
Predicting impacts of
weather-driven urban
disasters in the current and
future climate
Effective city operations depend on local weather conditions at the
scale of critical urban infrastructure such as power and water
distribution systems. This includes both routine and severe weather
events. For example, with precipitation events, local topography and
weather influence water runoff and infiltration, which directly affect
flooding as well as drinking water quality and availability. The impact
of such events creates issues of public safety. Thus, the availability of
highly localized weather model predictions focused on public safety
and operations of infrastructure can mitigate the impact of severe
weather. This is especially true if the lead time for the availability of
such predictions enables proactive allocation and deployment of
resources to minimize recovery time from severe events. Typically,
information at such a scale is simply not available. Hence, the ability
of municipalities to proactively respond to these events is limited.
Available continental- or regional-scale weather models are not
appropriately matched to the temporal or spatial scale of such
operations. While near-real-time assessment of observations of
current weather conditions may have the appropriate geographic
locality, by its very nature it is only directly suitable for reactive
response. To address this gap, we use state-of-the-art physical weather
models at the spatial scale of the city’s infrastructure to avoid this
mismatch in predictability. Model results are coupled to data-driven
stochastic models to represent the actionable prediction of weather
(business) impacts. In some cases, an intermediate physical model may
be required to translate predicted weather into the phenomena that
lead to such impacts. We have applied these ideas to several cities with
a diversity of impacts and weather concerns and show how this
coupled model methodology enables prediction of storm impacts on
local infrastructure. We also discuss how this concept can be extended
to a climate scale in order to evaluate the potential localized impacts of
a warming planet and the effectiveness of strategies being used to
mitigate such impacts.
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1 Introduction
Reliable, efficient operations of urban infrastructure (i.e.,

electric, communications and water utilities, transportation,

etc.) are critical for cities and their citizens to be safe and

resilient. In many urban areas, such operations are highly

dependent on the local weather conditions, especially at the

scale of such critical infrastructure. This includes both

routine and severe weather events such as tropical storms,

tornadoes, snowstorms, damaging winds, and hail. For

example, with precipitation events, local topography and

weather influence water runoff and infiltration, which

directly affect flooding as well as drinking water quality and

availability.

Frequently, reports are published in the popular press of

major flooding events impacting urban areas (e.g., [1, 2]).

For example, from January 1, 1980 to July 9, 2019, there
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have been 31 flooding events with losses exceeding

one billion CPI-adjusted U.S. dollars each across the

United States without including those driven from tropical

cyclones. In aggregate, those 31 events had a loss of $126

billion and 554 lives [3]. They are often influenced by

increases in precipitable water in the atmosphere [4]. The

impact of such events creates issues of public safety for

both citizens and first responders.

Public services in the United States such as electricity

delivery have seen a rise in the number of customer outages

by a factor of ten in the 2000s, compared with the previous

two decades [5]. Weather is increasingly becoming a

significant factor that municipal services must include in

their emergency planning activities. Figure 1 illustrates

how this increase compares with outages that are not caused

by weather. These services often find that currently

available information and tools are not delivering what they

need to make critical decisions with adequate lead time to

prepare appropriately.

Specifically, information at the required highly localized

scales is rarely available, or what is available does not

adequately address the concerns or the requirements of the

stakeholder decision-maker. Presently, whatever

optimization applied to these processes to enable proactive

efforts utilizes either historical weather data as a predictor

of trends or the results of continental- or regional-scale

weather models. Neither source of information is

appropriately matched to the temporal or spatial scale of

many such operations, which often leaves large gaps in

which highly localized weather events are occurring that

have a significant impact on a local level but are not

addressed in the broader response strategy of the

stakeholder. While near-real-time assessment of

observations of current weather conditions may have the

appropriate geographic locality, by its very nature it is only

directly suitable for a reactive response.

Access to highly localized weather model predictions

focused on municipal public safety and operations of

infrastructure has the potential to mitigate the impact of

severe weather. This is especially true if the lead time for

the availability of such predictions enables proactive

allocation and deployment of resources (people and

equipment) to minimize the time for restoration of damage

from severe events.

2 Approach
The initial step to address the aforementioned gap is the

application of the state-of-the-art physical weather models at

the spatial scale of the city’s infrastructure, calibrated to avoid

this mismatch in predictability. The results of such a model

are then coupled to a data-driven stochastic model to represent

the actionable prediction of weather (business) impacts [6]. In

some cases, an intermediate physical model may be required

to translate predicted weather into the phenomena that lead to

such impacts. We have applied these ideas to several cities

with a diversity of impacts and weather concerns. It should be

noted that inmany cities the effect of weather events has been

exacerbated by a combination of an aging andmore

vulnerable infrastructure as well as increased urban

population growth that applies greater stress on infrastructure

such as higher electricity demand [6].

This coupled model methodology has enabled

operational prediction of storm impacts on local

infrastructure, as well as the measurement of the model

error associated with such forecasts. We have defined a

flexible approach for such a one-way coupling that includes

an abstraction of the weather forecasting component. We

present the implementation of these urban weather impact

predictions and the ongoing challenges they represent.

We then discuss how we can extend this concept to a

climate scale in order to evaluate the potential localized

impacts of a warming planet and the effectiveness of

strategies being used to mitigate such impacts.

For impacts that affect electric utilities, we employ

data-driven techniques based upon statistical and machine

learning methods to enable probabilistic forecasts for two

primary reasons. Forecast uncertainty that needs to be

quantified is derived not only from weather predictions, but

also from impact data such as anecdotal storm damage

reports. In addition, some of the physical forcings may be at

a spatial or temporal scale not resolved by the

computational grid used for the weather model. In some

cases, such as flooding, this can be addressed by

intermediate physical models (e.g., hydrological). In other

cases, it could include explicit modeling of turbulence that

drives strong winds that can down trees or break branches

that damage power lines. In addition, a model at that level

would be prohibitively expensive to produce operational

forecasts, and there would be a lack of data to enable

comprehensive verification. The two classes of components

Figure 1

Weather-related power outage events (blue curve) in the United States

have increased dramatically in the 2000s compared with those from

nonweather causes (dark yellow curve) [5].
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are discussed in Sections 2.1 and 2.3 with applications of

the methods outlined in Section 3.

2.1 Atmospheric forcing for tailored weather
forecasts

We build upon our earlier efforts at IBM to implement and

apply an operational meso-g-scale weather-model-based

prediction system to business problems, dubbed “Deep

Thunder,” which has been tailored to the localized needs

of decision-makers in urban environments, among others

[7–9].

In this context, to predict localized storm impact, we need

weather forecasts with high spatial and temporal resolution

that are customized for the relevant geography as

determined by decision-making stakeholders that work in

urban settings. The computational grid should be

sufficiently fine to resolve features required as input to a

coupled impact prediction model. As outlined in [8], a

convective-resolving configuration is typically required

(e.g., 1–2 km, horizontally, and tens of meters vertically in

the lower part of the atmospheric boundary layer). The

further customization of the forecasting system for a

specific application comprises: (a) the choice of a regional

domain, constructed with topographic, meteorological, and

land surface features in mind; (b) the choice of model

physics (radiation, boundary layer, microphysical, land

surface, and urban canopy); (c) pre-processing of ingested

data; and (d) post-processing of forecast data. Diverse

datasets may be leveraged in (c) via data assimilation

techniques to improve weather forecast accuracy. Such

datasets and example configurations are discussed in [7]

and [9].

The Deep Thunder weather model is based, in part, on the

advanced research core of the communityWeather Research

and Forecastingmodel [10]. To support diversity of coupled

models for impact and damage prediction, models for other

domains and visualization of the weather model output (i.e., a

coupled geometric model), there is a standard set of weather

variables that are included in an abstraction of the weather

model output. It is designed to be standalone to drive the

coupled models. Some of the fields are direct model output,

whereas others are derived via post-processing as diagnostic

variables. They include, but are not limited to, instantaneous

precipitation rate and type (snow, rain, ice, or graupel), snow

density, composite reflectivity (as a proxy for storm intensity),

lightning potential, convective available potential energy,

lifted andK-indices (indicative of convective potential), mean

sea level pressure, turbulence-based wind gusts and visibility,

as well as volumetric cloud properties and three-vector winds.

The details of how this is addressed are discussed in [7].

The weather model configuration should be carefully

constructed based on retrospective analysis, using a

technique known as “hindcasting.” Nominally, the intended

application would drive the identification of several

historical events, across multiple seasons, that had an

impact on the region of interest but were missed or

underforecasted by private and/or publicly available

forecast services, resulting in underpreparedness or false

alarms. These can include “blue sky,” high wind cases,

winter and convective season storms, large-scale extra-

tropical events, etc. It is also important to identify blue sky

(non-event) days to ensure that the weather model is

producing realistic output. In order to determine the optimal

configuration (customized to meet the application

requirements), the historical cases are simulated as

hindcasts, using only input data that would have been

available at the time that a forecast would have been

created. The results are validated against available

observations, both quantitatively and qualitatively, to show

improved skill compared to other forecasts. Operationally,

the same comparisons are performed resulting in a

consistent methodology [11].

2.2 Model coupling
To enable the coupling of downstream impact models driven

by weather, the results of a weather-model-based forecast are

abstracted to include the aforementioned key variables at the

appropriate temporal and spatial resolution. The abstraction

is presented through a consistent application programming

interface (API) and data model, both of which preserve the

underlying computational grid, coordinate systems, and

semantics of the weather model. The open-source data

model, Network Common Data Form (netCDF), has been

adapted for this purpose, following its climate and forecast

(CF) conventions [12]. The API is supported within the most

common programming and scripting languages. In addition,

access to the data within this data model is supported in a

number of open-source and commercial data visualization

and analysis software packages (e.g., [13]). netCDF is also

used for the output of other coupled models for similar

reasons as the weather model.

The generation of this abstracted weather model output

applies to operational predictions as well as retrospective

hindcasting. Hence, this approach supports the creation of

training sets for the data-driven models via hindcasts or

historical operational forecasts. Given the consistency in

the output, it enables the coupled models to operate in an

automated fashion, including the generation of

visualizations of the weather model. An ancillary capability

of the system is the ability to automatically generate a large

history of such hindcasts, including the ingest and

assimilation of the appropriate datasets [7].

The data flow associated with the model coupling is

illustrated in Figure 2. The weather model, which includes

physical modeling of the urban canopy and the land surface,

is shown at the top with the ingest of local observations via

data assimilation. The output of the models in netCDF is

shown between the models, including where the
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meteorology is sufficient to drive an impact model or where

intermediate physical models like hydrological ones are

required. Specific examples of the output required for such

coupling are outlined in Section 3. The use cases for

decision-makers are driven with the impact models,

associated with the use of visualization to aid in the

interpretation and communication. In most situations, there

is no need to visualize meteorological data directly.

3 Case studies
To illustrate the applications of these ideas, we outline two

example impacts on urban areas that are of current and

growing concern by those that provide municipal services as

well as citizens and businesses that rely on them. The first

considers storm-driven electricity outages. The second

examines urban-scale flooding from significant precipitation

events.

3.1 Utility outages and emergency operations
Weather-induced power outages are increasing across the

United States [5]. According to research by Climate Central,

the number of power outages caused by weather has

increased significantly from 1980 to 2012 (by a factor of ten),

and their impact is widening. Weather caused 80% of the

reported outages, which cumulatively affected 300–500

million people in the United States during that period.

Aspects of increased electricity demand and vulnerability of

aging infrastructure are also factors [14, 15].

Among weather-related outages, 59% of the weather-

related outages analyzed were caused by storms and severe

weather. Nearly 19% occurred during the winter (i.e., low

temperatures and ice storms), and 18% of the outages were

driven by hurricanes and tropical storms. Only 3% were due

to tornadoes, and 2% by a combination of extreme heat and

wildfires. More recently, beyond that study period, the

United States has had a significant number of outages

related to wildfires, especially in California, although not

yet with a significant impact on urban areas. Many of these

outages were planned by the local utility companies to

reduce the risk of starting fires [16].

Utility companies spend a large amount of money on

preparation and response, and utility managers want to use

every rate-payer dollar wisely. For example, in 2010, one

U.S. East Coast utility spent an estimated $30 million in

preparation for Hurricane Earl, a storm that passed

hundreds of kilometers out to sea and had no impact on its

infrastructure [17]. Expenditures incurred by such an

inefficient storm response could have been allocated

elsewhere. Utilities also suffer the softer costs of customer

sentiment and reputation, which typically are manifested as

unhappy regulatory bodies, increased scrutiny and

reporting, as well as fines, which can lead to loss of license

or financial failure [18, 19].

In today’s constantly connected digital world, customers

have little patience and high expectations about an electric

utility’s ability to restore power to an area quickly and

efficiently [15, 20]. Hence, it is critical for utility managers

to have timely and specific information that is relevant to

them. As discussed in Section 2, many free, publicly

available, and/or commercial weather sources provide some

level of warning that adverse weather is coming, but often

fall short of the specificity required for utility managers to

appropriately assess if the incoming weather will indeed

impact their system. Once the question of “if” is answered,

the next is “how” it will impact the system. The answer is a

critical one as it will dictate the level of response, and thus

the level of preparedness a utility will have to restore

customers. Therefore, a highly customized weather

modeling solution specific to the utility territory is required.

Ideally, that weather model will be coupled to a decision

support tool that can interpret the incoming weather

conditions and predict with some certainty the level of

impact on the utility infrastructure.

For example, a publicly available weather forecast may

provide information that says 90-km/h winds and 15 cm of

snow are predicted to impact a utility service territory. That

information may be sufficient for the public who may be

concerned about their commute to work the next morning.

For the utility manager, it lacks key information required to

decide if those conditions will be impactful to the

infrastructure such as an overhead electric distribution

network. Consider how quickly this simple example

becomes complex for a utility manager who needs to

consider the damage to trees that can lead to power outages

Figure 2

Data flow for coupled models to enable predictions of weather-driven

impacts.
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because they are in close proximity to wires and poles.

Since it is winter, there are no leaves on the trees, and

therefore, winds of that magnitude may not be as significant

as they would be during the summer when there is full

foliage to capture the energy from high winds. On the other

hand, during the winter in regions like the U.S. northeast

and upper midwest, the root systems of deciduous trees may

be retracted and less securely anchored in the ground,

making them more vulnerable to damage from strong

winds. Another element in this consideration is soil

moisture in the volume that includes the root system of

trees. If the soil is saturated due to antecedent rainfall or

snowmelt, then anchoring of trees will be further weakened.

Typical public and commercial weather forecasts include

no information about soil moisture, soil saturation, or the

status of foliage.

Such a forecast of 15 cm of snow adds further complexity

for a decision-maker at a utility because it provides no

information on the characteristics of the snow. Snow that is

“light and fluffy” with low water content may have large

impacts on transportation systems (e.g., road closures and

airport delays). Since such snow will not adhere to trees and

infrastructure, it therefore will have a negligible effect on

an overhead distribution network. However, if the snow is

denser with higher water content, then it will adhere to the

trees and infrastructure. The weight of accumulated snow

will increase the vulnerability for potential damage. If that

factor is combined with strong winds, the aggregated

impact the utility may encounter is much greater than

simply adding the independent impacts of wind and heavy

snow.

Several groups examined the quantitative relationship of

these weather and non-weather factors that can lead to

outages during the same period that utilities were

recognizing an increase in the number of weather-driven

impacts on their overhead infrastructure. Initially, the focus

of these groups was on the analysis of historical events

(e.g., [20]). This led to early work to create predictive

models that can consider the winter situation described in

the previous example and enable a utility manager to make

more informed decisions. These efforts included only

weather information [21], whereas others considered the

aforementioned non-weather factors that were also

executed operationally [22]. The latter was the first effort to

function as a coupled modeling system where a targeted

weather model that was focused on the utility service

territory drove a statistical model for outage prediction. A

damage forecast model for each substation was developed

using historical weather and outage data as well as

infrastructure and environmental data by building a

hierarchical Poisson regression model. A generalized

extreme value distribution was used to model daily gust

maxima to bridge limitations in the weather model to the

Poisson regression. This led to further advancement to

include not only operational predictions of outages at

different levels of aggregation, but of the resources

necessary to restore power and the optimal scheduling for

their deployment [23]. The Poisson regression was used

with a decision tree classifier as well as a more advanced

weather model. In addition, customized visualizations were

deployed, consistent with the notion of cascading coupled

models as shown in Figure 2. Given the increased

incidences of outages, other independent efforts have

revisited these ideas more recently (e.g., [24]).

Independently of the statistical or machine learning

methods used, these classes of outage prediction models are

trained on a large set of diverse historical data. They require

a utility’s records of outages, which can include where and

when they occurred as well as information about specific

damage (e.g., poles or wires down, transformer failure),

weather conditions, and the type of restoration effort

required (i.e., people and equipment). Historical weather

data from observing systems are needed, and depending on

the fidelity of the model, data about soil conditions and

vegetation will be required. As discussed in [22–24], when

the outage prediction is run as a coupled system, the

training set must include historical predictions of the

forcing weather model. These can be provided via hindcasts

or archived forecasts. Typically, several years of such

historical data are required to appropriately train an outage

model. This is to ensure seasonal variations in outage events

(e.g., winter versus summer) and statistically significant

samples for relatively rare events. Such training should be

revisited at least yearly to reflect updates to the

infrastructure (i.e., upgrades, repairs, or aging) and

improvements to the weather model.

Therefore, such outage prediction models should run in

an automated fashion as a post-process to a high-resolution

weather model focused on the utility service territory. This

enables a utility manager to focus on the job they know

best—preparing the electrical system and personnel for the

impact of a pending event. A properly trained outage model

will output the predicted outages, customers, restoration

effort, and/or devices/infrastructure that will be affected by

the incoming weather. A utility manager can use this

information to determine and optimize the level of response

required or simply give utility operations the evidence to

mobilize or not.

Lead time is incredibly important to this decision-making

process. This is often another limitation in typical public

and commercial weather forecasts. A customized weather

model coupled to an outage prediction model can provide

the minimum 3-day lead time on incoming weather and the

potential impact on the utility system that is often required

for effective planning. It is assumed that even at 3 days out

from a potential event, the forecast will vary, and thus the

resulting impact predictions will as well. Longer lead times

enable response personnel to be alerted that impactful
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weather is approaching, and storm preparations can be

initiated. As the weather and resulting impact predictions

are refined, so can the response.

Storm preparation is a huge undertaking even if a utility

company is only mobilizing internal resources. Regular

work is often put on hold, and schedules of personnel are

changed to either arrive earlier or stay later, compared to

their routine schedule. Both of these lead to additional

expenses, which can be tens of thousands of U.S. dollars per

day. Opening an emergency management center for a large

urban utility can cost $1 million [25].

Most utilities are affected by several weather events per

year that would cause them to mobilize internal resources.

Hence, the total annual costs can easily reach several million

dollars on the more routine weather events.

If the incoming storm is sufficiently large that a utility’s

internal resources cannot perform a timely recovery, then it

will rely on its peers via mutual assistance networks to

provide supplementary personnel and equipment. These

resources are not unlimited and can be difficult to access in

response to a storm that may span a large region with

multiple utilities requesting additional resources.

Furthermore, they are typically available on a first-come,

first-serve basis. After major tropical systems that impacted

the northeastern United States like Sandy (October 2012) and

Irene (August 2011), utilities requested resources sooner and

in greater numbers just to be prepared for subsequent events.

An outage prediction model can provide the lead time that

can help make the mobilization decision sooner, and thus,

enable the request for mutual assistance to be addressed

faster. In terms of cost, one storm of this magnitude can cost

a utility of the order of $1 million per day [26].

To illustrate these ideas in the context of an operational

deployment, consider the IBM outage prediction model

derived from [23]. Specifically, this is with Hydro One,

Ontario’s largest distribution utility (a service territory of

approximately 800,000 km2 in area). In April 2017, a major

storm hit the region, bringing torrential rain, an inch of ice,

and wind gusts up to nearly 100 km/h. More than half

a million people lost power. Figure 3 illustrates the

capabilities available to Hydro One prior to that storm. Two

of the three maps show Hydro One’s service territory

decomposed by service districts, colored by the number of

outages, following the color legend on the left. Map (a)

shows the operational outage prediction 72 hours before the

event. For comparison, map (b) depicts the distribution of

actual outages that occurred. To illustrate the skill of the

prediction, map (c) shows the mean absolute error (MAE)

between maps (a) and (b). The service districts are colored

by the MAE in the outage prediction following the legend

to the lower left. Following the lead time requirements

discussed earlier, these forecasts enabled Hydro One to

position 1,400 front-line personnel, who were needed to

restore power and to handle the nearly 130,000 customer

Figure 3

Example outage prediction for the Hydro One service territory in

southern Ontario. (a) 72-h lead time. (b) Actual outages. (c) MAE for

the outage prediction.
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calls during the event. The utility was able to restore power

to its customers’ homes and businesses within 4 days. By

contrast, after a major storm in 2016, it took 6 days to

restore power because there was no outage prediction

model in place at Hydro One in 2016 [27]. Operators at the

time likely did not have the advance warning such a

predictive tool could provide and, therefore, were not able

to make the same preparation decisions in sufficient time to

materially improve the restoration process prior to the

2016 event.

3.2 City emergency operations and flooding
Flooding impacts in many regions have increased in

frequency in recent years, including underestimation of the

ongoing risk (e.g., [28]). In 2018 alone, southern California

experienced heavy rains, whereas Hurricanes Florence and

Michael impacted the Gulf Coast, southeast, and mid-

Atlantic regions of the United States. In many regions,

urban flooding and associated impacts are a growing source

of significant economic loss and social and infrastructure

disruption. Suburban development has created increased

flooding into urban areas along with aging and frequently

undersized infrastructure in many communities, coupled

with an inability to maintain existing drainage systems and

uncoordinated watershed management [29].

Major urban regions can be affected by flooding,

especially in coastal areas. A notable example is

post-tropical cyclone Sandy, which impacted much of the

eastern United States from coastal regions to the Midwest in

October 2012. Urban centers in the northeastern United

States suffered significant overland flooding and wind-

driven storm surge [30].

When Sandy came ashore near Atlantic City, NJ, USA,

with roughly 130-km/h winds, it drove catastrophic

flooding into many communities north of the landfall along

the New Jersey shore and New York City to Long Island,

NY, and coastal Connecticut. Sandy’s size brought

tropical-storm-force winds nearly 800 km from the center

of the storm. The size of the wind field combined with the

angle of approach to the northeastern United States piled

storm surge waters into the shorelines of these areas,

causing historical flood levels that had not been seen in

recent times, or ever in some locations. The storm surge

impact was exacerbated by arriving near or at the time of

high tide in some locations like New York City, where 2.7

m of storm surge waters contributed to the already high

astronomical tides. The all-time record tidal maximum at

the NOAA reporting gauge at the Battery (i.e., the southern

tip of Manhattan) the evening of October 29, 2012 was 4.23

m, far surpassing the previous record of 3.41 m during the

great hurricane of 1821 [31].

Storm surge flood waters rushed into lower Manhattan and

the outer New York boroughs, infiltrating utility systems,

most of which are underground. Although preparations were

made prior to landfall, the magnitude of the storm and its

eventual impact were underestimated. In some situations, the

dire predictions made with a few days of lead time were not

fully believed. The electric utility, Consolidated Edison, had

plans to preemptively shut down parts of its underground

network in lower Manhattan to reduce damage when

flooding from storm surge infiltrated the system. However,

the impact was greater than expected, including parts of the

city that had not flooded previously. In addition, many of the

flood wall barriers established at power plants were

overtopped by the surge waters, causing impact in places that

were believed to be adequately protected [32].

The city of Rio de Janeiro, Brazil, often faces the

consequences of intense rainfall, which include landslides

and flooding. In early April 2010, the city endured the worst

rainstorms compared with the previous 48 years. This was

considered one of the most significant global weather

events of 2010 [33]. These storms led to flooding, including

flash floods and mudslides. As a result, there was a

significant loss of life, and tens of thousands lost their

homes [34, 35]. There was little advance warning of the

storms and their characteristics and, hence, no opportunity

for an effective response. To assist in planning for such

events in the future, the city’s leaders enabled sophisticated

capabilities for the coordinated management of disasters,

emergencies, or planned events of importance. This would

lead to the ability to provide lead time on flooding with a

significant impact on the city infrastructure and citizens

[36]. Unfortunately, some of the capabilities deployed in

response to the April 2010 floods lapsed in the intervening

years. As a result, there have been recent events with

similar impacts as those in 2010 (e.g., [37, 38]). As part of

any such effort to provide warnings, the integration of

advances in hydrometeorological research is a key

prerequisite. For cities like Rio de Janeiro, there are a

number of challenges, which were first effectively

addressed for operational forecasts by Treinish et al. [9].

This approach to flood impact prediction follows the

methodology outlined in Section 2.2. Considering Figure 2 as

a guide, the meteorological model (Deep Thunder) is tailored

to the Rio de Janeiro metropolitan area. Predictions of

accumulated rainfall, instantaneous rainfall rate, runoff from

the land surface model, etc., are used to drive a two-

dimensional (2-D) surface runoff model. Water levels and

flood risk are derived from that model, also described in [9].

The availability of reliable local data, especially in real time,

was a significant constraint on the fidelity of the models. No

observations were available for data assimilation.

Furthermore, there were no detailed data of land use, soil,

drainage, etc. Only LIDAR-derived digital elevation data

could be used for the runoff model. In contrast, very good

historical flooding data were available. That required an

assumption of an impervious surface. Since the gravity-

driven flow is to first order the primary driver for flood risk in
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Rio de Janeiro, this was an acceptable approximation since

subsurface vertical effects are negligible. This leads to a

solution of the two-dimensional shallow water equations.

Since this is one equation with one unknown, depth, it can be

solved implicitly with a linear system. In addition, there was

an evaluation of other methods to assess storm impact,

including using the predicted water level as an input to a

simulation of traffic.

An example of these ideas is shown in Figure 4. Each

portion of the figure is from the end of a 48-hr hindcast

animation sequence (frames every 10 minutes). The top

portion (a) shows one output from Deep Thunder as a

hindcast for the aforementioned April 2010 strong

convective event in Rio de Janeiro. It is a snapshot with

both 2-D and 3-D features at 1-km horizontal resolution.

The forecasted accumulated precipitation is used to color a

3-D map (extruded surface) of the weather model

topography, following the color legend in the upper right.

Additional overlays include coastal boundaries, rivers, and

other features. The other 3-D feature is white, translucent

surfaces that illustrate boundaries of dense clouds.

Although Figure 4 shows results of a hindcast,

visualizations like these and others derived from the forecast

models were disseminated operationally via a web portal that

supports the display of and interaction with model outputs

[9]. The middle portion (b) also shows an extruded 3-D

surface of terrain derived from a 1-m-resolution digital

elevation map of the city and rendered via Google Earth. It

has been colored by the predicted water level from the

aforementioned runoff model. Isolated areas of high water

are seen in red, following the color legend in the lower left.

The bottom portion (c) shows the output of an agent-based

traffic simulator for predicting the effects of high water on the

flow of vehicles in part of the city. Streets are colored by the

traffic speed overlaid on standard maps within Google Earth.

The behavior of individual drivers of vehicles is learned from

probe-car data (e.g., route selection considering travel time

and distance and the number of turns). This can be used by

decision-makers in the city government to determine prior to

a flood what roads to close and where and when to reroute

traffic to avoided traffic jams caused by floods [39].

While such coupled capabilities have rarely been

deployed on an operational basis for planning responses to

urban floods, there are opportunities to advance the fidelity

of such models, assuming the current availability of reliable

environmental observations to be assimilated into

meteorological and hydrological models. In addition to the

aforementioned improvements in the meteorological

models, there have been significant efforts in enabling more

realistic urban flood prediction models [40].

4 Impacts of a future climate
In 2007, half of the world’s population lived in urban areas,

and by 2050, it is estimated that 66% of the world’s

population will live in urban areas [41]. The effect of

climate change will be experienced to a greater extent in

cities compared with the surrounding rural areas given

expected increases in temperature and the vulnerability of

the environment to more extreme weather events. In a

recent article, Tewari et al. studied the interaction of urban

heat island and heat waves under current and future climate

conditions and found that urban heat island intensity during

heat-wave periods and in a warmer climate gets amplified in

two large and growing U.S. metropolitan areas [42].

Specifically, they found that the intensity is increased by

21% in Phoenix, AZ, USA, and 48% in New York City for

the 2070–2090 period.

Alfieri et al. studied the changes in the observed climate

extremes in global urban areas [43]. Using observed

station data for 217 urban areas across the globe, they

showed that these areas have experienced a significant

increase in the number of heat waves during the period

1973–2012, whereas the frequency of cold waves has

declined.

Figure 4

Coupled model example from precipitation prediction in Rio de Janeiro

to impacts of flooding on traffic. (a) Clouds and precipitation. (b) Water

level. (c) Traffic flow rate.
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Furthermore, the changing climate is leading toward an

increase in the frequency of flood peaks. Estimates point

toward an average doubling of severe flood peaks with a

return period of 100 years within Europe by 2045 [44].

Among many examples, consider that in December 2015,

there was unprecedented flooding in the Chennai region of

India as a result of heavy rainfall. The lack of warning had a

significant impact on the population, especially for those

with disabilities [45].

Portions of Houston, TX, USA, were submerged in more

than 1.5 m of water after Hurricane Harvey’s landfall in

August 2017. Trenberth et al. [46] showed that before the

beginning of the northern hemisphere summer in 2017,

ocean heat content (OHC) was the highest on record

globally and in the Gulf of Mexico. The high OHC

increased energy in the atmosphere via ocean evaporative

cooling, which was available to sustain and intensify

Hurricane Harvey. It also increased the rainfall as observed

on land due to Harvey. They attributed this large amount of

rain to a warmer climate.

Given what occurred in Houston due to Harvey, Shapiro

et al. [47] analyzed the vulnerability associated with four

other low-lying U.S. cities: New Orleans, LA; Tampa, FL;

New York; and Miami, FL. Shortly after its publication,

Hurricane Irma battered parts of the U.S. mainland and the

Caribbean. It was a Category 5 storm when it made landfall

on Barbuda on September 6, 2017. Its winds were 220 km/h

for 37 h. Tropical-storm-force winds extended 220 km from

the center. Its coastal storm surges were 6 m above normal

tide levels [48].

One such catastrophic event, Phailin, and its modulation

under climate change in the Bay of Bengal was studied by

Mittal et al. [49]. Phailin, which made a landfall around

18:00 UTC on October 12, 2013, was the most intense

cyclone to make landfall in India since 1999 (equivalent to

a Category 5 Atlantic storm). It caused $700 million in

damage in the state of Odisha. Mittal et al. [49] found that

Phailin (in a future climate) will have a deeper core and

expanded size. This would lead to a higher damage

potential compared with the present day.

When such large tropical systems make landfall in

coastal urban regions, they amplify the vulnerabilities of a

population living there. Thus, coastal areas and the

infrastructure required for their safety and livelihoods

need more attention in the light of climate change and

increased urbanization. In their work on future

intensification of hourly precipitation extremes, Prein

et al. [50] showed that precipitation is increasing with

temperature in moist, energy-limited environments and

decreases abruptly in dry, moisture-limited, environments.

Frequencies and intensities of extreme weather events

directly affect settlement vulnerability. When combined

with rapid urbanization, these factors also influence urban

resilience to climate-related hazards. Chow [51] examined

how urban resilience can be maximized in the context of

extreme hydroclimatic events (i.e., droughts and floods),

with a specific case for Singapore. Willems et al. [52]

provided a review of the state-of-the-art methods for

assessing the impacts of climate change on precipitation at

the urban catchment scale. In their work, they discussed

the need for downscaling from global circulation models

or regional climate models to urban catchment scales. For

urban drainage studies, climate models are not able to

accurately describe the rainfall process because the

information is needed at a very high temporal and spatial

resolution. They also discussed some of the difficulties of

climate change impacts at these local scales, such as 1) the

inaccuracies of climate model simulation results for short-

duration extreme rainfalls at a local scale; 2) the necessity

of empirical statistical downscaling methods, and the

uncertainties involved in this process; and 3) the

difficulties of identifying climate change trends in

historical series of rainfall extremes because of short- and

long-term persistence.

Some of these challenges in modeling the future climate

and its impacts can be addressed by using the pseudo-global

warming (PGW) method, where one can dynamically

downscale from the climate models by adding a climate

signal to the current high-resolution analysis of the

atmosphere for the future period of interest. As discussed

in [53], the climate perturbation’s primary impact is on

the large-scale planetary waves and associated

thermodynamics, whereas the weather patterns entering the

domain boundary remain structurally identical in

simulations in terms of frequency and intensity. The

weather events, however, can evolve within the regional

model domain due to the altered planetary flow and

thermodynamics as demonstrated in [42] and [49]. Since

this approach resolves relevant physical processes (e.g.,

precipitation, orographic, or urbanization influences), it

helps to address limitations with other downscaling

techniques or using bias-corrected global climate models.

Other issues with the inherent biases of climate models can

also be addressed, to some extent, by generating the

perturbation from ensemble means derived from several

climate models.

Figure 5 illustrates how we can combine the approach

used for operational prediction of severe weather impacts

on urban environments to estimate potential impacts in a

future, warming climate via the PGW method as well as to

evaluate mitigation and resiliency strategies. Historic

weather events provide the appropriate context. In step 1, a

climate signal (i.e., as perturbations) is derived from global

climate model(s) and combined with reanalysis to force a

regional or local weather model for the event of interest. In

this case, we apply the approach used for Deep Thunder in

urban applications. To evaluate the quality of the model, the

same configuration is used without the climate signal in
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step 2 and verified against historical observations. To

evaluate the effectiveness of proposed changes to the urban

environment to reduce the intensity of an urban heat island,

step 3 is taken. The changes are imposed in the specification

of land use and the urban canopy, for example, for the

model run in step 1. In step 4, the results from steps 1 and 3

are compared to evaluate the effect of the mitigation

strategy.

As a step toward such objectives, consider the

discussion in Section 3.2 concerning the devastating

impacts of post-tropical cyclone Sandy. The risks from

such severe events are expected to increase due to climate

change, which could result in more frequent infrastructure

impacts, including water and transportation systems and

power grids. Yates et al. [54] used a scenario-based

approach to examine the impact of warmer atmospheric,

soil, and sea surface temperature to investigate how these

parameters would affect a Sandy-like storm in a future,

warmer climate. A 2090 scenario showed that such a storm

could make landfall in western Long Island, where there is

more widespread rainfall, up to 4 cm for the 24-h period of

the simulations. In their study, they performed a storm

surge analysis and found that maximum water levels

computed for future simulations of Sandy are significantly

higher than the actual levels recorded in some areas of the

New Jersey and Long Island coasts with significant

damage to electric utility infrastructure. Lackmann [55]

studied structural changes to Sandy for past and future

climates by developing a dynamically downscaled

ensemble. Wanik et al. [56] also revisited Sandy’s impact

in Connecticut, leveraging their outage prediction work

referenced earlier [29]. They included estimations of

population growth for a 2100 scenario, but did not assume

any changes to the distribution system infrastructure. They

found significant increases in power outages due to

changes in intensity from a Sandy-like storm in a future,

warmer climate.

5 Conclusion and future work
Given the increased risk over time and higher frequency of

major environmental events, it is of utmost importance for

those organizations responsible for critical services in urban

population centers to proactively manage and recover

quickly from environmental impacts. Cities in the twenty-

first century are facing a growing challenge due to climate

change because of the expected increase of urban disasters

[57]. A critical aspect of meeting this challenge in planning

and response is stakeholder communication. Expected

actions must be communicated proactively and well in

advance so that planners, responders, the general public,

and other stakeholders can adequately prepare. That is only

possible with the availability of highly localized and

accurate environmental (weather, hydrological, and impact)

forecasts coupled with decision support tools. While these

actions tend to be relatively short-term and tactical, the

capability to support them is a long-term goal because of

the impacts of a warming planet, especially in urban areas.

The use of coupled predictive environmental models can

be a critical asset for improving the efficiency and

effectiveness of planning and response to urban weather

and climate impacts. This includes weather predictions

focused on metropolitan areas coupled to data-driven,

stochastic, and other impact models to forecast the

environmental impacts. We have presented the rationale for

an integrated approach to such coupled modeling, and the

issues that need to be addressed for a viable

implementation. This includes the design of the systems and

the underlying numerical weather prediction that support

both hindcasting and forecasting. The approach also

addresses methods to extract key spatial–temporal features

to drive the coupled models such as an abstraction of the

weather forecasting component. While we have focused on

only a few use cases whose relevance is increasing due to

changing climate, namely flooding [45, 50–52] and

disruption of the electrical grid [58], the methodology

applies to other applications in the urban environment.

From a deployment perspective, characterization of issues

such as calibration of data and quantifying uncertainty as

well as the challenges for broader scalability must be

addressed.

Future workwill focus on the integration of coupledmodels

and computing systems tomeet the growing need for more

effective urban planning and response to environmental

impacts, and to enable advanced approaches as outlined above

to be deployed. These approachesmust necessarily leverage a

diversity of models, data, and applications along with

increased spatial and temporal fidelity in a scalable

framework in order tomeet current and future needs.
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