
56 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y

T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e C o m m o n s
A t t r i b u t i o n 4 . 0 L i c e n s e . F o r m o r e i n f o r m a t i o n ,

s e e h t t p s : //c r e a t i v e c o m m o n s .o r g / l i c e n s e s / b y /4 . 0 /

FOCUS: INFRASTRUCTURE AS CODE UNLEASHED!

INFRASTRUCTURE AS CODE
(IaC)1 is an approach enabling the
automation of several deployments,
configurations, and management
tasks that otherwise would have to
be performed manually by an op-
erator. IaC brings many benefits in a
cloud computing context as it saves
time and resources when an applica-
tion needs to be redeployed on a dif-
ferent set of resources or needs to be
extended with new components or run
on different cloud infrastructures. As
such, IaC has represented a very im-
portant progress that has dramatically
changed the work organization of
many IT-intensive organizations (e.g.,
Netflix2). The main advantage of us-
ing IaC is repeatability: Once the right
process is codified, it can be repeated
as many times as desired in exactly
the same way. IaC code, similar to any
software, can be versioned and writ-
ten by a collaborating team bringing
together multiple expertise. In general,
any benefit coming from traditional
software design, management tools,
and concepts is also a benefit for IaC
software:3 security by design, automa-
tion, testing, reusability, auditability,
and so on. To this end, our proposal
is that the application of DevOps and
the extended DevSecOps4 philosophy
can enable the creation of such secure,
reliable, and self-healed IaC software.

Introduction
In this article, we suggest a holistic
approach and framework for the de-
velopment and execution of trust-
worthy IaC, being it secure, integral,
and self-healed. The remaining arti-
cle is organized as follows: The chal-
lenges to operate trustworthy IaC are
presented and discussed in the four
stages of the DevSecOps process (see
Figure 1). The tools and practices
proposed to overcome these are de-
tailed for each phase. The article

Embracing IaC
Through the
DevSecOps
Philosophy
Concepts, Challenges, and
a Reference Framework

Juncal Alonso , TECNALIA-Basque Research and Technology
Alliance (BRTA)

Radosław Piliszek, 7bulls.com

Matija Cankar, XLAB d.o.o.

// We introduce the challenges of DevSecOps

philosophy and its applicability to the development

and operation of trustworthy infrastructure-as-

code, and we combine the solutions into a single

framework covering all crucial steps. Finally, we

discuss how the proposed framework addresses the

challenges and introduce an initial design for it. //

Digital Object Identifier 10.1109/MS.2022.3212194
Date of current version: 23 December 2022

https://orcid.org/0000-0002-9244-2652

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 57

ends up with the conclusions and the
next steps to be addressed.

Challenges
The first set of general challenges
affect all DevSecOps stages and are
cultural. These challenges are the
result of the paradigm shift, which
is happening slowly and is deriving
from the following:

1. Market fragmentation:5 Tools
currently in the market are
fragmented for infrastructure
provisioning, configuration,
deployment, and orchestration.
The toolchain used to cover
all DevOps phases depends on
the ability of the DevSecOps
teams to integrate them all.
For instance, CloudFormation

(https://aws.amazon.com/cloud-
formation/) could be used to
set up the virtual machines and
connect them to the network,
Chef (https://www.chef.io/) to
configure and secure the virtual
machines, and Docker (https://
www.docker.com/) to container-
ize the application. The fragmen-
tation leads to the requirement
of wide (IAC) skills.6,7

2. Requirement of wide (IaC) skills.
Existing IaC languages and tools
are based on different program-
ming and executing paradigms. As
such, using them in combination
or passing from one to the other
requires significant skills and
reaching such levels require signifi-
cant time in learning and training.

In addition to the previously men-
tioned overarching challenges, we
identified more specific ones based on
research findings, and6,8 and com-
posed a complete list of IaC chal-
lenges to be addressed by DevOps
teams as follows:

• market fragmentation
• requirement of wide (IaC) skills
• definition of well-known IaC

code patterns
• difficulty in replicating errors
• IaC languages specificities and

tools heterogeneity
• security and trustworthiness
• configuration drift
• changing infrastructure

requirements.

We divided the specific challenges
into the four stages of the DevSecOps
process presented in Figure 1.

The first DevSecOps phase, named
Plan, Create, and Package the IaC,
includes the following challenges:

3. Definition of well-known
IaC code patterns: Patterns,
techniques and architectural
elements that need to be applied
to improve quality objectives
(e.g., caches for performance,
load balancers for scaling,
circuit breakers for reliability)
and availability of deployments
(e.g., canary releases, blue/green
deployment) are well-known
ones, but are not yet coded as
well-defined IaC patterns.

4. Difficulty in replicating errors:6
Like any other piece of code, IaC
is subject to errors. Since the ini-
tial IaC is developed by humans,
there is always the chance that it
contains minor errors that will
only produce impact after some
time.

5. The large variety of infrastruc-
tures to be provided can make
a manual process quite cumber-
some:7 Depending on the stage
of the application, e.g., develop-
ment, testing, integration, pre-
production, or production, the
infrastructure to be provisioned
varies and the IaC is affected by
these changes.

The second DevSecOps phase,
named Verify the trustworthiness of
IaC includes the following challenge:

6. Security and trustworthiness:6
Systems created with IaC work-
flows are often large and complex
to maintain. What seems like
minor configuration change in
the IaC code, can be spread out
to different parts of the system
(or other systems), producing is-
sues. Due to the large number of

FIGURE 1. The DevSecOps workflow with phases.

Plan, Create
and Package IaC

Verify
the Trustworthiness

of IaC

Monitor, Plan
and Self-Heal IaC

Release and
Configure IaC

OpS
Runtime

DeV
Design
Time

Sec

Rele
as

e

Pac
ka

ge

Plan

Monito
r

ConfigureC
re

at
e

Verify

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/

58 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INFRASTRUCTURE AS CODE UNLEASHED!

dependencies and the aim for
stable environments, it is dif-
ficult to manually keep track of
their potential security vulner-
abilities and make updates
when necessary.

The third DevSecOps phase, named
Release, Configure, and deploy IaC in-
cludes the following challenges:

7. Configuration drift:9 Once a
system is created via an IaC
workflow, any attempt to manu-
ally modify its configuration
(even just to patch a security
issue) will lead to a dangerous
misalignment (config drift) be-
tween the actual system and its
infrastructural code.

The last DevSecOps phase, named
Monitor, self-heal, and replan,5 fo-
cuses on the following:

8. Changing infrastructure re-
quirements: The infrastructure
requirements may change over
time: for instance, one may
need to move their application
(or parts of it) from a private
on-premises environment to a
cloud/edge one or may have to
change cloud provider or use
more than one at the same time.
This challenge also includes the

maintainability of the IaC and
its consistency to the changes
and needs of the infrastructure.

Plan, Create, and
Package

Designing Exploitable Abstractions of
Execution Environments
Creating a new IaC is very complex
job without tools or templates. That
is why the design time (Figure 2)
features an integrated development
environment (IDE) that include
a dedicated modeling language—
DOML (the DevSecOps modeling
language), similar to the one docu-
mented by Rahman et al.6—which
allows describing the cloud appli-
cations and its infrastructural re-
quirements without specificities of
different IaC languages. Users can
describe application layers together
with an abstract infrastructural
layer. With the help of integrated
tools, the initial layers are augmented
with a concrete infrastructure layer
and optimized layer.

The framework, including DOML
Editor, offers tools to analyze the
DOML model finalized by users
with respect to security, best prac-
tices, and validity constraints as well
as static security testing tools to run
checks against the resulting DOML.
The latter step is covered by a Model

checker: a verification tool that in-
spects the DOML application in-
frastructure blueprint and detects
inconsistencies in the model and the
application deployment template.
The checker detects missing parts,
dependency cycles, and various is-
sues that can be detected from the
high-level language perspective. Af-
ter a successful check, the applica-
tion blueprint is translated in the one
or more target IaC languages like
Terraform, OASIS TOSCA, and/or
Ansible using an IaC Generator.

The IDE integrates all DOML re-
lated tools including the syntax col-
oring for DOML. When the IaC for
a particular target language is cre-
ated, the IDE also provides the pack-
aging tool, to combine the content in
a single file (CSAR—cloud service
archive or Zip).

Optimization of the
Deployment Configuration
The infrastructure optimizer or IaC
optimization platform (IOP) is a tool
designed to work directly with the
DOML model to ensure that it de-
scribes an optimal infrastructure so
that the created IaC is optimal. The
IOP decisions are able to combine
both resource-provider-declared as
well as self-gathered historic data,
which are kept and maintained by
an internal service which is accessible
also from the outer through an appli-
cation programming interface (API)
and a GUI. IOP uses this data to pro-
pose the optimal DOML that satis-
fies the user-provided constraints.

Verify Trustworthiness
To strengthen the infrastructure
automation revolution, DevSecOps
engineers deserve the same kind
of tools and development environ-
ment as any other software devel-
oper. Our main goal is to allow the FIGURE 2. The design phase of DevSecOps.

DevSecOps
Design Time

GUI/IDE

Plan, Create, and Package laC

Verify the Trustworthiness of IaC

Integrated Development Environment

DOML
Editor

DOML
Checker

Infrastructure
Optimizer

IaC
Generator

IaC
Scanner

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 59

DevSecOps team to work with in-
frastructural code as they do with a
traditional application code, start-
ing from the definition of require-
ments for the infrastructure—such
requirements are expressed in terms
of technical capabilities the applica-
tion-level software should offer—to
the design, implementation, verifica-
tion, deployment, testing, operation,
and monitoring of such infrastruc-
tural code. Treating the infrastruc-
ture specification as code instantly
brings the code processing benefits
such as modeling approaches, the
usage of templates, repetitiveness,
and automation. Moreover, we can
apply code inspection tools that can
check the code’s validity and trust-
worthiness at the design time and
inside the continuous integration/
continuous delivery process.

DevSec: Static IaC Inspection
The static application security test-
ing (SAST) checks guarantee us to
shift security left as much as possi-
ble. SAST is a modern approach to
test the application for known vul-
nerabilities, caused by type errors,
misconfigurations, or software er-
rors. One source of known vulnera-
bilities is OWASP (https://owasp.org/
www-community/vulnerabilities/).
In our case, the SAST is applied
through three-fold verification and
inspection of the infrastructure as a
code as follows:

1. Model checker: Already pre-
sented in the "Plan, Create, and
Package" section, this corre-
sponds to a first step of secu-
rity inspection executed over a
high-level module and verifies a
cohesiveness of module with the
basic functional and non-func-
tional requirements expressed
from the user.

2. IaC scanner (security inspector):
The IaC scanner takes the IaC
translated from the DOML and
runs multiple linter and security
tools to inspect the IaC. The
goal is to find inconsistencies,
typos, IaC-language-specific
model errors, and run other
checks available in open-source

community or among propri-
etary services.

3. IaC scanner (component se-
curity inspector): The IaC can
depend on multiple components
provided by community or IaC
language developers. Errors
and misconfigurations in IaC
templates, IaC libraries, and
collections (e.g., Ansible col-
lections) expand attack sur-
face and number of potential
issues for our application. Each
dependency should be verified
(md5 check), inspected to detect
misuse, inappropriate configu-
ration, and outdated libraries
suffering from known vulner-
abilities. This component in-
spector is powered by the active
knowledge database, where a set
of services is gathering informa-
tion of known components/de-
pendencies, their release changes
and security fixes.

Security inspection is a continu-
ous task. Even though SAST ap-
proaches were designed to be used
at the design time, they should also
be scheduled later, to track the com-
ponent updates, new discovered vul-
nerabilities, and zero-day exploits.
A preliminary development of the
DevSecOps engine for executing

various IaC SAST checks is available on
GitHub (https://github.com/xlab-si/
iac-scan-runner/) effectively com-
bining the B and C components de-
scribed previously.

Release, Configure,
Check, and Deploy

Git Repository: The Getaway
to Runtime
After the solution is modeled, con-
verted, and verified statically, the
time has come to test the deployment
and involve the runtime of the pro-
posed framework (Figure 3). The way
from design time to runtime goes via
Git tooling, e.g., GitHub, GitLab,
and Gerrit. The assumption is that
the code is controlled and executed
in a GitOps manner—this way the
running IaC is known and kept ar-
chived, and the access control is kept
like for any other kind of code. With
a strict config, it is possible to avoid

To strengthen the infrastructure
automation revolution, DevSecOps

engineers deserve the same kind of
tools and development environment

as any other software developer.

60 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INFRASTRUCTURE AS CODE UNLEASHED!

creating config drifts which again
improves the overall security posture
of the deployed solution. However,
configuration drift can happen also
during the runtime, which needs to
be detected by monitoring and fixed
with self-healing.

The Environment for
Predeployment of IaC
On the boundary of design time and
runtime, there is a tooling for IaC
predeployment, the Canary Sand-
box Environment (CSE) which al-
lows testing of dynamic properties
of the generated IaC. The CSE tool-
ing allows to create opinionated
local environments, such as Open-
Stack, and to mock APIs of public
cloud providers. This is an optional
but recommended step that proves
useful to weed out issues in the IaC
before they reach production. The
issues caught at this stage are not
normally possible to be caught at the
static analysis step as they depend
on the in-runtime application of
the IaC. They include issues related
to, e.g., assumptions about existing

resources, interdependencies, and
race conditions. The dynamic analy-
sis involves running the IaC in vivo
so any shortcomings of the IaC and
its supporting tooling are thus ex-
posed more easily.

IaC Execution and Orchestration
From the git repository, the IaC is
handled by the runtime control-
ler. The controller orchestrates the
rest of the runtime tooling to achieve
coherency in the runtime—the IaC
execution manager (IEM) receives
the IaC to deploy, and infrastructure
advisor is configured to monitor the
new deployment after the monitor-
ing agent are ready. The target of
the IaC can be any supported pub-
lic cloud provider or a local cloud
based on OpenStack, VMware, or
any analogous solution. All changes
to the infrastructure go through the
runtime controller and the IEM,
thus both tools are always aware of
the current state of the deployment.
Indeed, the self-healing mecha-
nisms rely heavily on the robustness
of this runtime stack.

Monitor, Self-Heal,
Replan

SecOps: Dynamic
(Runtime) Inspection
Live applications on the virtual in-
frastructure are constantly in threat
of various incidents that affect the
application performance, availabil-
ity, integrity, and data safety. The
infrastructure monitoring compo-
nent tracks events with sensors and
process them. The security incidents
during the runtime are traced by ap-
plying dynamic application security
testing (DAST) approaches with live
security monitoring. The first step
of threat detection, integrity check-
ing, incident response, and compli-
ance in our solution is tackled by
the Wazuh tool (https://wazuh.com/)
where the user can configure tests
and track the application security
state and test results through a GUI.

From a huge pool of AIOps meth-
ods10 our next step of security in-
spection was selected. It relies on
the power of the natural language
processing (NLP) for system and

FIGURE 3. The runtime phase of DevSecOps.

DevSecOps
Runtime

GUI/Dashboard

Release and Configure IaC

Monitor, Plan, and Self-Heal IaC

Integrated Development Environment

Runtime Controller

Canary Sandbox
Provisioner

IaC Execution
Manager

Infrastructure Monitoring

Self-Learning
IaC

Self-Healing
IaC

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 61

application logs. The AI/ML-pow-
ered log monitoring inspector auto-
matically analyses messages from
historical logs, their severity, fre-
quency, and format, and, with the
power of deep learning techniques
designed for NLP, understands the
normal log flows in such a detail,
that abnormalities are efficiently
spot ted. Based on sel f-learned
knowledge, the system can perform
unsupervised anomaly detection
on the log data and issue notifica-
tions when application is behaving
unexpectedly. Presented DAST ap-
proaches use triggers to interact with
other runtime services that together
maintain the application lifecycle
and initiate self-learning and self-
healing approaches to put the appli-
cation back in order.

Secured and Self-Healed IaC
The infrastructure monitoring com-
ponent receives the configuration
request from the runtime control-
ler. It then acts upon all its sub-
components (monitoring agents,
time series data bases, self-learn-
ing, and self-healing) to set them
up to work with the new deploy-
ment. There are two branches of the
monitoring solution. One involves
performance and general availabil-
ity metrics, and the other involves
dynamic security testing. In addi-
tion to “merely” monitoring the
deployment, the DevSecOps frame-
work offers self-learning, which ap-
plies machine learning to gain new
knowledge from the metrics and
events data—detect patterns and
draw conclusions. Both raw moni-
toring as well as self-learning store
the information so it can be ex-
ploited by the optimizer discussed
previously. They can also signal se-
vere abnormalities to the self-heal-
ing subsystem which creates an

emergency plan and utilizes a run-
time controller to enact it. The com-
prehensiveness of these components
ensures that operators do not forget
about the so-often-forgotten A in
the CIA triad, nor do they have to
worry about composing their own
solution to monitoring of the differ-
ent aspects of their infrastructure.
(CIA Triad is an information secu-
rity model, based on three princi-
ples—confidentiality, integrity, and
availability.)

A s discussed throughout this
article, DevOps teams in
general and IaC develop-

ers in particular, are facing a set of
unsolved challenges in the manage-
ment of IaC which prevent organi-
zations from fully embracing this
paradigm. Therefore, we proposed
a DevSecOps framework to address
the identified challenges in develop-
ing and maintaining secure, integral,

and self-healed applications de-
signed with IaC (see the overview in
Table 1). The envisioned framework
and novel concept of DevSecOps
combined provide a solution that
improves the consequences of the
market fragmentation of the tools
for infrastructure provisioning, con-
figuration, deployment, and orches-
tration. The result minimizes the
potential interoperability problems
through the IaC tool chain and re-
duces the required skill set and time
for mastering the DevSecOps ap-
proach. The proposed approach au-
tomatizes the process of trustworthy
IaC creation from the design to the
runtime. In all stages, the user has
a guidance and control to achieve the
best results with IaC creation and sug-
gestions for integration of monitoring
and self-healing mechanisms in the
target application. The holistic man-
agement of the IaC tool chain increases
the interoperability of the phases and
decreases the learning curve.

Table 1. The relationship of the challenges for
trustworthy IaC development and the component

addressing it in the proposed solution.

IaC challenge DevSecOps framework component

1. Market fragmentation DevSecOps framework (all components)

2. Requirement of wide (IaC) skills DevSecOps framework (all components)

3. Definition of well-known IaC code
patterns

IaC generator, IaC execution manager, infrastructure
monitoring, self-learning IaC, self-healed IaC

4. Difficulty in replicating errors IaC scanner, canary sandbox environment, infrastructure
monitoring, self-learning IaC, self-healed IaC

5. IaC languages specificities and
tools heterogeneity

DOML editor, IaC generator, IaC execution manager

6. Security and trustworthiness Model checker, IaC scanner, infrastructure monitoring

7. Configuration drift IDE, IaC generator

8. Changing infrastructure
requirements

DOML editor, infrastructure optimizer, infrastructure
monitoring, self-learning IaC, self-healed IaC

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: INFRASTRUCTURE AS CODE UNLEASHED!

The first proofs of concept of
the solution have been released in
the end of 2021 as part of the PIA-
CERE H2020 project (https://www.
piacere-project.eu/). The initial eval-
uation of the proposed solution is
taking place into industrial pilots
addressing three different business
domains (i.e., public administra-
tions, critical maritime infrastruc-
tures, and public safety on IoT in
5G) that guide soliton development
with concrete requirements and
challenges from the field work. The
final fully functional and validated
solution is planned to be released in
November 2023.

Acknowledgment
This work was supported in part by
the European project PIACERE (Ho-
rizon 2020 research and innovation
Program, under grant 101000162).

References
1. K. Morris, Infrastructure as Code.

Sebastopol, CA, USA: O’Reilly

 Media, 2016.

2. “How we build code at Netflix.”

Netflix Tech Blog. [Online]. Avail-

able: https://netflixtechblog.com/

how-we-build-code-at-netflix

-c5d9bd727f15

3. M. Guerriero, M. Garriga, D.

A.Tamburri, and F. Palomba.

“Adoption, support, and challenges of

infrastructure-as-code: Insights from

industry,” in Proc. 2019 IEEE Int.

Conf. Softw. Maintenance Evolution

(ICSME), pp. 580–589, doi: 10.1109/

ICSME.2019.00092.

4. L. Bass, I. Weber, and L. Zhu,

DevOps: A Software Architect’s

Perspective. Reading, MA, USA:

Addison-Wesley, 2015.

5. C. Siebra, R. Lacerda, J. Peixoto,

I. Cerqueira, F. Da Silva, and

A. Medeiros, “From theory to

practice: The challenges of a

DevOps infrastructure as code

implementation,” in Proc. ICSOFT

2018 - 13th Int. Conf. Softw.

Technol., pp. 1–10, doi: 10.5220/

0006826104610470.

6. A. Rahman, R. Mahdavi-Hezaveh,

and L. Williams, “A systematic

mapping study of infrastructure as

code research,” Inf. Softw. Tech-

nol., vol. 108, pp. 65–77, Apr. 2019,

doi: 10.1016/j.infsof.2018.12.004.

7. M. Wurster et al., “The essential

deployment metamodel: A systematic

review of deployment automation

technologies,” SICS Softw.-Inensive

Cyber-Phys. Syst., vol. 35, nos.

1–2, pp. 63–75, 2020, doi: 10.1007/

s00450-019-00412-x.

8. K. Indika et al., “The do’s and don’ts of

infrastructure code: A systematic grey

literature review,” Inf. Softw. Technol.,

vol. 137, p. 106,593, Sep. 2021, doi:

10.1016/j.infsof.2021.106593.

9. G. Falazi et al., “On unifying the

compliance management of applica-

tions based on IaC automation,” in

Proc. 2022 IEEE 19th Int. Conf.

Softw. Architecture Companion

(ICSA-C), pp. 226–229, doi: 10.1109/

ICSA-C54293.2022.00050.

10. P. Notaro, J. Cardoso, and M.

Gerndt, “A survey of AIOps methods

for failure management,” ACM Trans.

Intell. Syst. Technol., vol. 12, no. 6,

p. 45, 2021, doi: 10.1145/348342.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JUNCAL ALONSO is a senior researcher at TECNALIA, Derio

E-48160, Spain. Her research interests include software engi-

neering for the cloud continuum, secure cloud federation, and

multicloud-enabled software applications. Alonso received her

Ph.D in cloud computing federation from the University of the

Basque Country. Contact her at juncal.alonso@tecnalia.com.

RADOSŁAW PILISZEK is an IT solutions architect at 7bulls.

com, Warsaw 00-582, Poland. His research interests include

DevSecOps, pursuing agility and simplicity in the infrastruc-

ture as code movement, and hybrid and multicloud solutions,

all using open source tooling, automation, and container-

ization wherever possible. Piliszek received his M.Sc. in

informatics from the University of Bialystok. Contact him at

rpiliszek@7bulls.com.

MATIJA CANKAR is a researcher and project manager at

XLAB d.o.o., Ljubljana 1000, Slovenia. His current research

interests include cloud automation, orchestration, infrastruc-

ture as code inspection, applying open standards (e.g., OASIS

TOSCA), as well as open source technologies and delivering

high-end deployment automatization solutions to end users.

Cankar received his Ph.D. from the University of Ljubljana for

his work on the efficient resource allocation in grid and cloud

computing systems. Contact him at matija.cankar@xlab.si.

	056_40ms01-alonsoibarra-3212194

