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Machine Learning in Measurement
Part 2: Uncertainty Quantification
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I n spite of the advent of Machine Learning (ML) and its 
successful deployment in measurement systems, little in-
formation can be found in the literature about uncertainty 

quantification in these systems [1]. Uncertainty is crucial for the 
adoption of ML in commercial products and services. Designers 
are now being encouraged to be upfront about the uncertainty in 
their ML systems, because products that specify their uncertainty 
can have a significant competitive advantage and can unlock 
new value, reduce risk, and improve usability [2]. In this article, 
we will describe uncertainty quantification in ML. Because there 
isn’t enough room in one article to explain all ML methods, we 
concentrate on Deep Learning (DL), which is one of the most pop-
ular and effective ML methods in I&M [3]. Please note that this 
article follows and uses concepts from Part 1 [4], so readers are 
highly encouraged to first read that part. In addition, we assume 
the reader has a basic understanding of both DL and uncertainty. 
Readers for whom this assumption is false are encouraged to first 
read the brief introduction to DL and its applications in I&M pre-
sented in [3] as well as the uncertainty tutorial in [5].

Researchers have always understood that the reliability 
of predictions made by a DL model varies depending on the 
input; i.e., the DL model does not exhibit the same constant per-
formance for different regions in the input space. Uncertainty 
can be used to quantify that, and this is beginning to gain at-
tention and will undoubtedly continue to evolve in the coming 
years. In Part 1, we mentioned that variable-output ML models 
have randomness in their output. In ML literature, the variance 
of outputs is used as a measure of uncertainty, which is similar 
to Type A standard uncertainty in GUM [6] except that the latter 
uses the standard deviation; i.e., the square root of the variance, 
and not the variance itself. Please keep this small but important 
difference in mind when reading the sections below, and let 
us now see how an ML model can produce randomness, start-
ing with an explanation of the concept of Monte Carlo Dropout 
which is used by most variable-output ML models.

Monte Carlo Dropout
Monte Carlo dropout uses the standard dropout approach, 
that was originally proposed for regularization (i.e., reducing 

overfitting), to estimate the ML uncertainty. So, let’s first see 
how this dropout works.

Dropout
Deep Artificial Neural Networks (ANNs) tend to overfit the 
training data. This problem is exacerbated if the training 
dataset is small and/or the model is complex. Bagging is an en-
semble training technique that can reduce overfitting [7]. The 
larger the ensemble, the less likely overfitting would occur. In 
fact, it is common to use an ensemble of up to ten models to 
achieve satisfactory results [8]. However, training an ensemble 
of ANNs can be tedious while the resulting ensemble is evi-
dently more complex compared to a single model. Dropout [8] 
is a technique that produces similar results to bagging without 
increasing training time or the complexity of the model. Drop-
out trains subnetworks that are formed by randomly dropping 
nodes from the neural network’s non-output layers accord-
ing to a predefined probability. Hence, at each learning step, 
the output of each network node is multiplied by a Bernoulli 
distributed random variable. This is analogous to simultane-
ously training an exponentially large number of related ANNs. 
When dropout is used strictly for regularization, it is applied 
only during training. Once the network is trained, all network 
nodes are subsequently used for prediction.

Applying Dropout at Run Time
To estimate the ML uncertainty, the Monte Carlo Dropout ap-
proach stipulates the application of dropout during not only 
training but also run time. This introduces a degree of ran-
domness into the prediction process. Hence, the network can 
produce different outputs for the same input depending on 
the nodes that are randomly cancelled out. Therefore, this re-
sults in a variable-output ML model. When dropout is applied 
at run time, the input can be applied to the model several 
times. Each time, the input is processed by a slightly differ-
ent network as the dropout cancels some nodes according to 
a predefined probability. The set of predictions allow us to es-
timate an output distribution that renders information about 
uncertainty.
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For simplicity, let’s consider a network with a single hidden 
layer. We obtain the model’s predictions as follows:
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where f̂  is the ANN model trained with the dataset, x is the 
input vector, g is the activation function, K1 is the number of 
nodes at layer 1 (hidden layer), Z1 and Z2 are the dropout ma-
trices, W1 and W2 are the weight matrices, and b1 and b2 are the 
bias vectors for layers 1 and 2. In fact, Z1 and Z2 are diagonal 
matrices with values sampled from a Bernoulli distribution 
according to a predefined dropout probability along the diag-
onal. Multiplying by the dropout matrices cancels certain rows 
in the weight matrix which is analogous to removing a node 
from the network during a forward pass.

Given that T evaluations are performed on an input, the 
prediction and its uncertainty are obtained as the mean and 
variance:
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Given that the Monte Carlo Dropout method allows us 
to realize a variable-output ML model, (3) estimates the ML 
uncertainty as defined in Table 2 of [4] (recall that the I&M un-
certainty is the square root of that; i.e., the standard deviation). 
As opposed to the variance presented in (3), we calculate the 
variance on the output of the T predictions produced by the 
slightly different models generated through dropout in (3) 
(Fig. 1).

Although each input evaluation requires T forward passes 
through the model during prediction, the training process 
remains unchanged. To train the model, we use a gradient 
descent approach while re-populating the dropout diagonal 
matrices at every training step. If we consider a Euclidean loss, 
then the loss function can be expressed as:
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where  ˆ
if x  is the estimation output for input xi, yi is the true 

value at observation i, N is the number of instances in the 

Fig. 1. T slightly different models are generated by the dropout process. Each model evaluates the same input and produces its output. The mean of the outputs 
corresponds to the prediction, and the variance corresponds to the uncertainty.
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training batch, λ is the decay factor used for regularization, pd 
is the dropout probability, and L is the number of layers. The 
dropout probability in (4) scales the weight matrices to correct 
for the rows removed through the dropout process.

Monte Carlo Batch Normalization
The Monte Carlo dropout approach can be shown to esti-
mate a Bayesian model where ML uncertainty is estimated as 
the variance of multiple predictions [9]. Hence, this approach 
introduces stochasticity into the network that permits the es-
timation of uncertainty. Inspired by this approach, Teye et al. 
[10] noticed that batch normalization, a technique that reduces 
training time [11], has a regularization effect that introduces 
randomness as well, a property that makes such network 
useful for uncertainty estimation. The idea in batch normal-
ization is to normalize the output of neurons in hidden layers 
on a mini batch of the training samples during training by 
subtracting from the batch’s mean and dividing by its stan-
dard deviation. The weights are updated for every mini batch 
during training. At run time, the output of neurons in hidden 
layers is subtracted from the training set’s mean and divided 
by its standard deviation. They argue that such normalization 
reduces the covariate shift in the output of the hidden layers. 
However, more recent research suggests that batch normal-
ization renders the optimization landscape traversed during 
gradient descent smoother [12]. Hence, the optimization pro-
cess is less likely to linger in somewhat flat areas that increase 
training time. Given that mini batches are randomly chosen 
during training, batch normalization introduces stochastic-
ity that results in regularizing the network. However, batch 
normalization is seldom employed as the sole regularization 
approach and is often combined with dropout. By combining 
both approaches, we can afford to reduce the probability of 
dropping out nodes in the network as dropout is also not the 
sole regularization approach employed.

Teye et al. [10] show that similar to Monte Carlo dropout, 
a network trained with batch normalization approximates a 
Bayesian model. For prediction, the input is evaluated several 
times, hence resulting in a variable-output ML model which en-
ables the estimation of uncertainty as described in Table 2 of 
[4]. However, the run time normalization is not performed us-
ing training set probability distribution parameters (mean and 
standard deviation). It is performed using the stochastic pa-
rameters of a randomly sampled mini-batch. Similar to the 
Monte Carlo dropout, this results in output variability that en-
ables the estimation of the uncertainty.

Deep Ensembles
Deep Ensembles [13] refers to a technique that permits the es-
timation of two types of uncertainties: epistemic and aleatoric 
uncertainty. As mentioned in Table 2 of [4], aleatoric uncer-
tainty is associated with randomness in the training data while 
the epistemic uncertainty relates to the model uncertainty re-
sulting from a lack of correct training data in some areas of 
the input space. This is shown in Fig. 2, where region A has 
a higher aleatoric uncertainty compared to regions B and C, 

due to the larger variance in A’s data noise. Region B and C 
have about the same aleatoric uncertainty as each other, al-
though region B has a higher epistemic uncertainty because 
its data seems to have a systematic offset. Finally, region D has 
the highest epistemic uncertainty because its data are missing. 
In Deep Ensembles, the ANN model is trained to approximate 
the epistemic uncertainty as part of its output (see “ANN with 
Uncertainty Output” section). Moreover, the aleatoric uncer-
tainty is estimated through the use of an ensemble of similar 
models making predictions on the same input (see “Deep 
Ensemble Dropout” section). The approach further applies ad-
versarial training to improve model performance.

ANN with Uncertainty Output
Lakshminarayanan et al. [13] propose an elegant approach 
that incorporates the uncertainty into the output of the ANN. 
Hence, given an input x, instead of predicting an output, the 
ANN outputs a predictive distribution  p̂ x  (Fig. 3b). The goal 
of the training process is to find the parameters of the predic-
tive distribution which fully describe the ANN’s prediction 
along with its associated uncertainty.

For regression, the network parameters are usually trained 
through the minimization of a Mean Square Error (MSE) loss 
function. Nonetheless, this allows the ANN to predict the 
output without any regard to the probabilistic distribution as-
sociated with it. If the ANN needs to output the parameters of 
a predictive distribution, then the loss must incorporate these 
parameters so that they can affect the ANN’s weight optimi-
zation process achieved through gradient descent. Therefore, 
Lakshminarayanan et al. [13] propose a negative log-likeli-
hood loss expressed in terms of a normal distribution, as it 
is assumed that the observation is sampled from a Gaussian 
distribution:
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where c corresponds to all constant terms that do not affect 
the loss minimization process, and Mean(x) is the mean and 
Variance(x) is the variance (i.e., ML uncertainty) associated 
with the Gaussian distribution of the prediction for input 

Fig. 2. Uncertainty in the training dataset. Region A has the highest aleatoric 
uncertainty, while region D has the highest epistemic uncertainty.
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x. The log-likelihood function enables the calculation of the 
most likely parameters or maximum-likelihood of the joint 
probability of independent events. Given that observations 
are assumed to be independent, the maximum-likelihood 
reflects the most likely probabilistic distribution the obser-
vations were sampled from. The log-likelihood simplifies the 
estimation of the maximum-likelihood parameters as their cal-
culation requires a differentiation that is difficult to compute. 
In (5), the second term produces high loss values if the differ-
ence between the estimated mean and the observation is large, 
which pressures the network to adjust the weights to reduce 
this difference. However, when this difference cannot be fur-
ther reduced, then the variance in the denominator increases 
to compensate and reduce the loss.

Adversarial Training
Researchers have remarked that ANNs can produce widely 
divergent predictions for very similar inputs. For instance, ob-
jects appearing in nearly identical images may be differently 
classified. Hence, Szegedy et al. [14] proposed augmenting 
the training data with examples that are close to those in the 
training data to address this issue. These are called adversarial 
examples and are chosen strategically to be similar to exam-
ples from the training data yet result in increasing the loss 
during training. To this end, Goodfellow et al. [15] introduced 
the fast gradient sign method as a computationally fast ap-
proach to generate adversarial examples. Lakshminarayanan 
et al. [13] propose incorporating adversarial training into their 
probabilistic distribution prediction approach. They posit that 
adversarial training improves the predictive accuracy of their 
method.

Deep Ensemble Dropout
Ensemble learning involves training multiple models on the 
training dataset to improve predictive accuracy and in some 
cases reduce overfitting. At run time, the results of these 
models are fused using a variety of schemes. In addition to 

adversarial training, Lakshminarayanan et al. [13] propose 
using ensemble learning to further improve uncertainty 
estimation. To evaluate an input, every member of the en-
semble makes a prediction. All predictions are averaged to 
obtain a Gaussian mixture distribution (given that every 
member predicts a Gaussian distribution). This results in a 
variable-output ML model where each member of the ensemble 
produces a Gaussian distribution (  p̂ x ). Hence, the alea-
toric uncertainty is estimated as the average of all variance 
values estimated by the members of the ensemble. The epis-
temic uncertainty corresponds to the variance in the means 
estimated by every member of the ensemble. Both compo-
nents can be combined to produce an overall estimation of 
the model’s uncertainty.

Dropout Ensemble
Bachstein [16] presents an approach that combines aspects of 
the Monte Carlo dropout and deep ensemble methods. Just 
like the deep ensemble method, Bachstein proposes to mod-
ify ANNs to predict probabilistic distributions, and uses the 
negative log-likelihood as a loss function. However, instead 
of using adversarial training, the proposed approach relies on 
dropout to build in robustness into the network.

Uncertainty Estimation without Re-
Training
The methods surveyed above require modification to the 
ANN design and/or training process. However, in practice 
there are many instances when developers employ pre-
trained networks for classification or regression tasks. These 
networks are typically trained on large datasets, and their 
retraining may require vast computational resources and ac-
cess to the training data, which is not always possible. For 
this purpose, Mi et al. [17] introduce an approach for un-
certainty estimation on pre-trained networks that were not 
designed and/or trained with uncertainty approximation in 
mind. They define two scenarios: black-box and gray-box un-
certainty estimation. In the black-box scenario, the developer 
has access to the trained model which however is impractical 
to modify or retrain. In the gray-box scenario, the developer 
has access to intermediate layers in the network but is un-
able to modify the weights by retraining. In the latter case, 
Mi et al. access feature maps produced by the layers of Con-
volutional Neural Networks (CNNs). CNNs can automate 
the process of feature engineering by automatically extract-
ing useful features for a particular regression or classification 
task. Hence, the network learns which features are impor-
tant for the problem in question through the training process. 
The feature extraction process is performed progressively 
through multiple convolutional layers. The output of each 
convolutional layer corresponds to features deemed useful 
through the training process. While the early layers produce 
general features that may generally be applicable to numer-
ous tasks, the last layers generate specific features that are 
optimized for the problem under consideration. To estimate 
uncertainty, Mi et al. [17] impose tolerable perturbation on the 

Fig. 3. (a) Typical ANN model that produces a single prediction for an input. 
(b) ANN model as proposed by Lakshminarayanan et al. [13] that produces a 
probability distribution for an input.
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input for the black-box scenario or feature maps for the gray-
box scenario. This technique bears similarities to adversarial 
training. However, instead of attempting to identify slightly 
different inputs that result in a large loss, they perform trans-
formations on the inputs that only marginally modify the 
model’s behavior.

In their study, Mi et al. [17] consider image processing re-
gression tasks. Hence, they apply input transformations on the 
images that do not drastically affect the behavior of the model. 
For instance, CNNs tolerate image transformations such as 
rotations and flips. Therefore, these are the tolerable pertur-
bations they consider. They were able to achieve uncertainty 
estimates that are comparable to those produced by the Monte-
Carlo dropout method.

For the gray-box scenario, perturbations are not directly in-
troduced at the input level. Instead, they are applied to feature 
maps. Hence, they apply evenly distributed Gaussian noise 
to feature maps to introduce tolerable perturbation. The noise 
is randomly sampled at run time to induce a different output 
upon repeating execution of the model on the same inputs. 
Moreover, they propose a dropout approach where features 
are randomly dropped from the feature maps. Intermediate 
layers of CNNs often carry redundant information, hence ap-
plying dropout introduces stochasticity without drastically 
changing the model’s behavior. The ML uncertainty is calcu-
lated for both scenarios from the variance in the output that 
results from introducing perturbation to the inputs or feature 
maps.

Conclusion
The use of ML in I&M will only increase with the advent 
of the former. It is therefore crucial to understand how ML 
contributes to measurement error and how to quantify its as-
sociated uncertainty. The latter subject has only recently been 
studied and needs more investigation to provide sufficient 
confidence in future ML-based measurement instruments 
and methods.
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