
May 2021	 IEEE Instrumentation & Measurement Magazine	 23
1094-6969/21/$25.00©2021IEEE

Machine Learning in Measurement
Part 2: Uncertainty Quantification

Hussein Al Osman and Shervin Shirmohammadi

I n spite of the advent of Machine Learning (ML) and its
successful deployment in measurement systems, little in-
formation can be found in the literature about uncertainty

quantification in these systems [1]. Uncertainty is crucial for the
adoption of ML in commercial products and services. Designers
are now being encouraged to be upfront about the uncertainty in
their ML systems, because products that specify their uncertainty
can have a significant competitive advantage and can unlock
new value, reduce risk, and improve usability [2]. In this article,
we will describe uncertainty quantification in ML. Because there
isn’t enough room in one article to explain all ML methods, we
concentrate on Deep Learning (DL), which is one of the most pop-
ular and effective ML methods in I&M [3]. Please note that this
article follows and uses concepts from Part 1 [4], so readers are
highly encouraged to first read that part. In addition, we assume
the reader has a basic understanding of both DL and uncertainty.
Readers for whom this assumption is false are encouraged to first
read the brief introduction to DL and its applications in I&M pre-
sented in [3] as well as the uncertainty tutorial in [5].

Researchers have always understood that the reliability
of predictions made by a DL model varies depending on the
input; i.e., the DL model does not exhibit the same constant per-
formance for different regions in the input space. Uncertainty
can be used to quantify that, and this is beginning to gain at-
tention and will undoubtedly continue to evolve in the coming
years. In Part 1, we mentioned that variable-output ML models
have randomness in their output. In ML literature, the variance
of outputs is used as a measure of uncertainty, which is similar
to Type A standard uncertainty in GUM [6] except that the latter
uses the standard deviation; i.e., the square root of the variance,
and not the variance itself. Please keep this small but important
difference in mind when reading the sections below, and let
us now see how an ML model can produce randomness, start-
ing with an explanation of the concept of Monte Carlo Dropout
which is used by most variable-output ML models.

Monte Carlo Dropout
Monte Carlo dropout uses the standard dropout approach,
that was originally proposed for regularization (i.e., reducing

overfitting), to estimate the ML uncertainty. So, let’s first see
how this dropout works.

Dropout
Deep Artificial Neural Networks (ANNs) tend to overfit the
training data. This problem is exacerbated if the training
dataset is small and/or the model is complex. Bagging is an en-
semble training technique that can reduce overfitting [7]. The
larger the ensemble, the less likely overfitting would occur. In
fact, it is common to use an ensemble of up to ten models to
achieve satisfactory results [8]. However, training an ensemble
of ANNs can be tedious while the resulting ensemble is evi-
dently more complex compared to a single model. Dropout [8]
is a technique that produces similar results to bagging without
increasing training time or the complexity of the model. Drop-
out trains subnetworks that are formed by randomly dropping
nodes from the neural network’s non-output layers accord-
ing to a predefined probability. Hence, at each learning step,
the output of each network node is multiplied by a Bernoulli
distributed random variable. This is analogous to simultane-
ously training an exponentially large number of related ANNs.
When dropout is used strictly for regularization, it is applied
only during training. Once the network is trained, all network
nodes are subsequently used for prediction.

Applying Dropout at Run Time
To estimate the ML uncertainty, the Monte Carlo Dropout ap-
proach stipulates the application of dropout during not only
training but also run time. This introduces a degree of ran-
domness into the prediction process. Hence, the network can
produce different outputs for the same input depending on
the nodes that are randomly cancelled out. Therefore, this re-
sults in a variable-output ML model. When dropout is applied
at run time, the input can be applied to the model several
times. Each time, the input is processed by a slightly differ-
ent network as the dropout cancels some nodes according to
a predefined probability. The set of predictions allow us to es-
timate an output distribution that renders information about
uncertainty.

24	 IEEE Instrumentation & Measurement Magazine	 May 2021

For simplicity, let’s consider a network with a single hidden
layer. We obtain the model’s predictions as follows:

	    1 1 1 2 2 2
1

ˆ 1f x g xZ W b Z W b
K

   	 (1)

where f̂ is the ANN model trained with the dataset, x is the
input vector, g is the activation function, K1 is the number of
nodes at layer 1 (hidden layer), Z1 and Z2 are the dropout ma-
trices, W1 and W2 are the weight matrices, and b1 and b2 are the
bias vectors for layers 1 and 2. In fact, Z1 and Z2 are diagonal
matrices with values sampled from a Bernoulli distribution
according to a predefined dropout probability along the diag-
onal. Multiplying by the dropout matrices cancels certain rows
in the weight matrix which is analogous to removing a node
from the network during a forward pass.

Given that T evaluations are performed on an input, the
prediction and its uncertainty are obtained as the mean and
variance:

	   


 
1

1 T

i
i

Mean f x
T

	 (2)

	      


 
2

1

1 T

i
i

Variance f x E x
T

	 (3)

Given that the Monte Carlo Dropout method allows us
to realize a variable-output ML model, (3) estimates the ML
uncertainty as defined in Table 2 of [4] (recall that the I&M un-
certainty is the square root of that; i.e., the standard deviation).
As opposed to the variance presented in (3), we calculate the
variance on the output of the T predictions produced by the
slightly different models generated through dropout in (3)
(Fig. 1).

Although each input evaluation requires T forward passes
through the model during prediction, the training process
remains unchanged. To train the model, we use a gradient
descent approach while re-populating the dropout diagonal
matrices at every training step. If we consider a Euclidean loss,
then the loss function can be expressed as:

	    2 2 2

2 2
1 1

ˆ1 N L

i i d l l
i l

Loss f x y p W b
N


 

     	 (4)

where  ˆ
if x is the estimation output for input xi, yi is the true

value at observation i, N is the number of instances in the

Fig. 1. T slightly different models are generated by the dropout process. Each model evaluates the same input and produces its output. The mean of the outputs
corresponds to the prediction, and the variance corresponds to the uncertainty.

May 2021	 IEEE Instrumentation & Measurement Magazine	 25

training batch, λ is the decay factor used for regularization, pd
is the dropout probability, and L is the number of layers. The
dropout probability in (4) scales the weight matrices to correct
for the rows removed through the dropout process.

Monte Carlo Batch Normalization
The Monte Carlo dropout approach can be shown to esti-
mate a Bayesian model where ML uncertainty is estimated as
the variance of multiple predictions [9]. Hence, this approach
introduces stochasticity into the network that permits the es-
timation of uncertainty. Inspired by this approach, Teye et al.
[10] noticed that batch normalization, a technique that reduces
training time [11], has a regularization effect that introduces
randomness as well, a property that makes such network
useful for uncertainty estimation. The idea in batch normal-
ization is to normalize the output of neurons in hidden layers
on a mini batch of the training samples during training by
subtracting from the batch’s mean and dividing by its stan-
dard deviation. The weights are updated for every mini batch
during training. At run time, the output of neurons in hidden
layers is subtracted from the training set’s mean and divided
by its standard deviation. They argue that such normalization
reduces the covariate shift in the output of the hidden layers.
However, more recent research suggests that batch normal-
ization renders the optimization landscape traversed during
gradient descent smoother [12]. Hence, the optimization pro-
cess is less likely to linger in somewhat flat areas that increase
training time. Given that mini batches are randomly chosen
during training, batch normalization introduces stochastic-
ity that results in regularizing the network. However, batch
normalization is seldom employed as the sole regularization
approach and is often combined with dropout. By combining
both approaches, we can afford to reduce the probability of
dropping out nodes in the network as dropout is also not the
sole regularization approach employed.

Teye et al. [10] show that similar to Monte Carlo dropout,
a network trained with batch normalization approximates a
Bayesian model. For prediction, the input is evaluated several
times, hence resulting in a variable-output ML model which en-
ables the estimation of uncertainty as described in Table 2 of
[4]. However, the run time normalization is not performed us-
ing training set probability distribution parameters (mean and
standard deviation). It is performed using the stochastic pa-
rameters of a randomly sampled mini-batch. Similar to the
Monte Carlo dropout, this results in output variability that en-
ables the estimation of the uncertainty.

Deep Ensembles
Deep Ensembles [13] refers to a technique that permits the es-
timation of two types of uncertainties: epistemic and aleatoric
uncertainty. As mentioned in Table 2 of [4], aleatoric uncer-
tainty is associated with randomness in the training data while
the epistemic uncertainty relates to the model uncertainty re-
sulting from a lack of correct training data in some areas of
the input space. This is shown in Fig. 2, where region A has
a higher aleatoric uncertainty compared to regions B and C,

due to the larger variance in A’s data noise. Region B and C
have about the same aleatoric uncertainty as each other, al-
though region B has a higher epistemic uncertainty because
its data seems to have a systematic offset. Finally, region D has
the highest epistemic uncertainty because its data are missing.
In Deep Ensembles, the ANN model is trained to approximate
the epistemic uncertainty as part of its output (see “ANN with
Uncertainty Output” section). Moreover, the aleatoric uncer-
tainty is estimated through the use of an ensemble of similar
models making predictions on the same input (see “Deep
Ensemble Dropout” section). The approach further applies ad-
versarial training to improve model performance.

ANN with Uncertainty Output
Lakshminarayanan et al. [13] propose an elegant approach
that incorporates the uncertainty into the output of the ANN.
Hence, given an input x, instead of predicting an output, the
ANN outputs a predictive distribution  p̂ x (Fig. 3b). The goal
of the training process is to find the parameters of the predic-
tive distribution which fully describe the ANN’s prediction
along with its associated uncertainty.

For regression, the network parameters are usually trained
through the minimization of a Mean Square Error (MSE) loss
function. Nonetheless, this allows the ANN to predict the
output without any regard to the probabilistic distribution as-
sociated with it. If the ANN needs to output the parameters of
a predictive distribution, then the loss must incorporate these
parameters so that they can affect the ANN’s weight optimi-
zation process achieved through gradient descent. Therefore,
Lakshminarayanan et al. [13] propose a negative log-likeli-
hood loss expressed in terms of a normal distribution, as it
is assumed that the observation is sampled from a Gaussian
distribution:

	
     

 

2
log Mean

2 2 Variance

Variance x y x
Loss c

x


   


	 (5)

where c corresponds to all constant terms that do not affect
the loss minimization process, and Mean(x) is the mean and
Variance(x) is the variance (i.e., ML uncertainty) associated
with the Gaussian distribution of the prediction for input

Fig. 2. Uncertainty in the training dataset. Region A has the highest aleatoric
uncertainty, while region D has the highest epistemic uncertainty.

26	 IEEE Instrumentation & Measurement Magazine	 May 2021

x. The log-likelihood function enables the calculation of the
most likely parameters or maximum-likelihood of the joint
probability of independent events. Given that observations
are assumed to be independent, the maximum-likelihood
reflects the most likely probabilistic distribution the obser-
vations were sampled from. The log-likelihood simplifies the
estimation of the maximum-likelihood parameters as their cal-
culation requires a differentiation that is difficult to compute.
In (5), the second term produces high loss values if the differ-
ence between the estimated mean and the observation is large,
which pressures the network to adjust the weights to reduce
this difference. However, when this difference cannot be fur-
ther reduced, then the variance in the denominator increases
to compensate and reduce the loss.

Adversarial Training
Researchers have remarked that ANNs can produce widely
divergent predictions for very similar inputs. For instance, ob-
jects appearing in nearly identical images may be differently
classified. Hence, Szegedy et al. [14] proposed augmenting
the training data with examples that are close to those in the
training data to address this issue. These are called adversarial
examples and are chosen strategically to be similar to exam-
ples from the training data yet result in increasing the loss
during training. To this end, Goodfellow et al. [15] introduced
the fast gradient sign method as a computationally fast ap-
proach to generate adversarial examples. Lakshminarayanan
et al. [13] propose incorporating adversarial training into their
probabilistic distribution prediction approach. They posit that
adversarial training improves the predictive accuracy of their
method.

Deep Ensemble Dropout
Ensemble learning involves training multiple models on the
training dataset to improve predictive accuracy and in some
cases reduce overfitting. At run time, the results of these
models are fused using a variety of schemes. In addition to

adversarial training, Lakshminarayanan et al. [13] propose
using ensemble learning to further improve uncertainty
estimation. To evaluate an input, every member of the en-
semble makes a prediction. All predictions are averaged to
obtain a Gaussian mixture distribution (given that every
member predicts a Gaussian distribution). This results in a
variable-output ML model where each member of the ensemble
produces a Gaussian distribution ( p̂ x). Hence, the alea-
toric uncertainty is estimated as the average of all variance
values estimated by the members of the ensemble. The epis-
temic uncertainty corresponds to the variance in the means
estimated by every member of the ensemble. Both compo-
nents can be combined to produce an overall estimation of
the model’s uncertainty.

Dropout Ensemble
Bachstein [16] presents an approach that combines aspects of
the Monte Carlo dropout and deep ensemble methods. Just
like the deep ensemble method, Bachstein proposes to mod-
ify ANNs to predict probabilistic distributions, and uses the
negative log-likelihood as a loss function. However, instead
of using adversarial training, the proposed approach relies on
dropout to build in robustness into the network.

Uncertainty Estimation without Re-
Training
The methods surveyed above require modification to the
ANN design and/or training process. However, in practice
there are many instances when developers employ pre-
trained networks for classification or regression tasks. These
networks are typically trained on large datasets, and their
retraining may require vast computational resources and ac-
cess to the training data, which is not always possible. For
this purpose, Mi et al. [17] introduce an approach for un-
certainty estimation on pre-trained networks that were not
designed and/or trained with uncertainty approximation in
mind. They define two scenarios: black-box and gray-box un-
certainty estimation. In the black-box scenario, the developer
has access to the trained model which however is impractical
to modify or retrain. In the gray-box scenario, the developer
has access to intermediate layers in the network but is un-
able to modify the weights by retraining. In the latter case,
Mi et al. access feature maps produced by the layers of Con-
volutional Neural Networks (CNNs). CNNs can automate
the process of feature engineering by automatically extract-
ing useful features for a particular regression or classification
task. Hence, the network learns which features are impor-
tant for the problem in question through the training process.
The feature extraction process is performed progressively
through multiple convolutional layers. The output of each
convolutional layer corresponds to features deemed useful
through the training process. While the early layers produce
general features that may generally be applicable to numer-
ous tasks, the last layers generate specific features that are
optimized for the problem under consideration. To estimate
uncertainty, Mi et al. [17] impose tolerable perturbation on the

Fig. 3. (a) Typical ANN model that produces a single prediction for an input.
(b) ANN model as proposed by Lakshminarayanan et al. [13] that produces a
probability distribution for an input.

May 2021	 IEEE Instrumentation & Measurement Magazine	 27

input for the black-box scenario or feature maps for the gray-
box scenario. This technique bears similarities to adversarial
training. However, instead of attempting to identify slightly
different inputs that result in a large loss, they perform trans-
formations on the inputs that only marginally modify the
model’s behavior.

In their study, Mi et al. [17] consider image processing re-
gression tasks. Hence, they apply input transformations on the
images that do not drastically affect the behavior of the model.
For instance, CNNs tolerate image transformations such as
rotations and flips. Therefore, these are the tolerable pertur-
bations they consider. They were able to achieve uncertainty
estimates that are comparable to those produced by the Monte-
Carlo dropout method.

For the gray-box scenario, perturbations are not directly in-
troduced at the input level. Instead, they are applied to feature
maps. Hence, they apply evenly distributed Gaussian noise
to feature maps to introduce tolerable perturbation. The noise
is randomly sampled at run time to induce a different output
upon repeating execution of the model on the same inputs.
Moreover, they propose a dropout approach where features
are randomly dropped from the feature maps. Intermediate
layers of CNNs often carry redundant information, hence ap-
plying dropout introduces stochasticity without drastically
changing the model’s behavior. The ML uncertainty is calcu-
lated for both scenarios from the variance in the output that
results from introducing perturbation to the inputs or feature
maps.

Conclusion
The use of ML in I&M will only increase with the advent
of the former. It is therefore crucial to understand how ML
contributes to measurement error and how to quantify its as-
sociated uncertainty. The latter subject has only recently been
studied and needs more investigation to provide sufficient
confidence in future ML-based measurement instruments
and methods.

References
[1]	 M. Vallejo, C. de la Espriella, J. Gómez-Santamaría, A. F. Ramírez-

Barrera, and E. Delgado-Trejos, “Soft metrology based on

machine learning: a review,” Meas. Sci Technol., vol. 31, no. 3, Mar.

2020.

[2]	 M. Myslín, “Machine learning has uncertainty. design for it,”

Towards Data Science, Mar. 16, 2020. [Online]. Available:

https://towardsdatascience.com/machine-learning-has-

uncertainty-design-for-it-f015a249a444.

[3]	 M. Khanafer and S. Shirmohammadi, “Applied AI in

instrumentation and measurement: the deep learning

revolution,” IEEE Instrum. Meas. Mag., vol. 23, no. 6, Sep. 2020.

[4]	 S. Shirmohammadi and H. Al Osman, “Machine learning

in measurement, part 1: error contribution and terminology

confusion,” IEEE Instrum. Meas. Mag., vol. 24, no. 2, 2021.

[5]	 A. Ferrero and S. Salicone, “Measurement uncertainty,” IEEE

Instrum. Meas. Mag., vol. 9, no. 3, pp. 44-51, Jun. 2006.

[6]	 JCGM 100:2008, Evaluation of measurement data – Guide to the

expression of uncertainty in measurement, (GUM 1995 with minor

corrections), Joint Committee for Guides in Metrology, 2008.

[7]	 L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, pp. 123-

140, 1996.

[8]	 C. Szegedy et al., “Going deeper with convolutions,” in Proc. 2015

IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2015.

[9]	 Y. Gal and Z. Ghahramani, “Dropout as a Bayesian

approximation: representing model uncertainty in deep

learning,” in Proc. Int. Conf. Int. Conf. Mach. Learn., pp. 1050-1059,

2016.

[10]	M. Teye, H. Azizpour, and K. Smith, “Bayesian uncertainty

estimation for batch normalized deep networks,” in Proc. Int.

Conf. Mach. Learn., pp. 4907-4916, 2018.

[11]	S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep

network training by reducing internal covariate shift,” in Proc. Int.

Conf. Mach. Learn., pp. 448-456, 2015.

[12]	S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does

batch normalization help optimization?” Advances in Neural Info.

Processing Sys., pp. 2483-2493, 2018.

[13]	B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple

and scalable predictive uncertainty estimation using deep

ensembles,” Advances in Neural Info. Processing Sys., pp. 6402-6413,

2017.

[14]	C. Szegedy et al., “Intriguing properties of neural networks,” in

Proc. Int. Conf. Learning Representations, 2014.

[15]	I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining

and harnessing adversarial examples,” arXiv preprint

arXiv:1412.6572, 2015.

[16]	S. Bachstein, “Uncertainty Quantification in Deep Learning,”

Master’s thesis, Universitat Ulm, 2019.

[17]	L. Mi, H. Wang, Y. Tian, and N. Shavit, “Training-free uncertainty

estimation for neural networks,” arXiv preprint arXiv:1910.04858,

2019.

Hussein Al Osman (M’12) (Hussein.AlOsman@uottawa.ca)
is currently an Associate Professor with the School of Electri-
cal Engineering and Computer Science, University of Ottawa,
Canada, where he directs the Multimedia Processing and In-
teraction Group and his research focuses on novel ideas in the
realm of Human Computer Interaction, with particular atten-
tion to Applied AI. He received the Ph.D. degree in electrical
engineering from the University of Ottawa in 2014.

Shervin Shirmohammadi (M ’04, SM ’04, F ’17) (shervin@ieee.
org) is currently a Professor with the School of Electrical Engi-
neering and Computer Science, University of Ottawa, Canada,
where he is Director of the Distributed and Collaborative
Virtual Environment Research Laboratory and his research
focuses on multimedia systems and networks, including mea-
surement techniques and applied AI for networking, video
streaming, and health systems. He received his Ph.D. degree in
electrical engineering from University of Ottawa, Canada and
currently serves as the Editor-in-Chief of IEEE Transactions on
Instrumentation and Measurement.

