
114 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

WHEN I FIRST discovered archi-
tecture decision records (ADRs) eight
years ago, I thought they would be
a useful documentation technique for
describing design decisions and shar-
ing them among my team members.
Since then, I’ve written and reviewed
hundreds of ADRs across multiple
teams, organizations, industries, and
software systems. Through this ex-
perience, I have learned that ADRs
are indeed useful documentation
but also something more. Writing
ADRs facilitates meaningful cultural
change by transforming develop-
ers into architectural thinkers who
strongly value design.

ADRs accomplish this cultural
shift by subtly influencing developers
to change four key behaviors. First,
ADRs change developers’ percep-
tion regarding the value of design.
Second, ADRs encourage developers
of varying skill levels to participate
in design. Third, ADRs increase the
likelihood that developers will follow
through on design decisions. Fourth,
ADRs positively reinforce engage-
ment in design.

These four complementary changes
in behavior evolve developers’ self-
identities. Over time, developers who
write ADRs see themselves as thought-
ful software architects who care deeply
about design. This shift in personal
identity also transforms the team cul-
ture. This meaningful cultural change is
the real value of ADRs.

Increase the Perceived
Value of Design
For many software teams, design is
a distant concern. The architecture
is described in slide decks and other
documents stored in a rarely used re-
pository. Architects from outside the
team might dictate the design, heavily
implying that architecture is not for
developers. Architecture descriptions
can be riddled with jargon and un-
necessary complexity, making the ar-
chitecture abstruse and intimidating.
When the distance between develop-
ers and design is too great, developers
perceive design as having little value.

ADRs help developers see greater
value in design by bringing design
closer to them. ADRs are often written
as small text files stored in the same
version control repository as the code.1
Each ADR describes a single design de-
cision and the rationale for the decision

(see “An Example ADR”). ADRs are
added to an append-only decision log.
When a new decision replaces an old
one, both ADRs are kept, and links
are created between them. Over time,
the decision log forms a history of the
architecture that describes how the de-
sign changed over time.2

ADRs change developers’ percep-
tion regarding the value of design by as-
sociating design with code. The code is
important. Code is stored in the version
control and modified using a standard
text editor. The architecture is in the
version control, and ADRs are simple
text files like code; therefore, by asso-
ciation, the design is also important.

Once that association is estab-
lished, the team’s behavior changes.3
Design is treated with the same im-
mediacy and care as code. Many
teams choose to review ADRs by fol-
lowing the same process they use to
review code. Developers strive to craft
descriptive ADRs just like they strive
to craft clean code. Previously distant
ideas, such as architectural styles,
technical debt, or quality attributes,
become highly relevant topics worthy
of careful consideration.

As developers increase their ap-
preciation of design’s value, more
members of the team will want to

The Psychology
of Architecture
Decision Records
Michael Keeling

Digital Object Identifier 10.1109/MS.2022.3198195
Date of current version: 24 October 2022

http://orcid.org/0000-0002-5732-3156

THE PRAGMATIC DESIGNER

 NOVEMBER/DECEMBER 2022 | IEEE SOFTWARE 115

participate in the design by writing,
reading, and reviewing ADRs. Team-
mates start to notice when design de-
cisions are made and encourage each
other to write ADRs.

For many teams, designing archi-
tecture is a new skill. Not everyone
will be prepared to participate. This

is less problematic with ADRs com-
pared to other design methods since
ADRs provide scaffolding for teach-
ing design just-in-time.

Invite Broad Participation
Traditionally, software design is seen
as an exacting discipline. Precise

models are highly prized for how
they support detailed analysis and
clear communication. The bur-
den of correctness is high. Mushy
abstractions are thought to pro-
vide little value. Exacting for-
malisms and rigid notations erect
barriers that prevent developers

AN EXAMPLE ADR

All ADR templates include the same essential parts: context, decision, and consequences. The context describes the technical,
business, social, or political circumstances that directly influence a design decision. A brief statement describing the design
decision outlines the selected course of action. Consequences describe the expected outcomes—positive and negative—that
result from applying the decision.

Here is an example of a simple ADR.

In this example, the development team has accepted code quality tradeoffs in response to schedule pressure. The team
later refactored the architecture (as indicated by the superseded decision status, with a link to a different ADR) to improve code
quality.

This example uses a basic ADR template. Different ADR templates emphasize different design details, such as rationale,
team reflection, alternatives considered, or even the team’s mood at the time of the decision.

ADR 21: Assign Additional Responsibilities to the Foo Service

Context
We need to introduce Feature X into the system in time for a trade show in less than four weeks. We can deliver Feature X as
a new web service, as a library, or by extending an existing web service. The team feels that the current web services are well
factored, each with clear responsibilities. Feature X requires significantly more RAM and CPU compared to other services but
is forecast to be used rarely (bursty traffic). The fastest the team has ever delivered a new service to production is four weeks.

Decision
We will extend the existing Foo Service to accept Feature X.

Status
Superseded

See ADR 26: Create Bar Service to be Responsible for Feature X

Consequences
We don’t have time to create a new web service, the team’s preferred choice. This is intended to be a temporary decision.
Creating a library has too few benefits. Extending the Foo Service reduces schedule risks (we’ll probably hit the date!) but
increases the cost of rework. We can work to keep the new code decoupled so it’s easier to extract into a new service
later. There’s a risk code coupling will be accidentally introduced, making later architecture changes more difficult. Add-
ing additional responsibilities to the Foo Service increases load, so we’ll need to increase the number of instances.

THE PRAGMATIC DESIGNER

116 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

from participating in design. ADRs
remove these barriers and invite
contributions from experienced and
inexperienced designers alike.

ADRs make design more acces-
sible. Special tools or notations are
not required. Instead of demand-
ing precision, ADRs ask developers
to do the best job they can to accu-
rately describe a single design deci-
sion. Even a poorly written ADR can
improve the team’s communication
about a design decision. Since an
ADR describes a single decision, the
next decision offers a fresh opportu-
nity to write an even better ADR.2

Every ADR reflects the author’s
understanding of the underlying ar-
chitecture and that author’s mastery
over essential design principles. Ex-
perienced architects are more likely to

write concise, comprehensive, and nu-
anced ADRs, but knowledge of pat-
terns or architectural abstractions is
not a prerequisite to writing an ADR.
Encouraging novices to write ADRs
creates opportunities for practicing
design, mentoring, and training that
might not otherwise exist.

Each ADR is a learning opportu-
nity that manifests at the ADR au-
thor’s moment of need. For example,
an experienced reviewer can help an
ADR author replace a paragraph of
text with a reference to a documented
pattern, or to expand consequences so
they demonstrate how a decision in-
fluences important quality attributes.

ADRs can easily be peer reviewed,
just like code. With practice and feed-
back, novice designers improve their
skills and gain experience.

Broad accessibility to design has
other benefits beyond skill building.
It also increases awareness about the
design. As developers become aware
of the design decisions being made,
they will expect the team to follow
the design described.

Follow Through on
Design Decisions
For many teams, architecture is dis-
cussed often, but design decisions are
rarely written down. Design decisions
and the amazing, detailed, nuanced
discussions that accompanied those
decisions are forgotten once the meet-
ing ends. If you missed it, then you

might never know an important de-
sign decision had been made.

Writing an ADR makes design
decisions real. Distributing an ADR
for feedback asks the team to form
an opinion on the proposed idea and
builds support for it. Merging an ADR
into the version control repository as
an accepted decision is akin to making
a public commitment to abide by the
decision. Whether teammates agree
wholeheartedly with the decision or
agree only to disagree and commit, an
ADR represents the planned, future
direction of the architecture.

A published ADR is a written,
public declaration that describes how

the software system is intended to be
changed. It’s a promise to the team that
the software will be changed as por-
trayed in the design decision. When peo-
ple make a public promise, especially a
written one, they feel compelled to fol-
low through with the promise.3 This is
as true for software design as it is for
someone who tells a friend they are try-
ing to quit smoking. In psychology, this
is known as the consistency principle.3

Once an ADR is published, devel-
opers on the team are empowered to
hold one another accountable to that
decision so the code remains consistent
with the design promised in the ADR.
I have seen teammates point out archi-
tecture violations in the code during
peer reviews. They speak up when the
architecture diverges from agreed deci-
sions and discuss how best to reconcile
that divergence. They refactor code to
align it with ideas described in ADRs.
They write new ADRs to reflect what’s
actually in the code, as a first step to-
ward improving the architecture. I
have even seen teammates direct new
hires to the decision log as a part of
their onboarding to endow them with
knowledge of the software system.4

Promises have tremendous power
over our behaviors. ADRs, like prom-
ises, increase the likelihood that a
team will follow through on a design
decision. As this happens repeatedly,
developers on the team will begin to
see themselves in a different light.

Reinforce Engagement
in Design
The existence of ADRs in the version
control repository provides evidence
that a team’s behaviors have changed.
Developers who see the ADRs will say
to themselves, “others on my team
write ADRs; maybe I should, too.”
Those who write ADRs understand
their value and are more likely to read
and share feedback on others’ ADRs.

ADRs, like promises, increase the
likelihood that a team will follow
through on a design decision.

THE PRAGMATIC DESIGNER

 NOVEMBER/DECEMBER 2022 | IEEE SOFTWARE 117

Those who read ADRs develop an
increased awareness of when design
decisions are being made and are
themselves more likely to write ADRs.

On teams that write ADRs, a re-
inforcing feedback loop emerges that
promotes architectural thinking, de-
sign, and communication. The more
people who participate in design by
writing and reading ADRs, the more
value the team gets from design. As
developers’ behaviors change, in-
dividuals who might never have
thought of themselves as software
architects begin to self-identify as the
kind of developers who think deeply
about architecture and strongly
value design. Every time an ADR is
added to the decision log, the team
receives a gentle reminder: “This is
a team that values design,” and “I
am the kind of developer who thinks
through design decisions.”

This shift in self-identity evolves
the team culture. Discussions about
technical debt, quality attributes, and
risk are encouraged and become com-
mon practice. Thanks to feedback on
ADRs and coaching from teammates
knowledgeable about design, design
decisions become more nuanced and
sophisticated. Teammates provide
each other with increasingly thought-
ful feedback and encourage deeper
exploration of the context and con-
sequences. ADR authors are eager to
learn more about design and software
architecture.

On a small team, it may take as
little as 3–6 months for ADRs to be-
come a standard practice. Every ADR
written nudges the team’s behaviors
toward becoming a team of architec-
tural thinkers. Once ADRs become
a standard practice, no matter how
much experience they had when they
start, over time, developers on the
team will become the architects the
team needs.

ADRs Are More Than Lean
Documentation
There is a wonderful quote by art-
ist Robert Henri I first learned from
Woody Zuill that I think applies di-
rectly to ADRs: “The object isn’t to
make art, it’s to be in that wonderful
state which makes art inevitable.”

An ADR isn’t just a document; it’s
a vehicle for changing a team’s design
psychology. Through association with
code, developers see the value of de-
sign. Removing barriers to participa-
tion invites all developers to contribute
to the design. Following through on
the promised design proves that time
spent on design has value. Participa-
tion begets engagement. Engagement
in design shifts developers’ self-identity
as architects. Team culture evolves
with this shift in self-identity.

There is something almost magi-
cal about ADRs and how they can
change team culture. It isn’t the
documents themselves that are re-
sponsible for this cultural shift but
the act of creating them over time.
ADRs challenge teams to change
their behavior in a number of key ar-
eas. How should a team think about
the value design brings? Who should
participate in design activities? What
does someone need to know to con-
tribute to the design? What does it
mean to realize a design decision?
How often should a team engage
with the design?

T he changes in behavior are
what are ultimately respon-
sible for evolving the team’s

culture. ADRs are just the medium.
The true object of ADRs isn’t to
document design decisions but to
help software development teams be
in that wonderful state that makes
good design inevitable.

References
1. M. Nygard. “Documenting architecture

decisions.” Cognitect. Accessed: Aug.

23, 2022. [Online]. Available: https://

cognitect.com/blog/2011/11/15/

documenting-architecture-decisions

2. M. Keeling, “Love unrequited: The

story of architecture, agile, and how

architecture decision records brought

them together,” IEEE Softw., vol.

39, no. 4, pp. 90–93, Jul./Aug. 2022,

doi: 10.1109/MS.2022.3166266.

3. R. B. Cialdini, “Influence: The

psychology of persuasion,” Harper

Business, New York, NY, USA,

Dec. 2006. [Online]. Available:

https://www.goodreads.com/book/

show/28815.Influence

4. M. Keeling and J. Runde. (Aug. 2018).

“Share the load: Distribute design

authority with architecture decision

records.” Presented at Agile2018

Conf., San Diego, CA, USA. [Online].

Available: https://www.agilealliance.

org/resources/experience-reports/

distribute-design-authority-with

-architecture-decision-records/

ABOUT THE AUTHOR

MICHAEL KEELING is a software engineer at Kiavi, Pittsburgh, PA

15208 USA, and the author of Design It!: From Programmer to Software
Architect. Contact him at http://neverletdown.net/ or mkeeling@neverlet-

down.net.

