspired
by imitation learning. Our method can successfully imitate
expert demonstrations; and the corresponding policies can
achieve similar speeds with lane changes and overtakes.

• Next, previous imitation learning methods were based
on conventional methods which show complicate con-
figurations to control autonomous driving. However, our
proposed RAIL has simplicity based on derivative-free
randomized search.

• This method has not been previously applied to learn the
robust policies in autonomous self-configurable driving.



712 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 6, DECEMBER 2022

B. Organization

The rests of this paper are as follows: Section II and Sec-
tion III describe the previous research results and reinforcement
learning background knowledge. Section IV presents problem
definition, i.e., policy training for self-driving and autonomous
driving. Section V designs the proposed randomized adversarial
imitation learning algorithm. Section VI presents the data-
intensive simulation-based performance evaluation results in
multi-lane highway autonomous vehicle control, and lastly,
Section VII describes the concluding remarks of this paper.

II. RELATED WORK

A. Imitation Learning

The imitation learning algorithms can be majorly classified
into two categories, i.e., behavioral cloning (BC) and inverse
reinforcement learning (IRL). The BC is considered as the
simplest imitation learning algorithm. For restoring expert
policy, the BC learns by collecting training data from the expert
driver’s behaviors, and then the BC utilizes it to directly learn
the expert driver’s policy. If the policy deviates from expert
trajectories which is trained during the training procedure,
the imitation learning agent tries to be fragile. This is due
to the fact that BC tries to reduce the 1-step deviation error
of training, not the error of entire expert trajectories. On the
other hand, IRL has an intermediate procedures to estimate the
unknown reward function value which numerically represents
the expert demonstrations [34], [35]. According to the fact that
the IRL-based algorithms have to train the policy as well as to
estimate the reward function values, they generally involve huge
computational costs. In [36], [37], the theoretical and practical
considerations of connections between IRL and adversarial
network is studied. GAIL trains a policy which can imitate
expert demonstration using the discriminator neural network,
which bypasses the reward function value optimization.

B. The Simplest Model-free Reinforcement Learning

The simplest model-free reinforcement learning algorithm
which is able to solve standard benchmarks of reinforcement
learning is studied with two research directions, i.e., (i)
linear policies using natural policy gradients [32] and (ii)
derivative-free policy optimization [38]. In [32], it has been
verified that the complicated structures of policies are not
needed for solving continuous action control problems. The
proposed method in [32] trains the linear policies using natural
policy gradients. The trained policies in [32] achieves superior
performance on complex environments. On the other hand, the
proposed method in [38] verify that evolution strategies (ES)
guarantees less data efficiency than traditional reinforcement
learning algorithms whereas it can provide several advantages.
Especially, a derivative-free policy optimization allows ES
to be more efficient in distributed and parallized learning
environments. Furthermore, the trained reinforcement learning
policies tend to be more diverse than the policies obtained by
conventional reinforcement learning algorithms. As presented
in [39], the connection between [38] and [32] is studied for
computing the simplest model-free reinforcement learning

algorithm which is the derivative-free policy optimization for
training linear policies. The proposed simple randomized search
method shows state-of-the-art sample efficiency compared to
competing learning methods as shown in the simulation results
in MuJoCo locomotion benchmark environments.

III. BACKGROUND

A. Markov Decision Process
The Markov decision process (MDP) can be formed as

(S,A, p(s), p(s′|s, a), r(s, a, s′), γ) where S and A stand for
the sets of states and actions, respectively [40]–[42]. Here, γ
represents the reflection rate of future rewards compared to the
current decision. p(s) means initial state probability distribution,
in each s ∈ S. p(s′|s, a) stands for the environmental dynamics
represented as conditional state distribution in state s′ ∈ S
when s ∈ S (states) and a ∈ A (actions) are given, i.e., it is
defined as the probability for being at s′ with action a from
s. Lastly, r(s, a, s′) stands for reward functions for being at
s′ with action a from s. The reward returns are defined as
Rt =

∑∞
i=t γ

i−tr(si, ai, si+1). The objective of MDP is for
finding a policy that maximizes the expected reward returns.

B. Behavior Cloning
The BC trains a policy as a way of supervised learning

over state-action pairs from expert demonstration [43]. The
objective of BC is as:

argmin
θ

Es∼PE
[L (aE , πθ (s))] =

Es∼PE

[
(aE − πθ (s))

2
]
, (1)

where PE and aE denote the distributions of the states where
expert has been visited and the action of the expert at state s
respectively. Note that πE and πθ represent the policies of the
expert and the agent. According to the fact that BC pursues
to minimize 1-step deviation error as a way of supervised
learning, the BC is able to train the robust policy when the large
amounts of expert demonstration data are provided. Due to this
limitation, the trained policy can be fragile when distribution
mismatch occurs between the training data and the test data.
Therefore, in many research, BC is only used to initialize policy
parameters in the absence of expert data. After that, the other
algorithms are used to train the robust imitation policy.

C. Inverse Reinforcement Learning
The IRL can train a policy when MDP formulation is known

whereas the reward function values are unknown and expert
demonstration data TE can be utilized [44]. The IRL reveals
the hidden reward function values R∗ that can represent the
expert demonstration.

E
[∑∞

t=0
γtR∗(st)|πE

]
≥ E

[∑∞

t=0
γtR∗(st)|πθ

]
(2)

Based on the revealed reward function R∗, the reinforcement
learning is now able to conduct to train the policy πθ. Note
that the objective of IRL is as:

argmax
θ

Es∼PE
[R∗(s, πθ(s))] . (3)



W. J. YUN AND M. SHIN et al.: PARALLELIZED AND RANDOMIZED ... 713

The IRL computes the reward function R∗ which represents
expert demonstration trajectories. Thus, we do not need to
worry about the case where the trained policy to be fragile due
to the mismatch between the training data and the testing data,
anymore. However, the IRL is computationally expensive to be
executed due to the fact that it computes both reward function
optimization (2) and policy optimization (3) at the same time.

D. Generative Adversarial Imitation Learning

The GAIL can be utilized for reward function definition [37].
Based on GAN, the GAIL trains a discriminator which is a
binary classifier, i.e., D(s, a), in order to classify the transitions
sampled from an expert demonstration and the transitions
sampled by trained policies. The objective of GAIL is as:

argmin
θ

argmax
ϕ

{Eπθ
[logDϕ(s, a)] +

EπE
[log(1−Dϕ(s, a))]− λH(πθ)} , (4)

where Dϕ(s, a) → [0, 1] is the discriminator parameterized
by ϕ [37]. In (4), H(πθ) ≜ Eπ [− log π(a|s)] is entropy
regularization. In GAIL, the policy receives a reward from
the discriminator; and then the policy tries to confuse the
discriminator. In this procedure, the reward is optimized using
on-policy reinforcement learning optimization schemes. That is,
the Dϕ acts as a reward function in MDP and it gives learning
signal to the policy [37], [45], [46].

E. Augmented Random Search

The ARS is a model-free reinforcement learning algo-
rithm [39]. Based on randomized search in the parameter spaces
of policies, the ARS executes the method of finite differences to
control and adjust its weights and train the way how the policy
performs its given tasks [39], [47]. Via the random search in
the parameter spaces, the ARS algorithm conducts a derivative-
free policy optimization with noises [39], [47]. For updating
the training weights in an effective way, the ARS (i) uniformly
selects update directions and (ii) updates the policies based
on the selected direction. In order to update the parameterized
policy πθ, the update directions can be r(πθ−νδ)−r(πθ+νδ)

ν where
δ is a 0 stands for a Gaussian vector, ν is a positive real number
that represents the standard deviation of exploration noise, and
r(πθ±νδ) is the reward from environments when the parameter
of policies is given as πθ±νδ. Here, θt is the weight of policy
training at t-th iteration. N denotes the number of sampled
directions per iteration. The update step is as:

θt+1 = θt +
α

N

∑N

i=1
[r(πθ+νδi)− r(πθ−νδi)] δi. (5)

However, this randomized search is challenging due to the
large variations in terms of the rewards r(πθ ± νδ) those are
observed during training procedure. The variations is harmful
doe because the updated policies become to be perturbed during
the update steps [39]. In order to handle the large variation,
the standard deviation of the rewards that is collected at each
iteration, i.e., σR, is is utilized to control and adjust the sizes
of the update steps during ARS. Based on this concept for
step size adaptation, the ARS performs better compared to

the other conventional deep reinforcement learning algorithms,
e.g., PPO, TRPO, in specific learning environments.

IV. PROBLEM DEFINITION

A. Motivation

For coordinating ADAS functions for safe and robust au-
tonomous driving control, the vehicular supervisor determines
the optimal ADAS functions based on the nearby environments
and situations. However, the complete environment states are
unknown to the supervisor. The vehicular supervisor gather
an observation which is conditioned on the current state.
The host vehicle interacts with the high-way environment
including nearby multiple vehicles and lanes; in addition, it
utilizes partially observable local information. Therefore, the
observation of agent is able to be modeled as (O,A, T,R, γ)
representing a partially observable MDP with continuous
observations and actions. Similar to MDP, there are partial
observation states denoted by O instead of S. Note that LIDAR
sensing data is considered as the observation.

Two types of spaces are considered in this paper, i.e., a
finite state space O ∈ Rn and a finite action space A ∈ Rp.
The objective of imitation learning is to train a policy πθ ∈
Π : O ×A → Rp that imitates expert demonstration by GAN
Dϕ(s, a)→ [0, 1] where θ ∈ Rn and ϕ ∈ Rn+p are the policy
parameters and the discriminator parameters, respectively [37].

B. State Space

For LIDAR sensing data model, a vector observation is used.
In this model, N beams are spread evenly over the field of view
[ωmin, ωmax]. Each LIDAR sensor data has a maximum range
of rmax surrounding the host vehicle. Then, the observation is
described as O = (o1, · · ·, oN ). Furthermore, the speed of the
obstacle and the speed of host vehicle can be obtained based
on the distance information. Note that the speed observation
is denoted by Vr = (v1, · · ·, vN ).

C. Action Space

The policy in a supervisor is considered as a high-level
driving decision maker that determines optimal actions based
on surrounding observation on the highway. According to the
fact that the self-driving and autonomous vehicle utilizes the
equipped multiple ADAS functions, the determined actions of
autonomous driving policy utilizes each ADAS function. Note
that the driving policy is defined in a high level five decisions
(i.e., discrete five action spaces), i.e., maintaining current status,
accelerating speed as velcur + velacc, decelerating speed as
velcur− veldec, making a left lane change, and making a right
lane change. This is based on the assumption that the host
vehicle can be perfectly controlled with autonomous emergency
braking and adaptive cruise control [22], [23], [48].

D. Reward Function

In GAIL, the reward is defined as rπθ
(s, a) = − log(1 −

Dϕ(s, a)) or rπθ
(s, a) = log(Dϕ(s, a)) [37] where the first

reward is considered to let an agent train survival policies via



714 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 6, DECEMBER 2022

Environment Supervisor
policy 𝝅𝝅𝜽𝜽

Sample trajectories

Discriminator 𝑫𝑫𝝓𝝓

Expert demonstration

tanh

S L L R S S R R
A A L S S D L L
D L S S A A R L 

Fig. 3. Structure of RAIL.

a survival bonus with the positive reward form based on their
lifetime whereas the second one is considered to train policies
with a per-step negative reward, when the reward consists of
the negative constant for states and actions. However, in this
case, learning the survival policies are not easy [49]. The prior
knowledge of environmental objectives is worthy, however the
environment-dependent reward is undesirable when an agent
requires interactions with a training environment for imitating
an expert policy. Thus, the reward function is defined as:

r(s, a) =

E(s,a)∼πθ
[log(Dϕ(s, a))− log(1−Dϕ(s, a))] . (6)

V. RANDOMIZED ADVERSARIAL IMITATION LEARNING

A. Algorithm

This paper proposes a randomized adversarial imitation
learning (RAIL) which adopts imitation learning through adver-
sarial network paradigm, i.e., generative adversarial imitation
learning (GAIL). The proposed RAIL algorithm aims to train
the driving policy πθ for imitating expert driving demonstration.
This section describes the details of the proposed RAIL
algorithm and makes a connection between GAIL and ARS
where the ARS is based on a derivative-free optimization.

As presented in Fig. 3, the entire architecture of RAIL algo-
rithm is illustrated. The supervisor on top of our considering
host vehicle is an agent with the policy of πθ. Based on the
given environment (i.e., multi-lane highway environment), our
considering host vehicle gathers the observation at first. After
that, the random noise matrices with small values are generated
where the noise element values are added to or subtracted from
the driving policy parameters θ. As a result, temporal several
different policies are generated. The agent/policy interacts
with the given driving environments multiple times based on
the generated noisy policies and the results are gathered as
sample trajectories. Based on the sample trajectories, the agent
policy πθ is trained in order to conduct autonomous vehicle
control successfully with the ADAS functions that guarantee
driver/vehicle safety. During the policy training process, the
policy πθ tries to disturb the discriminator Dϕ by let the
discriminator believe the sample agent trajectories obtained by
expert demonstrations. The Dϕ pursues to classify between the
distribution of trajectories those are sampled by the policies
πθ and the expert trajectories TE where the trajectories are
formulated as state-action pairs (s, a). The discriminator acts
as the reward module in RAIL, as presented in Fig. 3; and
therefore πθ is trained against the discriminator.

As presented in Fig.3, the discriminator conducts its own
training with sample trajectories and expert demonstration.
During the training procedure, the distribution of the sample
trajectories changes because the policy πθ is updated every
iteration. As a result, the training is not stabilized; and therefore
it leads to the inaccurate reward signal to the discriminator
policy. In turn, the policy is perturbated during updates [45].
In RAIL, the loss function of least square GAN (LS-GAN) is
utilized for training the discriminator policy Dϕ [50], and the
objective is as:

argmin
ϕ

LLS(D) =
1

2
EπE

[
(Dϕ(s, a)− b)2

]
+

1

2
Eπθ

[
(Dϕ(s, a)− a)2

]
,

(7)

where a is the discriminator label for the sampled trajectories
from the policy πθ and b is the discriminator labels for the
expert trajectories, respectively.

As mentioned, LS-GAN loss function is utilized for training
the discriminator policy. When the loss function of conventional
GAN in (4) is used, sampled trajectories those are far from
the expert trajectories whereas the correct side of the decision
boundary are almost not penalized by sigmoid cross-entropy
loss function. On the other hand, the LS-GAN loss function (7)
penalizes the sampled trajectories those are far from the expert
trajectories on either side of decision boundary [50]. Thus,
the stability of training can be improved; and it also leads
the discriminator to provide accurate reward signals to update
step. In LS-GAN, a and b are in the relationship of b− a = 2
for (7) to be Pearson X 2 divergence [50]. However, a = 0
and b = 1 are used for the target discriminator labels. The
results of the discriminator Dϕ are between 0 and 1; and these
values are experimentally obtained. In RAIL, the discriminator
is interpreted as a reward function for policy optimization.
Forementioned in Section IV, the form of reward signal is as:

rπθ
(s, a) = log(Dϕ(s, a))− log(1−Dϕ(s, a)). (8)

This means the policy πθ gets higher reward rπθ
(s, a) when

the trajectories sampled from the policy πθ is almost equivalent
to expert trajectories. The πθ is updated to optimize/maximize
the discounted summation of reward values given by the dis-
criminator rather than the reward values from the environment
as in Fig. 3. The objective of RAIL is as

argmax
θ

E(s,a)∼πθ
[r(s, a)] , (9)

and by (8),

argmax
θ

E(s,a)∼πθ
[log(Dϕ(s, a))− log(1−Dϕ(s, a))] , (10)



W. J. YUN AND M. SHIN et al.: PARALLELIZED AND RANDOMIZED ... 715

Algorithm 1: RAIL

1 Hyperparameters
2 α: learning rate,
3 N : the number of directions per iteration,
4 δ: Gaussian noise vector,
5 ν: noise coefficient,
6 η: evaluation term,
7 τ : noise effect coefficient,
8 θ: weight vectors
9 Initialization

10 µ0 ← 0 ∈ Rn, and
∑

0 ← In ∈ Rn×n

11 while t ≤ episode do
12 Random sampling (i.i.d.)

δt ≜
{
δ1, δ2, · · ·, δN ; δik ∈ Rh×n, δok ∈ Rp×h

}
13 Collect rollouts and rewards with noisy policies

for k ∈ {1, 2, · · ·, N}:
14 πt,(k),+ ← (θt + νδk)diag(

∑
t)

−1/2(s− µt)
15 πt,(k),− ← (θt − νδk)diag(

∑
t)

−1/2(s− µt)
16 Update the discriminator param. ϕt:
17 ∇ϕtLLS ← 1

2EπE

[
(∇ϕtDϕt(s, a)− b)2

]
18 + 1

2Eπθ

[
(∇ϕtDϕt(s, a)− a)2

]
19 Update the policy param. θt:
20 θt+1 ←

θt +
α

NσR

∑N
i=1

[
r(πt,(k),+)− r(πt,(k),−)

]
δ(k)

21 where reward is r(πt,(k),±)←
E(s,a)∼πt,(k),± [log(Dϕ(s, a))− log(1−Dϕ(s, a))].

22 Set µt+1 (mean) and
∑

t+1 (co-variance) of the
states encountered by training starting.

23 if t == η and Performance is not improved then
24 ν += τ ;
25 else
26 ν = νinit
27 end
28 t = t+ 1
29 end

and this represents the connection between randomized param-
eter space search in RAIL and adversarial imitation learning.

The proposed RAIL algorithm is related to ARS that is a
kind of model-free reinforcement learning. Therefore, the RAIL
algorithm utilizes parameter space exploration via derivative-
free policy optimization. In this paper, πθ are denoted by θ
where the πθ consists of πi

θ, πo
θ , and activation. Note that the

input layer of πθ is denoted by πi
θi where θi ∈ Rn×h are the

parameters of the layer. Similarly, the output layer is denoted
by πo

θo where θo ∈ Rh×p. The noises of parameter space, i.e.,
δi and δo, are formed as the matrices of n × h and h × p,
respectively, where the values are randomly sampled with 0
mean and ν standard deviation in Gaussian normal distribution.
Note that θ is a set of θi and θo; and δ is a set of δi and δo.

The proposed RAIL algorithm works as presented in Algo-
rithm 1 where the parameters, i.e., θi and θo, are initialized
by BC. During the training procedure, the noises are chosen
randomly for each iteration where they are denoted by δi and
δo which stand for the policy search directions in parameter
space (line 9). Each set of selected N noises let two policies be

πθ (i.e., current policy). 2N rollouts and rewards are collected
by N noisy policies πt,k,± = θt ± νδk (line 10–12). The state
normalization is used in RAIL (line 6, 19); and it makes policy
πt,i,± have equal influence for the changes of state components
when there are state components with various ranges [38],
[39], [51]. Notice that the reason why state normalization is
required is that the high dimensional problems have multiple
state components with various ranges; and therefore it makes
the policies to result in large changes in actions when the
equivalent sized changes are not equally influence states. The
discriminator Dϕ gives the reward to update steps. However,
because the trajectories for the discriminator training are only
able to be obtained by πθt (current policies), the discriminator is
trained whenever θt is updated. The discriminator Dϕ computes
ϕ that minimizes (7) (line 14–15). By using the reward by
the discriminator, the policy of the neural network weight is
updated toward the direction of +δ or −δ on top of the result of
r(πt,(k),+)− r(πt,(k),−) (line 17–18). The state normalization
is by the states encountered during the policy training; and
therefore µ and

∑
are updated (line 19). The noise coefficient ν

is initialized as a small real number. Then, the fixed coefficient
ν that is too small can make the agent never converge or get
trapped in a suboptimal solution. Therefore, we periodically
check the performance of the current agent and increase the
noise coefficient ν whenever we detect performance saturation
(line 20–24).

B. Parallization

This section introduces the parallelization of RAIL by using
sampled directions N . Fig. 4 shows the overall policy update
procedure of RAIL. During the training process, the policy
has the matrix of weights. At time t, RAIL takes a Gaussian
noise vector in the form of weights. At the same time, we
generate N number of directions. Each noise vector is then
sent to the process separately, and then each process performs
the following procedure. Each process adds a noise vector δt
to the weights θt. At the same time, each process subtracts a
noise vector δt from the weights θt. Then, each process has
two matrices of noise weights, which are called perturbation
matrices. The perturbation matrices get it’s own episode. Each
process can get different rewards as a result of episode. Each
process receives the rewards of episode from the discriminator.
The rewards mean how similar the state and action sequences
of perturbation matrices are to the expert demonstration. Then,
each process calculates r(θt + νδt)− r(θt − νδt). The result
is sent to the main process that manages the update procedure
and propagates the updated policy to each process. The main
process collects these values and updates the policy.

VI. EXPERIMENT-BASED PERFORMANCE EVALUATION

This section presents the various simulation results we
utilized to verify the performance of the proposed derivative-
free imitation learning in autonomous vehicles with various
ADAS functions. The performance is evaluated with the
simulator by using the results of the corresponding experiments
with respect to the aforementioned rewards, given that the



716 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 6, DECEMBER 2022

𝒘𝒘𝟏𝟏,𝟏𝟏 𝒘𝒘𝟏𝟏,𝟐𝟐 𝒘𝒘𝟏𝟏,𝟑𝟑

𝒘𝒘𝟐𝟐,𝟏𝟏 𝒘𝒘𝟐𝟐,𝟏𝟏 𝒘𝒘𝟐𝟐,𝟏𝟏

0.14 0.37 0.49
0.96 0.25 0.94

Policy
𝜃𝜃𝑡𝑡

Gaussian noise
𝜹𝜹 = 𝛿𝛿1,𝛿𝛿2,⋯ , 𝛿𝛿𝑁𝑁

𝛿𝛿𝑖𝑖

𝒘𝒘𝟏𝟏,𝟏𝟏
- 0.14

𝒘𝒘𝟏𝟏,𝟐𝟐
- 0. 37

𝒘𝒘𝟏𝟏,𝟑𝟑
- 0.49

𝒘𝒘𝟐𝟐,𝟏𝟏
- 0.96

𝒘𝒘𝟐𝟐,𝟐𝟐
- 0.25

𝒘𝒘𝟐𝟐,𝟑𝟑
- 0.94

𝒘𝒘𝟏𝟏,𝟏𝟏
+ 0.14

𝒘𝒘𝟏𝟏,𝟐𝟐
+ 0. 37

𝒘𝒘𝟏𝟏,𝟑𝟑
+ 0.49

𝒘𝒘𝟐𝟐,𝟏𝟏
+ 0.96

𝒘𝒘𝟐𝟐,𝟐𝟐
+ 0.25

𝒘𝒘𝟐𝟐,𝟑𝟑
+ 0.94 En

vi
ro

nm
en

t
En

vi
ro

nm
en

t

Sample trajectories

D
is

cr
im

in
at

or
 𝑫𝑫

𝝓𝝓

Expert 
demonstration

Reward𝑟𝑟(𝜃𝜃𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑖𝑖)

𝐑𝐑_𝐩𝐩𝐩𝐩𝐩𝐩

𝐑𝐑_𝐧𝐧𝐧𝐧𝐧𝐧

Policy update

𝑟𝑟(𝜃𝜃𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑖𝑖)

𝑟𝑟(𝜃𝜃𝑡𝑡 − 𝜈𝜈𝛿𝛿𝑖𝑖)

Fig. 4. Parallization.

state of the autonomous vehicle is observable by the agent. In
Section VI-B, the performance between RAIL and baselines
is compared. For assessing the performance gaps between the
single-layer policy and multi-layer policy trained by RAIL,
the single-layer and two-layer policies are implemented. In
Section VI-C, we study the impact of the number of sampled
directions per iteration N in terms of reward from discriminator.

A. Simulation Settings

In this section, the implementation details of the RAIL
algorithm for autonomous vehicle with various ADAS functions
are introduced. The hardware configuration we employed for
our simulation is an NVIDIA DGX personal AI supercomputer
with 4 × Tesla V100 GPUs and Intel Xeon E5–2698 v4 (2.2
GHz CPU with 20 cores). Python version 3.6 on Ubuntu
16.04 LTS is used for software systems. During the training
procedure, the learning rate was set to α = 0.001. The number
of directions per iteration was set to N = 512 in Section VI-B.
The noise effect coefficient was set to τ = 0.001. The initial
noise coefficient was set to ν = 0.03. Note that the considering
road environment in this paper is a highway driving roadway
consisting of five lanes. Aforementioned in Section IV, the
observation is based on LIDAR sensing data. We assume that
the LIDAR sensors detect 360 degree ranges where one ray is
taking care of 15 degree. The ray returns the distance between
the first obstacle it encounters and the main RAIL algorithm-
equipped vehicle. If no obstacles exist, the maximum sensing
range values are returned. The expert demonstration is designed
inspired by PPO. The performance evaluation results show the
average of 16 experimental results. In the experiments, the
trained weights by BC are utilized for fast convergence in the
both of GAIL and RAIL. This simulation design is mainly
based on [48]. Unity was used to implement the multi-lane
highway simulator.

B. Performance Comparison by the Number of Layers

In this paper, RAIL trains the agent that imitates the
behaviors of expert vehicles with various ADAS functions.
Therefore, longitudinal rewards and lateral rewards, which
represent the operation status of various ADAS functions
during the autonomous driving, were investigated for each
of following four methods: single layer RAIL, stacked layer
RAIL, BC, and GAIL. Furthermore, the average vehicle speeds,

the number of vehicle overtakes, and the number of vehicle
lane changes during the episodes were evaluated with four
different methods. These experimental results show the agent
imitates the autonomous vehicle operation with various ADAS
functions as well as the decision (i.e., change lane to left when
vehicle can change both directions) when it needs to decide
the action. Fig. 6(d) shows the statistical information of the
above experiments for four different agents.

The experiment of Figs. 5(b) and 5(c) was conducted to
measure the agent successfully imitates decisions from the
behaviors of expert. For achieving the similar statistics of expert
overtakes, the vehicle lane change points and change directions
have to be similar to expert behaviors in the episode. Similarly,
in the experiment of Fig. 5(a), the acceleration or deceleration
decisions should be similar to the expert for achieving the
similar average speed in the episode.

Fig. 6(d) shows that the two-layer policy achieves the
highest values of average speed and average overtakes, i.e.,
70.38 km/h and 45.04, respectively. This is due to the fact that
the trained policies are able to occasionally achieve superior per-
formance than the expert demonstration because GAIL-based
imitation learning frameworks conduct policy optimization
based on the interaction with the surrounding environments.
On the other hand, the performance of single-layer policy
achieves approximately 90% performance compared to the
expert demonstration. This is due to the fact that the single-
layer policy is not enough to properly take care of high
dimensional observations. Aforementioned, BC pursues the
minimization of 1-step deviation errors along with the expert
demonstration. As a result, the single-layer policy achieves
undesirable performance according to the distribution mismatch
between testing and training.

In Fig. 5(c), the two-layer policy presents the desired
performance. This result is related with the tendency that is
presented in Figs. 5(a) and 5(b). The two-layer policy changes
more lanes than the single-layer policy. The lane changes of
two-layer policy can make the agent to get proper decision
points for acceleration and lane change; then it leads to the
average speeds, the number of vehicle lane changes, and the
number of overtakes, to be similar to the number of expert
demonstration.

However, single-layer policy presents the smaller number
of overtakes than the two-layer. Notice that the number of
lane changes of the single-layer policy is more than the one of



W. J. YUN AND M. SHIN et al.: PARALLELIZED AND RANDOMIZED ... 717

(a) Speed (Normalized). (b) Lane Change (Normalized).

(c) Overtake (Normalized). (d) Longitudinal Rewards (Normalized).

(e) Lateral Rewards.

Average Expert RAIL RAIL
(Stacked) (Linear)

Speed 68.83 km/h 70.38 km/h 65.00 km/h
Number of overtake 44.48 45.04 40.03
Number of lane change 14.04 15.01 13.05
Longitudinal 2642.11 2719.38 2495.57
Lateral -132.52 -122.98 -175.6

(f) Performance (Average: 16 Episodes, 40 Trajectories)

Fig. 5. The performance evaluation results of trained policy depending on the number of expert trajectories (Average: 5 episodes).

expert demonstration. The single-layer tries to find the points to
acceleration. However, the single-layer policy cannot accelerate
the autonomous vehicle properly. This result leads the agent
to get a small number of overtake.

The experiments for longitudinal reward were performed
to analyze the operation status of various ADAS functions
of the agents in episodes. In this work, we assumed that the
autonomous vehicle drives with smart cruise control. Then, the
smart cruise control system is limited to only controlling the
speed of the vehicle in this paper. The smart cruise control
makes the decision about the speed. According to the fact that
the longitudinal reward value is proportional to the vehicle
speed, the operation status of the smart cruise control of the
trained agent in terms of the speed are evaluated as shown in
Fig. 5(a).

The two-layer policy achieves more similar speed than the
single-layer. This is due to the fact that the lane change
decisions with two-layer policy make the agent to get the
similar average speed compared with the expert.

In this paper, we assumed that the autonomous vehicle is
equipped with lane keeping system. Therefore, the experiments
for lateral reward was also performed to analyze the operation
status of various ADAS functions similar to the longitudinal
reward. Until the lane changes are conducted, the driving
vehicle is able to change the lane change decision due to
the observable states. Due to the fact that the lateral reward
continuously occurs during lane change, the frequent changes
in each episode let rewards reduction be reduced. As presented
in Fig. 5(e), two-layer policy achieves more reward than the
expert demonstration when we trained the agent with 40 expert
trajectories. The two-layer policy presents more frequent lane
changes than the behaviors of expert’s driving. It means the
two-layer policy keeps the decision more than the expert
demonstration during the lane change. This result shows the
major characteristic of GAIL-based imitation learning method.
This experiment shows that RAIL follows the characteristic
of GAIL-based imitation method; and thus it shows the
applicability of a derivative-free optimization method to the



718 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 6, DECEMBER 2022

0 1 2 3 4 5x105

Training Iteration

0

0.13

0.25

R
e
w

a
rd

N = 8

N = 16

N = 32

(a) Normalized Rewards (N = 8, 16, 32).

0 1 2 3 4 5x105

Training Iteration

0

0.15

0.3

0.45

0.6

0.75

1

R
e
w

a
rd

N = 64

N = 128

N = 512

(b) Normalized Rewards (N = 64, 128, 512).

0 1 2 3 4 5x105

Training Iteration

0

0.15

0.3

0.45

0.6

0.75

1

R
e
w

a
rd

N = 8

N = 16

N = 32

N = 64

N = 128

N = 512

(c) Normalized Rewards.

N 8 16 32 64 128 512

Rewards 449 2278 7185 13258 20453 28569

(d) Convergence Rewards from discriminator in episode.

Fig. 6. The comparison of training curves due to the number of sampled directions in each iteration (N ).

imitation learning. The single-layer policy achieves the smallest
lateral reward value in all cases. Note that the single-layer policy
algorithm presents the frequent lane changes comparing to the
number of lane changes by the driving expert. This is due to the
fact that the policy changes its decision frequently during the
lane change operation. Therefore, the experiments Fig. 5(a)–5(c)
show that, with the single-layer policy and the two-layer policy,
the stacked layer policy for the autonomous vehicle with various
ADAS functions is capable of learning the optimal operation
better than the single-layer policy. In summary, the proposed
RAIL algorithm is verified that it improves the average speed
and also reduces the number of unnecessary lane changes rather
than the behaviors of BC. This explains that the RAIL algorithm
successfully imitates driving policies from the expert driving
demonstrations to the desired directions. This simulation-based
experiment results for performance evaluation verify that the
two-layer policy achieves desired performance improvements.
The results also show the possibility for imitating autonomous
vehicle systems by using the derivative-free imitation learning
method, called RAIL.

C. Learning Curves Comparison by the Number of Sampled
Directions

In this subsection, we compare the learning curves of RAIL.
The number of sampled directions considerably influence the
convergence of the reward throughout the training procedure to
train the autonomous vehicle decision maker. Fig. 6 shows the
tendency of the reward convergence for six different numbers
of sampled directions N in Algorithm 1. Note that the results

in Fig. 6(a) to 6(c) were the results of experiments by using
the same settings which is used in the Section VI-B with the
different number of sampled directions. Note that we did not
use the BC-based initialization which is used to accelerate
the training procedure. The experiments represent the learning
tendency for each reward from the discriminator in one episode.
As mentioned before, the discriminator returns the similarity
as a reward to the agent during the training procedure. This
means that the agent observes a lot of states similar to the
expert during the episode.

As shown in Fig. 6(a), throughout the training procedure,
the performance of the agent is increasing in all cases. When
we set to N = 8 to train the agent, the training curve increases
and then converges. However, the agent trained with N = 8
in Fig. 6a shows the poor performance after the reward has
converged. Then, the agent has converged to 449 as shown in
Fig. 6(d). This is because the number of sampled directions
N = 8 is not enough to get the optimal update directions. On
the other hand, when we set to N = 16, the training curve
quickly increases and converges to the better performance
compared to the case of N = 8. The agent has converged
to 2278. However, the agent has also converged to the poor
performance 7185. When N = 32, the training curve increases
rapidly, stalls briefly, and then increases again as shown in
training iteration 0 to about 0.25 × 105. This tendency is
repeated until the agent converges. As shown in Fig. 6(b), the
performance of the agent also increases in all cases. As the
sampled directions used in the training procedure increases, the
performance increases quickly. However, the agent converges at



W. J. YUN AND M. SHIN et al.: PARALLELIZED AND RANDOMIZED ... 719

(a) Weights from first layer trained
through BC.

(b) Weights from first layer trained
through RAIL.

(c) Weights distribution from first layer
trained through BC.

(d) Weights distribution from first layer
trained through RAIL.

Fig. 7. The comparison of weights from first layer of the two-layer agent.

(a) Weights from second layer trained
through BC.

(b) Weights from second layer trained
through RAIL.

(c) Weights distribution from second
layer trained through BC.

(d) Weights distribution from second
layer trained through RAIL.

Fig. 8. The comparison of weights from second layer of the two-layer agent.

higher rewards compared to the other cases. The agent trained
with N = 64 has converged to 13258. Note that the agent
with N = 64 has higher reward than the agent trained with
N = 128 until about 2×105 training iteration. This shows that
the characteristic of the RAIL that optimizes the policy with the
randomly generated noise. The generated noise sometimes finds
the suboptimal policy quickly and converged to the suboptimal
policy with a small number of sampled directions. When
N = 128, the training curve increases and converges to 20453.
Note that the training curve increases continuously from 0 to
approximately 1× 105 training iteration when N = 512. The
tendency for this performance to increase is longer than in
other cases. This is because the policy does not fall into the
suboptimal where other cases converge through the agent finds
updates direction with a lot of noise. As a result of the training
procedure, the agent has converged to 28569. Fig. 6(c) shows
the learning curves for all cases mentioned above. The relative
performance of the agents which are converged is presented.
As shown in Fig. 6(c), the RAIL has the ability to imitate the
autonomous driving control problem effectively; and thus the
agent trained with the RAIL is capable of establishing optimal
driving strategies.

D. Weights Visualization

This section compares the weights of the trained agents. As
shown in Fig. 5, the training methods influence the performance
of the trained agent. The performance of the agent is closely
related to the weights of the agent. Fig. 7 shows the trained
weights for following two methods: behavior cloning (BC) and
RAIL. As mentioned before, we use BC-based initialization
to accelerate the training procedure. The weights of agents
trained with RAIL is optimized by using the weights which
are trained through BC. During the training procedure, the
same settings are used in the Section VI-B. Fig. 7 shows the
weights in two-layer agent. The shape of weights from first
layer is 10× 363. We reshape the weights for visualization to
30×121 as shown in Figs. 7(a) and 7(b). The shape of weights

from second layer is 5× 10 as shown in Figs. 8(a) and 8(b).
Therefore, as the value becomes low, the color becomes dark.

As shown in Fig. 7(a), there are very high or low values
compared to the other values of weights (i.e, 0.6 and −0.6).
These values also exist in the trained weights through RAIL
as shown in Figs. 7(b) and 7(d). Similarly, in the weights in
the second layer, very high or low values are approximately
equivalent as shown in Figs. 8(a) and 8(b). This means that
BC-based initialization to accelerate the training procedure is
affected by these values. After the training procedure through
RAIL, the weights have high or low values that do not exist
as a result of BC. As mentioned before, BC trains a policy
under the concept of supervised learning by observing the
state-action pairs obtained by expert demonstration. Therefore,
the differences between Figs. 7(a) and 7(b) mean the results
of RAIL that interacts with the environment to train the policy.
These differences in weights make the different results in the
above experiments as presented in Section VI-B.

VII. CONCLUDING REMARKS

In this paper, a randomized adversarial imitation learning
(RAIL) algorithm is proposed for effect autonomous driving pol-
icy training that coordinates ADAS functions for guaranteeing
vehicles’ safety. The proposed RAIL algorithm is derivative-
free as well as model-free. With the proposed RAIL algorithm,
the driving policies which efficiently and successfully control
autonomous vehicle driving are trained via derivative-free
optimization. While conducting the policy training, the simple
randomized updates let the algorithm be facile; and therefore
it makes the policy reconstruction computation results which
achieve superior improved performance. By comparing the
proposed RAIL algorithm with complex deep reinforcement
learning inspired methods, it is observed that the proposed
RAIL algorithm conducts policy training that achieves desired
performance improvements. Furthermore, the experiments show
that how BC-initialization accelerates the training procedure.
This results can be one of the most promising ways to the



720 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 6, DECEMBER 2022

common belief that randomized search based methods in the
parameter spaces of autonomous driving policies can not be
competitive. The performance evaluation results show the
possibility that the ADAS functions of the autonomous vehicles
can be coordinated and controlled by the policies derived by
the proposed RAIL algorithm.

REFERENCES

[1] M. Shin and J. Kim, “Randomized adversarial imitation learning for
autonomous driving,” in Proc. IEEE IJCAI, 2019.

[2] M. Shin and J. Kim, “Adversarial imitation learning via random search
in lane change decision-making,” in Proc. ICML Workshop, Jun. 2019.

[3] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep
learning applications to autonomous vehicle control,” IEEE Tran. Intell.
Transp. Syst., vol. 22, no. 2, pp. 712–733, 2021.

[4] J. Park et al., “Communication-efficient and distributed learning over
wireless networks: Principles and applications,” Proc. IEEE, vol. 109,
no. 5, pp. 796–819, May 2021.

[5] S. Gilroy, E. Jones, and M. Glavin, “Overcoming occlusion in the
automotive environment - A review,” IEEE Trans. Intell. Transp. Syst.,
vol. 22, no. 1, pp. 23–35, 2021.

[6] Y. Jeong and K. Yi, “Target vehicle motion prediction-based motion
planning framework for autonomous driving in uncontrolled intersections,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1, pp. 168–177, 2021.

[7] T. Korssen, V. Dolk, J. van de Mortel-Fronczak, M. Reniers, and
M. Heemels, “Systematic model-based design and implementation of
supervisors for advanced driver assistance systems,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 2, pp. 533–544, Feb. 2018.

[8] W. Zong, C. Zhang, Z. Wang, J. Zhu, and Q. Chen, “Architecture design
and implementation of an autonomous vehicle,” IEEE Access, vol. 6,
pp. 21 956–21 970, Apr. 2018.

[9] B. Xiao, W. Xu, J. Guo, H. Lam, G. Jia, W. Hong, and H. Ren, “Depth
estimation of hard inclusions in soft tissue by autonomous robotic
palpation using deep recurrent neural network,” IEEE Trans. Automation
Sci. Eng., vol. 17, no. 4, pp. 1791–1799, Oct. 2020.

[10] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” arXiv preprint arXiv:1704.03952, 2017.

[11] P. G. Gipps, “A model for the structure of lane-changing decisions,”
Transp. Research Part B: Methodological, vol. 20, no. 5, pp. 403–414,
Oct. 1986.

[12] K. I. Ahmed, “Modeling drivers’ acceleration and lane changing behavior,”
Ph.D. dissertation, Massachusetts Institute of Technology (MIT), 1999.

[13] M. Saad, J. Choi, D. Nyang, J. Kim, and A. Mohaisen, “Toward
characterizing blockchain-based cryptocurrencies for highly accurate
predictions,” IEEE Syst. J., vol. 14, no. 1, pp. 321–332, Mar. 2020.

[14] D. Kim, D. Kwon, L. Park, J. Kim, and S. Cho, “Multiscale LSTM-
based deep learning for very-short-term photovoltaic power generation
forecasting in smart city energy management,” IEEE Syst. J., vol. 15,
no. 1, pp. 346–354, Mar. 2021.

[15] D. Kwon, J. Jeon, S. Park, J. Kim, and S. Cho, “Multiagent DDPG-based
deep learning for smart ocean federated learning IoT networks,” IEEE
Internet Things J., vol. 7, no. 10, pp. 9895–9903, Oct. 2020.

[16] H. Baek et al., “Joint superposition coding and training for federated learn-
ing over multi-width neural networks,” arXiv preprint arXiv:1612.04340,
Dec. 2021.

[17] S. Jung, W. J. Yun, M. Shin, J. Kim, and J.-H. Kim, “Orchestrated
scheduling and multi-agent deep reinforcement learning for cloud-assisted
multi-UAV charging systems,” IEEE Trans. Veh. Technol., vol. 70, no. 6,
pp. 5362–5377, Jun. 2021.

[18] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, pp. 529–533, Feb. 2015.

[19] W. J. Yun, D. Kwon, M. Choi, J. Kim, G. Caire, and A. F. Molisch,
“Quality-aware deep reinforcement learning for streaming in infrastructure-
assisted connected vehicles,” IEEE Trans. Veh. Technol., p. 1, 2022.

[20] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot
et al., “Mastering the game of Go with deep neural networks and tree
search,” Nature, vol. 529, pp. 484–489, Jan. 2016.

[21] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-end
deep reinforcement learning for lane keeping assist,” arXiv preprint
arXiv:1612.04340, Dec. 2016.

[22] C.-J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane change
decision making using deep reinforcement learning,” in Proc. IEEE ITSC,
2018.

[23] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical
decision making for lane changing with deep reinforcement learning,”
in Proc. MLITS, 2017.

[24] Y. Pan et al., “Agile autonomous driving using end-to-end deep imitation
learning,” in Proc. RSS, 2018.

[25] B. Piot, M. Geist, and O. Pietquin, “Bridging the gap between imitation
learning and inverse reinforcement learning,” IEEE Trans. Neural Netw.
Learning Syst., vol. 28, no. 8, pp. 1814–1826, Aug. 2017.

[26] D. Pomerleau, “Rapidly adapting artificial neural networks for au-
tonomous navigation,” in Proc. NIPS, 1991.

[27] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”
in Proc. NIPS, 1989.

[28] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. ICML, 2015, pp. 1889–1897.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
Jul. 2017.

[30] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Proc. AAAI, vol. 32, no. 1,
Feb. 2018.

[31] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibility
of benchmarked deep reinforcement learning tasks for continuous control,”
arXiv preprint arXiv:1708.04133, 2017.

[32] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. Kakade, “Towards
generalization and simplicity in continuous control,” in Proc. NIPS, 2017.

[33] M. Shin and J. Kim, “Adversarial imitation learning via random search,”
in Proc. IEEE IJCNN, 2019.

[34] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. AAAI, 2008.

[35] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. ICML, 2016.

[36] C. Finn, P. Christiano, P. Abbeel, and S. Levine, “A connection between
generative adversarial networks, inverse reinforcement learning, and
energy-based models,” in NIPS Workshop, 2016.

[37] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Proc.
NIPS, 2016.

[38] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, Mar. 2017.

[39] H. Mania, A. Guy, and B. Recht, “Simple random search provides
a competitive approach to reinforcement learning,” arXiv preprint
arXiv:1803.07055, 2018.

[40] M. Choi, A. No, M. Ji, and J. Kim, “Markov decision policies for
dynamic video delivery in wireless caching networks,” IEEE Trans.
Wireless Commun., vol. 18, no. 12, pp. 5705–5718, Dec. 2019.

[41] R. Sutton and A. Barto, Introduction to reinforcement learning, MIT
Press Cambridge, 1998.

[42] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211, Jan. 1999.

[43] D. Michie, M. Bain, and J. Hayes-Miches, “Cognitive models from
subcognitive skills,” IEE Control Engineering Series, vol. 44, pp. 71–99,
1990.

[44] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. ICML, 2000.

[45] Y. Guo, J. Oh, S. Singh, and H. Lee, “Generative adversarial self-imitation
learning,” arXiv preprint arXiv:1812.00950, 2018.

[46] P. Henderson, W.-D. Chang, P.-L. Bacon, D. Meger, J. Pineau, and
D. Precup, “OptionGAN: Learning joint reward-policy options using
generative adversarial inverse reinforcement learning,” in Proc. AAAI,
2018.

[47] J. Matyas, “Random optimization,” Automation Remote Control, vol. 26,
no. 2, pp. 246–253, 1965.

[48] K. Min and H. Kim, “Deep Q-learning based high level driving policy
determination,” in Proc. IEEE IV, 2018.

[49] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson,
“Discriminator-actor-critic: Addressing sample inefficiency and reward
bias in adversarial imitation learning,” in Proc. ICLR, 2019.

[50] X. Mao et al., “Least squares generative adversarial networks,” in Proc.
IEEE ICCV, 2017.

[51] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in Proc. IEEE ICRA, 2018.



W. J. YUN AND M. SHIN et al.: PARALLELIZED AND RANDOMIZED ... 721

Won Joon Yun is currently a Ph.D. student in Elec-
trical and Computer Engineering at Korea University,
Seoul, Republic of Korea, since March 2021, where
he received his B.S. in Electrical Engineering. His
current research interests include multi-agent deep
reinforcement learning for various mobile and net-
work systems. His current research interests include
multi-agent deep reinforcement learning for various
mobile and network systems. He was a recipient of
the Best Paper Awards by KICS (2020–2021) and
IEEE ICOIN Best Paper Award (2021).

MyungJae Shin is currently an AI researcher at
Mofl Inc., Daejeon, Republic of Korea. He received
his B.S. (second highest honor from the College of
Engineering) and M.S. degrees in Computer Science
and Engineering from Chung-Ang University, Seoul,
Korea, in 2018 and 2020, respectively.

His research interests are in various econometric
theories and their deep-learning based computational
solutions. He was a recipient of National Science
& Technology Scholarship (2016–2017) and IEEE
Vehicular Technology Society (VTS) Seoul Chapter

Award (2019).

Soyi Jung has been an Assistant Professor at the
Department of Electrical of Computer Engineering,
Ajou University, Suwon, Republic of Korea, since
September 2022. She also holds a Visiting Scholar
position at Donald Bren School of Information and
Computer Sciences, University of California, Irvine,
CA, USA, from 2021 to 2022. Before joining Ajou
University, she was an Assistant Professor at Hallym
University, Chuncheon, Republic of Korea, from
2021 to 2022. She was a Research Professor at
Korea University, Seoul, Republic of Korea, during

2021.She was also a Researcher at Korea Testing and Research (KTR) Institute,
Gwacheon, Republic of Korea, from 2015 to 2016. She received her B.S.,
M.S., and Ph.D. degrees in Electrical and Computer Engineering from Ajou
University, Suwon, Republic of Korea, in 2013, 2015, and 2021, respectively.
Her current research interests include network optimization for autonomous
vehicles commun., distributed system analysis, big-data processing platforms,
and probabilistic access analysis. She was a Recipient of Best Paper Award by
KICS (2015), Young Women Researcher Award by WISET and KICS (2015),
Bronze Paper Award from IEEE Seoul Section Student Paper Contest (2018),
ICT Paper Contest Award by Electronic Times (2019), and IEEE ICOIN
Best Paper Award (2021). Her current research interests include network
optimization for autonomous vehicles communications, distributed system
analysis, big-data processing platforms, and probabilistic access analysis. She
was a recipient of Best Paper Award by KICS (2015), Young Women Researcher
Award by WISET and KICS (2015), Bronze Paper Award from IEEE Seoul
Section Student Paper Contest (2018), ICT Paper Contest Award by Electronic
Times (2019), and IEEE ICOIN Best Paper Award (2021).

Sean Kwon (S’09-M’14) received his Ph.D. degree
from Georgia Institute of Technology in Atlanta, US
on December 2013. Before that, Dr. Kwon received
the M.Sc degree from the University of Southern
California, Los Angeles, US in 2007; the B.Sc degree
from Yonsei University, Seoul, South Korea in 2001.
He performed research at Intel’s Next Generation and
Standards Division in Communication and Devices
Group during 2015 to 2017, where he contributed to
5G MIMO standards, the associated system design
and patents. He has been Assistant Professor at

California State University Long Beach; and Chief Director/Founder of Wireless
Systems Evolution Laboratory (WiSE Lab) since 2017.

He also conducted postdoctoral research at Wireless Devices and Systems
Group, University of Southern California in 2014 - 2015. He worked on CDMA
common air interface focusing on layer-3 protocols at the R&D Institute of
Pantech co., Ltd, Seoul, South Korea in 2001 to 2004. He was involved in
several projects such as a DARPA project; an US Army Research Lab project;
and 6 mobile-station projects for Motorola and Sprint, which were successfully
on the market. His current research interests are in 5G and beyond-5G wireless
system/network design; satellite communications; polarization diversity and
multiplexing; body area network such as wearable computing; wireless channel
modeling and its applications; and application of machine learning for wireless
communications and signal processing.

He was a recipient of 3 Best Paper Awards from IEEE Green Energy and
Smart Systems Conference (IGESSC), 2018, 2019 and 2020.

Joongheon Kim (M’06–SM’18) has been with Korea
University, Seoul, Korea, since September 2019, and
he is currently an Associate Professor at the School
of Electrical Engineering. He is also a vice director
of the Artificial Intelligence Engineering Research
Center at Korea University, Seoul, Korea. He received
the B.S. and M.S. degrees in Computer Science and
Engineering from Korea University, Seoul, Korea, in
2004 and 2006, respectively; and the Ph.D. degree
in computer science from the University of Southern
California (USC), Los Angeles, California, USA, in

2014. Before joining Korea University, he was with LG Electronics CTO
Office, Seoul, Korea, from 2006 to 2009; InterDigital, San Diego, California,
USA, in 2012; Intel Corporation, Santa Clara in Silicon Valley, California,
USA, from 2013 to 2016; and Chung-Ang University, Seoul, Korea, from
2016 to 2019.

He is a Senior Member of the IEEE and serves as an Associate/Guest
Editor for IEEE Transactions on Vehicular Technology, IEEE Communications
Standards Magazine, and Computer Networks (Elsevier). He is also a
distinguished lecturer for IEEE Communications Society (2022–2023).

He was a Recipient of the Annenberg Graduate Fellowship with his Ph.D.
admission from USC (2009), Intel Corporation Next Generation and Standards
(NGS) Division Recognition Award (2015), IEEE Seoul Section Student Paper
Contest Awards (2019 and 2020), IEEE Systems Journal Best Paper Award
(2020), IEEE MMTC Outstanding Young Researcher Award (2020), IEEE
ICOIN Best Paper Award (2021), and IEEE Vehicular Technology Society
(VTS) Seoul Chapter Awards (2019 and 2021).


