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T his paper aims at describing the ways in which un-
certainty is (or is not) measured in the field of forensic 
science and how the measure of uncertainty can be 

used to make better judicial decisions. From the traditional fin-
gerprint comparison to the latest advances in forensic DNA 
analysis, we discuss the advantages and drawbacks of various 
ways of reporting forensic science results. We point to past and 
current controversies, and analyze what remains to be done 
in the field to ensure that the probative value of forensic sci-
ence evidence is communicated to judicial fact finders in a way 
that is scientifically robust, balanced and transparent, to allow 
them to make coherent decisions.

Forensic Science and Uncertainty
Forensic science practitioners use the natural sciences, such as 
biology, chemistry and physics, to help a judge or a court estab-
lish the facts in a judicial matter. 
This typically involves the ex-
amination and comparative 
analysis of so-called evidential 
material, followed by an evalua-
tion of the value of the evidence 
within the particular context of 
the event under investigation. For example, in the criminal 
context, forensic science practitioners analyze traces (such as 
DNA, fingermarks, controlled substances, cell tower data, etc.) 
to help determine whether somebody committed an offense, 
who the offender was, and how the offense was committed. In 
the civil and administrative contexts, forensic experts are often 
called upon to help a court decide whether a document was al-
tered or falsified (such as a contract, a passport, or a driver’s 
license), whether a person is a minor or an adult (in the immi-
gration context) or to carry out paternity testing. All of these 
tasks have one important common feature: they require one 
to reconstruct a past event on the basis of current observa-
tions (on recovered traces) that are incomplete and imperfect. 

Inherent to the forensic process, therefore, is the measurement 
of uncertainty, which requires the use of probabilities, and the 
implementation of a model to make inferences on hypotheses 
of interest and guide the decision-making process.

(Not) Measuring Uncertainty in the 
Traditional Forensic Sciences
Fingerprint comparison is the first field of modern forensic 
science that was developed in law enforcement in the late 19th 
century. When early fingerprint experts started assisting crim-
inal prosecutions, they took on the habit of expressing the 
results of their analyses as certainties. After comparing the pat-
terns found on a crime scene fingermark and a reference print 
taken from a suspect, they would testify either that the sus-
pect was excluded as the source of the trace, or that the two 
marks were identical, and that the suspect could thus be identi-

fied with certainty as the source 
of the print found at the crime 
scene. This approach rested on 
the paradigm of “discernible 
uniqueness” that postulated that 
each fingerprint was unique, 
that each crime scene trace re-

produced that uniqueness faithfully, and that experts could 
recognize matching fingerprints and traces and distinguish 
non-matching ones.

Most of these assumptions have now been proven wrong, 
or at least greatly nuanced, and reporting results in this form 
is problematic for multiple reasons. First, no two objects are 
ever identical; crime scene traces and reference marks espe-
cially are always different, because the crime scene trace is 
usually incomplete and distorted. Second, saying that two 
objects are identical, hence they must come from the same 
source, is an unreasonable inference. In fact, multiple ob-
jects in the universe can be indistinguishable to the human 
eye (or analytical process) and still be different. It is thus of 

Uncertainty is an uncomfortable 
position. But certainty is an 

absurd one – Voltaire
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utmost importance to have knowledge as to the rarity of the 
observed characteristics of the object in the population of in-
terest and the accuracy and observational sensitivity of the 
scientific method. Third, the expert who states that a given 
person left a trace opines as to the veracity of a hypothesis, 
which, from an inferential point of view, is unwarranted, 
as we shall see. Finally, when an expert testifies that a sus-
pect is the source of a trace, the uncertainty inherent to the 
comparison process is occulted, so that the judge or court 
handling the case has no idea that the expert made that leap 
of faith from her observations to the reported results. Unfor-
tunately, almost all forensic disciplines that were developed 
during the 20th century imitated that “fingerprinting model” 
of evaluating evidence and reporting results to the fact finder 
without acknowledging uncertainty.

The DNA Revolution in Forensic Science
In the mid-1980s, things started to change, however, with the 
advent of forensic DNA analysis. Because forensic DNA analy-
sis was derived from mainstream biological practice (contrary 
to fingerprint comparisons that were developed in a law 
enforcement context) and hence influenced by a scientific cul-
ture, forensic practitioners in the field of DNA were from the 
onset in the habit of assessing the value of evidence through 
statistics. Like fingerprint experts, DNA experts would iso-
late the characteristics found in the crime scene trace and a 
reference sample taken from a suspect and compare them. If 
they declared them to match, they would then use popula-
tion genetics data to assign the probability that an unknown 
person in a given relevant population would match, although 
they were not the source of the trace. To do so, they would (as-
suming independence between genetic markers) multiply the 
occurrences of each genetic characteristic observed in the DNA 
profile in the considered population, to quantify the so-called 
random match probability for the whole profile (i.e., often val-
ues smaller than 1 in several billion). Then, they would report 
that probability assignment to the fact finder, who would have 
to decide whether the probative value of the evidence was suf-
ficient to consider that the suspect was indeed the source of the 
crime scene trace.

The proper use of probabilities to express the probative 
value of DNA evidence sparked intense debates in the forensic 
and judicial communities in the 1990s, so much so that this pe-
riod in forensic history became known as the “DNA wars.” In 
the meantime, the majority of forensic practitioners (i.e., out-
side DNA analysis) continued to report their results in the old, 
deterministic way. Today, there are therefore two models of fo-
rensic reporting that co-exist: the tenants of the “old school” 
who are attached to rendering so-called certainty conclusions 
(and who have recently faced appeals by the larger forensic 
community to review the foundations of their disciplines and 
to adopt a probabilistic framework in assessing the probative 
value of the evidence); and the proponents of a more pro-
gressive model who measure uncertainty explicitly through 
probabilities. For more information on the general definitional 
meaning of uncertainty in metrology, see [1], [2].

Assessing the Probative Value of DNA 
Evidence Through Relative Frequencies
As stated above, for a long time, the value of an observed 
DNA correspondence was expressed through random 
match probabilities. Using the relative frequency of a se-
ries of genetic characteristics to assign a value for a DNA 
correspondence is problematic, though, for several rea-
sons. First, the genetic data (i.e., the relative frequency) 
used as the basis to assign a probability value is derived 
from population databases of approximately 200 to 300 
people; whether such a group has sufficient external valid-
ity to stand in the population of large countries in terms of 
genetic makeup is debatable. Second, relative frequencies 
lead fact finders to view very small probabilities as fac-
tual impossibilities. Yet, just as there are people who win 
the lottery, there are innocent suspects who match a given 
DNA profile of which they are not the source. Third, if the 
multiplication of relative frequencies can be considered 
correct from a theoretical point of view (given a number 
of questionable assumptions), there is no data to support 
its empirical accuracy; in short, it is a matter of faith. In the 
field of DNA, it is not uncommon, for example, to see fo-
rensic practitioners report on random match probabilities 
in the following manner (from Italian):

The identity (...) was established for 21 autosomal markers 
(…) with a statistical frequency of 2.33×1027, which equals 
certainty. If you consider that there are 7 billion people on 
Earth, you would need to consider 130 million billions of 
planets similar to the Earth to find another individual [than 
the accused] who has the same genetic characteristics [3]. 
(Note that the text should read “2.33x10−27”.)

But such numbers only exist in the minds of expert wit-
nesses; they have no factual reality, and they present the 
risk of misleading judicial fact finders. This is why some 
scholars have recommended that the probative value of the 
evidence in such cases be capped at 10−9, because smaller 
values invoke independence assumptions to a scale of robustness 
that we cannot demonstrate empirically, given the size of avail-
able databases [4].

The Bayesian Approach
To correct for the shortcoming of relative frequencies to assess 
the value of items of evidence and their influence on a verdict, 
scholars in the legal and statistical fields started discussing the 
formal analysis of rational thinking under uncertainty in the 
judicial context in the mid-1960s. Some authors proposed to 
rely on probability and decision theory to approach probabi-
listic inference and decision-making in a formalized, logical 
and defensible way.

Bayes’ theorem allows one (e.g., a judge) to update initial 
beliefs about hypotheses of interest (i.e., prior beliefs) in light 
of newly acquired data, to reach so-called posterior beliefs 
about said hypotheses of interest. In mathematical form, this 
can be expressed as follows:
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where:
◗◗ P represents probability
◗◗ Hp represents the prosecutor’s hypothesis
◗◗ Hd represents the defense hypothesis
◗◗ E refers to the evidence (i.e., observing a correspondence 
between the profile of the crime scene trace and the refer-
ence profile of a suspect)

◗◗ the vertical bar | characterizes the conditional probabil-
ity one is interested in (the probability of an event given 
knowledge of the occurrence of other events), for example 
the probability to observe an item of evidence, E, given 
that the prosecutor’s hypothesis is considered true, Hp, 
and given some background knowledge about the case, B.

This equation represents the odds form of Bayes’ theorem. 
In this framework, DNA results are rendered in the form of a 
Bayes factor,    | , | ,p dP E H B P E H B , that expresses the prob-
ability of observing the evidence if the suspect, rather than 
somebody else in the suspect population, is the source of the 
trace. Bayes factor can thus be conceptualized as a metric that 
provides a balanced measure of the degree to which particular 
evidence, independent of its nature, is capable of discriminat-
ing among competing hypotheses put forward by opposing 
parties at trial. Such reasoning is considered normative in the 
sense that it prescribes a standard that, if followed, allows rea-
soners to avoid logical fallacies.

Consider, for example, a Bayes factor of 1 million. This 
means that the expert’s observations are 1 million times more 
likely if the suspect is the source of the trace than if somebody 
else in the population of interest is the source. The Bayes factor 
has a value comprised between 0 and infinity, with 1 being the 
neutral value that expresses the fact that the evidence does not 
support either of the hypotheses, Hp or Hd, over the other. The 
evidence can be said to be irrelevant because it does not allow 
one to discriminate between the hypotheses. The Bayes factor 
can be combined with the other elements in the case—quanti-
fied through the so-called prior odds,    | |p dP H B P H B  —to 
assess the probability that the hypotheses of interest are true, 
given all the evidence considered; this is expressed by the pos-
terior odds,    | , | ,p dP H E B P H E B .

The advantage of the Bayesian approach is that it is trans-
parent, in that it informs the decision maker of the amount 
of uncertainty inherent in the measurement of the probative 
value of the evidence considered; moreover, it allows one to 
coherently update one’s uncertainty on the hypotheses of in-
terest. It also makes it clear what the respective roles of the fact 
finder (opining as to hypotheses) and the expert (assessing 
the evidence under competing hypotheses) are. One limita-
tion, however, is that the practical application of this approach 
is still widely neglected in real casework due to a lack of un-
derstanding as to its merits. And one of the main criticisms 
towards the Bayesian approach is that it is too difficult for lay 
people such as judges and jurors to understand (which, we 
would argue, is not a sufficient reason for not using it).

Unknown Error Rates
The Bayesian approach theoretically allows one a scientifi-
cally coherent assessment of the evidence and of the case as 
a whole. But in practice, it still falls short of the mandate. The 
reason is that there is still very little data related to error rates 
in the forensic field. For the most part of the 20th century, foren-
sic practitioners managed to convince judges and courts that 
(contrary to all human beings) they never made any mistakes. 
In the 1990s, this position became untenable, though: the In-
nocence Project, initiated by two law professors in New York, 
Barry Scheck and Peter Neufeld, started reopening cases of 
people who claimed to have been wrongfully convicted and 
reinvestigating them with the help of DNA evidence. It quickly 
became clear that forensic science evidence was a major cause 
of wrongful convictions in the United States: the criminal 
justice system was regularly misled because forensic practitio-
ners mislabeled or exchanged specimens, contaminated crime 
scene or reference samples, made computational errors, used 
a faulty paradigm, and repeatedly claimed that their results 
were certain instead of applying a model that dealt explicitly 
with uncertainty [5].

In the mid-2000s, the reputation of forensic science had been 
sufficiently damaged by the number of so-called DNA exoner-
ations that the U.S. National Research Council (NRC) decided 
to conduct a systemic evaluation of the field. The report, pub-
lished in 2009, revealed that many forensic disciplines were 
insufficiently validated and produced results that were not 
scientifically robust [6]. One infamous example was forensic 
odontology, specifically the comparison of bite marks. For a 
long time, self-proclaimed bite mark experts would match bite 
marks found on victims of assault, rape or murder with the den-
tition of a suspect. Without any data related to the validity and 
accuracy of their work, they would declare that the suspect had 
in fact bitten the victim to “a reasonable degree of scientific cer-
tainty” or “indeed and without doubt.” As it later turned out, 
many bite mark experts were not able to distinguish a bite from 
a bruise, or a human bite from an animal bite, let alone identify 
the individual who was the source of a given bite mark [7].

The publication of the 2009 NRC report had several con-
sequences for the forensic field. Some disciplines, such as bite 
mark comparisons, were abandoned in certain jurisdictions 
and are not used in criminal prosecutions anymore. Other 
forensic fields have heeded the warnings of the NRC and be-
gun large-scale validation studies. Researchers in fingerprint 
comparisons, for example, have endeavored to develop false 
positive and false negative error rates, mainly through black 
box studies [8]. In forensic DNA analysis, some laboratories 
have started conducting their own studies into errors, such 
as contamination of crime scene samples [9]. There remain 
some problems, though [10]. First, efforts to assess error rates 
are fragmentary and depend entirely on the goodwill of indi-
viduals and laboratory managers. Second, the results of such 
studies are only published if it is convenient to do so, and 
some incidents suggest that unsatisfactory results are simply 
hidden away. Third, expert reports do not usually contain an 
assessment of the probability of a false positive result, i.e., the 
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probability to declare a correspondence between two profiles 
when they do not correspond. The Bayes factor is calculated 
as if any possibility of error in the handling of the evidence 
has been conclusively excluded; it only expresses one type of 
“error,” which is the possibility that one innocent person will 
match the trace by chance (i.e., the random match probability). 
This makes no sense from a scientific point of view, because it 
is clear that if the possibility of an error were to be taken into ac-
count, the value of the Bayes factor would very often decrease 
by orders of magnitude [11].

From Source to Activity
One additional problem that has emerged recently is due, par-
adoxically, to technological advances: the limits of detection 
and the analytical capabilities have made it possible to derive 
a DNA profile from a single cell. But what does it mean to find 
a single cell somewhere, with regards to somebody’s presence 
or activity? Focusing one’s attention to the analysis stage of the 
life of the evidence presents the risk of blinding the court to the 
real meaning of the evidence in the context of the case. This was 
theorized under the concept of hierarchy of propositions, which 
distinguishes the evaluation of evidence under hypotheses (or 
propositions) referring (a) to the source of the recovered trace, 
(b) to the activity committed by the suspect or by other people 
involved and (c) to the offense under scrutiny [12].

In the last two decades, instances of wrongful convictions 
have demonstrated in a dramatic manner that a person cannot 
be convicted of a crime simply because a trace seemingly links 
her to the offense. First, contaminations can happen. In Aus-
tralia, for example, Farah Jama was exonerated in 2009 after 
spending several years in prison for a rape he did not commit. 
His DNA had been observed in a vaginal sample taken from 
a woman who had been found passed out in the lavatories of 
a nightclub. It later turned out that the rape kit had been con-
taminated with Mr. Jama’s genetic material [13]. Second, traces 
can be transferred from one person or one object to another 
through one or several vectors. Many studies have now doc-
umented the possibility of indirect transfer, which renders the 
interpretation of evidence very difficult in certain cases [14]. 
Aware of the importance of assessing evidence at the activ-
ity level, the European Network of Forensic Science Institutes 
published guidelines in 2015 to encourage forensic practitio-
ners to render conclusions under activity-level hypotheses 
when there is a risk, in the case at hand, that rendering con-
clusions under source hypotheses could lead the fact finder to 
give the evidence undue value [15].

Decision Theory in Forensic Science
As previously said, on the basis of observations, one can con-
struct probabilistic arguments in support of hypotheses of 
interest. As such, probabilistic models provide a coherent en-
vironment wherein probabilities about target propositions can 
be revised upon receipt of newly acquired information. This 
represents a fundamental requirement for an additional step, 
that is the coherent measure of probabilities for decision-mak-
ing under uncertainty.

One makes decisions on the basis of essentially two ele-
ments: one’s beliefs about uncertain events (the hypotheses 
of interest, Hp and Hd) and one’s assignment of desirability of 
decision consequences. The latter aspect is formalized by in-
voking the concept of utility. Both concepts, probability and 
utility, can operate within a general decision framework that 
involves the practical rule that one should select the decision 
which has the highest expected utility (or, alternatively, the 
lowest expected loss) [16].

To formalize a decision problem, decision theory first re-
quires one to draw up an exclusive and exhaustive list of 
available decisions (from a legal point of view, acquitting or 
convicting a given suspect, for instance). Secondly, a list of ex-
clusive and exhaustive uncertain events (i.e., the hypotheses) 
is needed. The decision maker is then faced with a problem 
of decision-making under uncertainty: because it cannot be 
known with certainty which state of nature holds, one can-
not directly tell which decision leads to a consequence that is, 
in some sense, optimal. The main problem is thus to choose a 
decision without knowing which state of nature holds. The 
combination of a particular decision with a given state of na-
ture will result in a foreseeable consequence: e.g., 1) acquitting 
an innocent; 2) acquitting a guilty suspect; 3) convicting an in-
nocent, and 4) convicting a guilty suspect. These consequences 
have each a distinct associated utility. Further development 
of this argument leads to the so-called expected utility, which 
assigns a numerical value to a given decision, as a function 
of the probabilities of outcomes as well as their respective 
desirability. The result thus consists in a qualifier for the appro-
priateness of particular decisions, evaluated on the basis of the 
desirability of outcomes.

The final goal that the justice system pursues is that of mak-
ing decisions. Not making a decision is not an option; it is even 
forbidden in most modern justice systems, as a denial of jus-
tice. Decision theory aims to define what the best decision is 
for a rational agent, given the information that she has and her 
personal values for the possible consequences of her decisions 
[17]. This is why developing a framework for decision-making 
in the forensic process is so important.

Conclusion
Judges, attorneys and forensic scientists only have incom-
plete knowledge as to the states of nature that make up the 
cases before them. Uncertainty is thus a complication that 
accompanies all actors of the justice system who face infer-
ence and decision-making as core aspects of their activities. 
Probability, as a measure of uncertainty, can help them make 
the best decisions on the basis of the knowledge at hand and 
the preferred values of the stakeholders. The probabilistic 
model, in turn, can help focus resources into appropriate 
data gathering strategies and clarify the structure and mech-
anisms of scientific evidence assessment. Finally, as a tool 
that informs the rational management of the risk of errors, 
the use of a probabilistic model increases the accuracy of ju-
dicial fact-finding and thus helps materialize the right to a 
fair trial.
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