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On the Commonly-Used  
Incorrect Visual Representation  

of Accuracy and Precision
Shervin Shirmohammadi, Luca Mari, and Dario Petri

W e performed a Google image search using the 
search phrase “accuracy and precision” and, af-
ter removing unresponsive and duplicate web 

pages from the search results, found that 78 of the top 100 re-
sults use the bullseye chart to visually explain this concept. 
Unfortunately, we also found that 52 of those 78 results, i.e., an 
incredible two thirds, use a visual similar to what is shown in 
Fig. 1(i) or Fig. 1(ii), both of which are at best highly mislead-
ing and factually incorrect according to relevant standards and 
guidelines. In this figure, the black dots represent the values 
obtained by replicated measurements of the same measurand 
(the quantity intended to be measured), and the visual aims 
to present how close the measured values are to each other 
and to an agreed-upon reference value, represented by the red 
bullseye. In the search results, visuals similar to Fig. 1(i) and 

Fig. 1(ii) appeared 25 and 27 times, respectively. In the top 20 
search results, which is where the great majority of users look 
for answers, the earliest correct visual appeared only at posi-
tion 11, followed by 13, 15, and 19 in the rankings. The great 
majority of the 52 incorrect visuals were in non-peer-reviewed 
documents, reinforcing the notion that one should not believe 
everything one sees on the internet, although shockingly, a 
few were in papers published in peer-reviewed scientific ven-
ues, including one in Elsevier’s Journal of Clinical Epidemiology 
and another one in the SCMR’s Journal of Cardiovascular Mag-
netic Resonance, both well-cited journals. The actual numbers 
are probably higher, as many scientific articles are behind pay-
walls and inaccessible to Google search. 

There is of course a degree of uncertainty in this search 
experiment: repeating the search in a different geographic 

Fig. 1. Commonly-used incorrect representations of Accuracy and Precision.
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location, a different language, or a different time (say a few 
months from now) would give different results. But it is rea-
sonable to conclude that currently, the majority of search 
results, whether two thirds or a slightly different percentage, 
are teaching incorrect information to readers, and this is very 
concerning. So, we wrote this short article as a one-stop shop 
to help educate interested readers about the correct definitions 
and therefore correct visual representation of accuracy and 
precision. We tried to keep the technical language accessible 
to readers whose expertise is outside of Instrumentation and 
Measurement (I&M). As such, I&M experts will notice some 
deliberate oversimplifications of concepts.

So why do we say that Fig. 1 is incorrect? We have two rea-
sons for our claim. The first relies on what is commonly meant 
by “accuracy.” In short, parts A of Fig. 1(i) and Fig. 1(ii) assume 
that because the average position of the individual measured 
values is close to the bullseye, then accuracy is high. This is 
incorrect because accuracy should be considered for a single 
measured value: even by visual inspection, is it not obvious 
that each black dot of Fig. 1(i) part A is rather far from the tar-
get’s bullseye, quite similar to the “low accuracy”—labeled 
part D, and is therefore not accurate? Would you call “accu-
rate” the marksman in Fig. 1(i) part A who always misses the 
bullseye so badly, compared to part B? Apparently, the answer 
to the latter question is “yes” for the authors who use this visu-
alization: not really plausible! Fig. 1(ii) tries to make it “look” 
better by having the black dots in part A appear closer to the 
bullseye, but this causes another problem: the precision in part 
A is now quite similar to the “high precision”—labeled part D, 
so how can part A be “low precision?” In fact, as we will ex-
plain later, “high accuracy and low precision” is an oxymoron: 
a measurement instrument cannot be accurate and imprecise 
at the same time! The second reason is based on a couple of 
relevant technical documents, VIM [1] and ISO 5725 [2], that 
clearly present the relations between accuracy and precision 
[1], [2]. But before browsing these technical documents for 
answers on how to avoid the mistakes of Fig. 1, a fundamen-
tal clarification is in order: accuracy and precision may refer 
to features of either measuring instruments or measurement 
results and consequently measured values. This distinction 
is particularly important with respect to accuracy because it 
leads to this question: is the target’s bullseye actually known 
when accuracy is to be evaluated? The short answer is: “yes” 
in the case of measuring instruments, because the reference 
value could be obtained from a measurement standard avail-
able from the instrument’s manufacturer, and “no” in the case 
of measurement results, because the reference value should 
be the measurand’s true value, which is unknowable accord-
ing to the International Vocabulary of Metrology (VIM) [1, 2.11 
Note 1]. Let us keep this basic distinction in mind while read-
ing what follows.

Accuracy and precision have an interesting connection 
with measurement error, which is defined by VIM as measured 
quantity value minus a reference quantity value [1, 2.16]. When-
ever a reference value is known; i.e., in the case accuracy 
is considered of a measurement instrument and not of the 

measurement results, as explained above, the measurement 
error implied by a measured value can be expressed as consist-
ing of two components: the systematic error and the random 
error. According to the VIM, systematic error is the component of 
measurement error that in replicate measurements remains constant 
or varies in a predictable manner [1, 2.17].

Examples of causes of systematic errors include lack of cal-
ibration, the operator reading the meter not at eye level but at 
an angle, and the long-term instability of the measuring in-
strument. In Fig. 1(i) and Fig. 1(ii) parts C and D, we can see 
that due to systematic errors, the average position of the black 
dots is off the red bullseye, always towards the top left. This is 
also known as bias, which is indeed an estimate of the system-
atic error [1]. This offset is knowable only if the position of the 
bullseye is known: systematic errors are knowable only if a ref-
erence value is given.

In a complementary way, the VIM defines random error 
as the component of measurement error that in replicate measure-
ments varies in an unpredictable manner [1, 2.19]. Examples 
of causes of random errors include the effect on instrument 
indications of noise interference and fluctuations in environ-
mental conditions. In Fig. 1(i) parts A and C, we can see that 
due to random errors, the black dots are further from each 
other compared to those in parts B and D. In each part, ran-
dom errors can be described by a probability distribution 
function with zero expectation (since by definition offsets 
are accounted for by systematic errors) and a variance that 
increases if the magnitude of random errors increases. It is 
important to understand that random errors are not related 
to a reference value: even if the bullseye is hidden, the in-
formation about the relative spread of the black dots would 
remain visible.

The distinction between systematic and random errors 
shows that a better understanding requires a third feature, 
in addition to accuracy and precision, which the VIM and 
the ISO 5725 series of technical standards call trueness. The 
basic idea is simple: similar to measurement error which 
consists of systematic and random errors, accuracy also con-
sists of trueness and precision of the instrument. And like 
measurement errors which affect the accuracy of the instru-
ment, systematic errors affect its trueness and random errors 
affect its precision. With this premise the definitions given 
by ISO 5725 become even more meaningful, which defines 
trueness as the closeness of agreement between the average value 
obtained from a large series of test results and an accepted refer-
ence value [2, 3.7].

Note the usage of “test results,” not measurement results 
or measured values; this emphasizes that trueness may be at-
tributed to a measuring instrument, and the same applies also 
to the definitions that follow below. This definition tells us 
that because the average position of black dots in parts C and 
D of Fig. 1(i) and Fig. 1(ii) is not close to the target’s bullseye, 
trueness is low. Vice versa, trueness is high for parts A and B 
because the average in each part is indeed very close to the tar-
get’s bullseye. This means that it would have been correct if 
the vertical axis in Fig. 1 had been labeled “trueness” instead 
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of “accuracy!” Trueness is then the feature of an instrument 
that indicates its ability to avoid systematic errors: the less the 
systematic errors (i.e., the closer the average of the measured 
values to the reference value) the greater the trueness.

But what about precision? It is the closeness of agreement 
between independent test results obtained under stipulated 
conditions [2, 3.12]. Thus, precision depends only on the dis-
tribution of random errors and does not relate to a reference 
value. We can see in Fig. 1(i) that the black dots are close to 
each other in parts B and D, while they are further apart in 
parts A and C. In that sense, we can say that the figure is cor-
rectly visualizing the precision of the instrument. Precision 
is then the feature of an instrument that indicates its ability 
to avoid random errors: the less the random errors (i.e., the 
closer the measured values to each other) the greater the pre-
cision. This gives us the first corrected version of the incorrect 
Fig. 1, shown in Fig. 2. 

Problem solved? Not really, because compared to accuracy, 
trueness is rarely used in natural sciences and engineering; 
hence, we still have to include accuracy in the visual. To do so, 
we first need to know what accuracy is. According to ISO 5725 it 
is the closeness of agreement between a test result and the accepted ref-
erence value [2, 3.6]. Hence, 
accuracy is defined for a 
single measurement, un-
like trueness and precision 
which require a sample 
of values from replicated 
measurements. Equally 
important is to note that ac-
curacy like trueness, and 
unlike precision, depends 
on a reference value. And 
in fact, the VIM—which 
considers accuracy to be 

related to measurement results instead of measuring instru-
ments (it defines accuracy as “closeness of agreement between 
a measured quantity value and a true quantity value of a mea-
surand” [1, 2.13])—is explicit in noting that accuracy is not 
evaluated quantitatively, and that a measurement is said to be 
more accurate when it offers a smaller measurement error [1, 2.13, 
Note 1] and of course the same holds for trueness.

Although accuracy is defined for a single measurement, 
we are not really interested in the accuracy of a specific value, 
whose offset from the reference value depends in a non-pre-
dictable way by random errors. In other words, we do not want 
to accept cases in which a high accuracy is obtained by chance. 
What the definition of ISO 5725 actually means instead is that 
an instrument is accurate if each result it produces is (or at least 
most of the results it produces are) accurate.

The consequences are now clear:
1.	Since accuracy depends on both systematic error and 

random error that affect any single test or measurement, 
instrument manufacturers can evaluate quantitatively 
the accuracy of their instrument, despite the fact that 
there are no standardized procedures to evaluate accu-
racy as a function of trueness and precision.

2.	For an instrument to have a high accuracy, it needs to 
have both a high trueness and a high precision. There-
fore, the concept of “high accuracy and low precision” as 
shown in part A of both Fig. 1(i) and Fig. 1(ii) is nonsense, 
because precision contributes to accuracy. For this 
reason, a representation like the one in Fig. 3 is correct 
but still partial, since it remains implicit about the role 
that the trueness and precision have to determine accu-
racy. Even better is therefore the representation in Fig. 4, 
which shows how trueness and precision independently 
contribute to accuracy.

Back to our Google search results, the 26 results with the 
correct visuals consisted of 23 and 3 illustrations that were 
similar to Fig. 3 and Fig. 4, respectively. Not surprisingly, none 
used any visual similar to Fig. 2 which shows trueness and pre-
cision but not accuracy.

On the same subject, another incorrect visual representa-
tion which is less commonly used but still worth mentioning 
is shown in Fig. 5, which shows that the values obtained from 
replicated measurements of the same measurand are distrib-
uted between Vmin and Vmax, with a probability distribution 

Fig. 3. Some authors prefer this visualization.

Fig. 2. One way to correct the incorrect Fig. 1. However, trueness is not a 
widely-used feature, so this visualization might not be very helpful in practice.
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represented by the blue curve. Let us assume that the figure 
corresponds to results returned by a measurement instrument, 
and not measurements and their results. Fig. 5(i) still has three 
problems:

1.	It reports the offset of Vm (the average of the distribu-
tion) from the reference value Vref as accuracy, instead of 
trueness.

2.	It conveys the message that the greater the distance 
between Vm and Vref, the greater the accuracy, which in 
fact is the exact opposite!

3.	Similarly, it conveys the message that the greater the 
distance between Vmin and Vmax, the greater the precision, 
which in fact is the exact opposite!

Fig. 5(ii) has the same problem (3), as well as problem (2) 
but for trueness instead of accuracy.

Fig. 6 shows the corrected version of this form of visual-
ization, which refers to components of errors, again under the 
assumption that a reference value is somehow known. Notice 
that we have also changed the label of the vertical axis from 
“probability density” to “probability distribution,” because 
“density” implies the continuity of values, while measurement 
values are defined on a discrete scale due to finite resolution of 
measuring instruments.

Concluding, let us reiterate that accuracy should be part of 
the characterization of a measurement instrument but not part 
of the characterization of measurement results, since evalu-
ating accuracy requires a reference value to be known, which 
is not the case for measurement results. In this latter case, 
measurement uncertainty is the feature that summarizes the 
distribution of measured values. According to the Guide to the 
Expression of Uncertainty in Measurement (GUM), measurement 
uncertainty is a parameter, associated with the result of a mea-
surement, that characterizes the dispersion of the values that could 
reasonably be attributed to the measurand [3, 2.2.3].

In general, measurement uncertainty comprises several 
components that may manifest themselves with either random 

Fig. 6. The correct version of the incorrect Fig. 5.

Fig. 5. Another form of incorrect visualization.

Fig. 4. This correct visualization has also been used by some authors.
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or systematic effects [4], [5]. Some components may be eval-
uated by applying statistical methods on the distribution of 
the measured values from replicated measurements (called 
“type A” methods [3, 2.3.2]), while other components require 
non-statistical methods, based on experience or a priori infor-
mation (called “type B” methods [3, 2.3.3]). The accuracy of the 
adopted measuring instrument affects the component of mea-
surement uncertainty called “instrumental uncertainty”: the 
greater the accuracy of the instrument, the less the instrumen-
tal uncertainty in the results it produces. Interested readers are 
encouraged to read [4] for a quick tutorial on uncertainty and 
[5] for an overview of measurement fundamentals.
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