
THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E SEPTEMBER/OCTOBER 2022 | IEEE SOFTWARE 109

MOST ENGINEERS WOULD cringe
at the idea of their managers choos-
ing their system’s software archi-
tecture, but back in 1968, this is
exactly what Melvin Conway found
to be true. Across many companies,
Conway found that the organiza-
tional chart, chosen by managers,
was replicated in the software sys-
tems of those companies.

In my 35 years of software de-
velopment experience, I found that
managers may not know the term
Conway’s law or read The Mythi-
cal Man-Month, but they know how
their organizational chart impacts
the company. By the end of this arti-
cle, it’s my hope that you have a bet-
ter understanding of how managers
do indeed influence software archi-
tecture and promote other factors by
tweaking the organizational chart.

The idea of significant manager
control over software specification
and design is horrifying to many
in-the-trenches software engineers.
They might cry that such nontechni-
cal manager involvement puts project
success at significant risk, perhaps

spelling doom for the work. The best
real-world parable of this manager
involvement is bad view that I know
is from shipbuilding in the 15th cen-
tury. The Vasa was a Swedish warship
built between 1626 and 1628 that was
richly decorated on order of the king,
our story’s manager, who, it seems,
might have meddled with the design.
The resulting ship was too tall and
top heavy. On her maiden voyage, the
ship rolled over and sank into Stock-
holm harbor in full view of hundreds
of stunned onlookers.1 I believe that
this tragedy of engineering is not the
rule for manager impact on software
design—managers are not always the
villains of the story (but they can be).
Let’s dig into how managers impact
software design and grow our under-
standing of Conway’s law.

 Managers as Software
Designers
Published in 1968, Conway’s ad-
age states that “organizations which
design systems (in the broad sense
used here) are constrained to pro-
duce designs which are copies of the
communication structures of these
organizations.”2 A humorous state-
ment of this idea is, “If you have four

groups working on a compiler, you’ll
get a four-pass compiler.” In The
Mythical Man-Month, Fred Brooks
referred to this observation as Con-
way’s law, and the name has stuck.
Brooks noted that Conway’s law pre-
dicts that the organizational chart
“becomes intertwined with the inter-
face specification.”3 Who defines this
organization? Managers and execu-
tives. Wow, Conway says our speci-
fication and design work is being
shaped by our managers.

Managers impact software design
via their control over organizational
structure, but the connection of your
organizational structure to software
design is subtle. In an organization,
you’ll have teams, subteams, and team
members, which results in a hierar-
chy (Conway used the terms commit-
tee, subcommittee, and coordinator).
Parts of the design are given to teams
(and subteams) to work out in detail.
Conway observed that the organiza-
tional and design structures match.
Why? Organizational constraints on
communication paths. If an organi-
zation is large and distributed, then
every engineer cannot talk to every
other engineer about everything, oth-
erwise nothing would get done. For

Did Your Manager Choose
Your Architecture?
Timothy J. Halloran

Digital Object Identifier 10.1109/MS.2022.3180884
Date of current version: 22 August 2022

THE PRAGMATIC DESIGNER

110	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

example, if two communicating top-
level teams, A and B, design and build
portions of a large system, then those
two components will communicate
(perhaps through a programming in-
terface). But a component deep within
the design of team B will not interface
directly with a portion of the design
deep within team A’s design.

What this causes is a system de-
sign that mirrors the communica-
tion structure of the organization.
Conway related several examples,
the most famous of which (and the
genesis of the humorous restatement
of his adage) is compiler design: “A
contract research organization had
eight people who were to produce a
COBOL and an ALGOL compiler.
After some initial estimates of diffi-
culty and time, five people were as-
signed to the COBOL job and three
to the ALGOL one. The resulting
COBOL compiler ran in five phases,
the ALGOL compiler ran in three.”
This was a small-scale project. Con-
way also related two military ser-
vices after “great effort” produced a
joint weapon system design that was
a copy of their organizational chart.

My start-up dealt with smaller
systems. We built tools within Java
IDEs that one or two programmers
could fully understand. In the U.S.
Air Force and in big tech companies,

I worked on large, complex systems
built by large and distributed teams.
A key criteria to this discussion is that
communications are constrained by
the organizational structure. There
are engineers or teams that don’t com-
municate due to their places in the
organizational hierarchy. It’s in these
cases that Conway’s law applies.

It is reasonable to consider why
every team or engineer doesn’t com-
municate with every other engineer.
They could, right? Perhaps just send
an email. It seems like this would
be a great way to work. The prob-
lem is scale. Conway stated, “Even
in a moderately small organization
it becomes necessary to restrict com-
munication in order that people can
get some “work done.” Communica-
tion doesn’t scale beyond a certain
point. Meetings and emails (either
one on one or among teams) take up
time and effort. If you, as a software
engineer, spend all your time on
meetings and emails, then little en-
gineering or “work,” as Conway put
it, can get done on your tasks.

Harnessing Conway’s Law
Managers and executives control the
organizational structure and (indi-
rectly) the restrictions that it places on
communications. Many factors are in
play, including team size and location

and the communication culture in the
organization. Is a manager’s impact
on software design good or bad?

Vasa-like experiences do not have
to be the norm in software design.
My experience has shown me that
most managers care deeply about the
organization and want to improve
it. Managers take definition of the
organizational structure extremely
seriously. They might not recog-
nize the terms Conway’s law or The
Mythical Man-Month, but if you
ask them whether the organizational
structure impacts work outcomes,
you will get a resounding yes. Man-
agers fine-tune their organizational
structures over time for better out-
comes, including software design.

Managers make mistakes, and
spectacular Vasa-like software di-
sasters will continue to occur. Not
all failures are due to Conway’s law,
but some are. I have some lessons
for managers wanting to avoid their
software project sinking in full view
of a crowd. These are summarized in
Table 1 and presented in more detail
in the following section.

Lesson 1: Align Your
Organization With Your
Architecture
My experience in the U.S. Air Force
was on large software projects that
support planning and military opera-
tions. Military leadership (the manag-
ers) are focused on the organizational
structure and its leadership, fine-
tuning the organizational chart over
many decades. They take this seri-
ously. The organizational chart, how-
ever, is optimized for warfighting and
readiness, not software development.
In my experience, the military orga-
nizations that were best at software
design realized the importance of
software to their mission success and
organized to support it. In particular,

Table 1. My Conway’s law lessons for managers.

Do this Avoid this

Lesson 1: Align the software-producing
portions of your organization with the software
architecture.

Lesson 2: Don’t fix a bad or dysfunctional
organization with a software system. Software
cannot solve organizational problems,
managers can.

Lesson 3: Be alert to product/software
architecture problems caused by the
organization and promptly adjust one or the
other. Fine-tune over time (reorg).

Lesson 4: Don’t avoid necessary reorgs.
Manager meetings to cajole design changes
are not strong enough to drive architecture
changes.

THE PRAGMATIC DESIGNER

SEPTEMBER/OCTOBER 2022 | IEEE SOFTWARE 111

this involved defining an organiza-
tional structure with strong commu-
nication among the teams responsible
for major portions of an architecture.

I worked on many software mod-
ernization efforts in the U.S. Air
Force. Many of these projects were
targeted at migration of mainframe
systems, often from the 1960s or
early 1970s, to UNIX or Windows
systems. Shifts in programming lan-
guages, tools, and databases were also
often a goal. Overall, the idea was to
save costs by using more modern soft-
ware and hardware to run the system.

An approach I learned that was
strongly correlated with overall proj-
ect success was to run portions of
the modernized system in produc-
tion as soon as possible. I’ll coin this
modernization in production. Com-
ponent by component, my team re-
placed parts of the old system and
deployed the hybrid system until the
old system was gone and we joyfully
watched the mainframe roll out of
the building. By confronting produc-
tion complexities early, we reduced
the chance of total project failure,
and we were forced to understand the
requirements. Piecewise replacement
of components in production had the
cost of significantly reducing our de-
sign freedom. The new system design
had to closely mirror the old design.

In retrospect, my approach lever-
aged Conway’s law to improve out-
comes. The new system mapped well
into the existing organizational struc-
ture and its communication paths
because it closely mirrored the old
design. Today, I wonder which facet
helped the project outcome more.
Risk reduction due to facing and un-
derstanding actual production system
requirements (my focus at the time)
or a clear mapping of the design into
the existing organizational struc-
ture (which I hadn’t considered). My

approach worked because the goals
of these software modernization proj-
ects was cost reduction, not produc-
ing the best new design.

 Lesson 2: Software Cannot Fix
a Bad Organization
I’ve experienced software project fail-
ures when managers viewed software
systems as a clever way to fix an orga-
nizational problem. Managers were
thinking, “We have several stove-
piped portions of our organization
that are politically tough for us to fix/
reorg and by building a software sys-
tem we’ll get them to work together
much better.” This is a terrible idea
when Conway’s law is considered. A
strong corollary of Conway’s law, in
my mind, is that you cannot fix an
organizational problem with a soft-
ware system. It’s doomed because if
the teams responsible for components
of the design do not collaborate on
interfaces (or do a poor job), the re-
sulting system is unlikely to meet its
objectives. Managers need to fix the
organizational structure.

I recall the modernization of a lo-
gistics software system development
that failed due to a “stovepiped” or-
ganizational structure that resisted
change. Management prescribed a
software solution to improve orga-
nizational collaboration and save
costs. The project failed after years
of work and was trying for all in-
volved. I recall listening to a wing

commander tell me about how pain-
ful the software field trials were for
junior airmen who were trying to use
the system. He cared deeply about the
airman’s plight, and this experience
had soured him on software systems.

My active-duty experiences are
from long ago, and I expect they are
less common today. Why? Organiza-
tional structures are fine-tuned over
time by managers for better outcomes,
and the military is no exception. They
have adapted to improve outcomes.
Military leadership understands soft-
ware development much better. To
humorously illustrate this point, in
my first U.S. Air Force assignment,
when my new commander—an amaz-
ing pilot—first visited his new office,
he came out and asked his secretary
why there was a TV on his desk. It
was a PC computer. This would be
unimaginable today.

 Lesson 3: Fine-Tune Your
Organization and Architecture
At big tech companies, I’ve worked
on very large software systems, often
even larger and more complex than
the U.S. Air Force systems I developed.
Leadership at big tech companies,
similar to that of the U.S. Air Force,
takes curation of the organizational
structure seriously. Leadership makes
organizational changes, referred to as
reorgs, to drive product innovation or
improve reliability. The idea of doing
this is not new, nor at all unique to big

There are engineers or teams that
don’t communicate due to their
places in the organizational hierarchy.

THE PRAGMATIC DESIGNER

112 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

tech. In fact Brooks, in The Mythical
Man-Month noted, “Conway goes on
to point out that the organizational
chart will initially reflect the first sys-
tem design, which is almost surely not
the right one. If the system design is
to be free to change, the organization
must be prepared to change.”3 Thus,
Brooks (and I) advise that changing
the organization can lead to improved
designs and better outcomes.

There can be an architectural cost
to reorgs. When significant software
systems exist in production that are
being maintained, a reorg can sig-
nificantly change the communication
structure such that the current de-
sign, which reflects the old organiza-
tion, is no longer maintainable. This
is sometimes called, wrongly I think,
technical debt. It takes time for the
software architecture to catch up to
the new organization. Talking to se-
nior managers, I’ve observed that they
view the lifecycle of software as be-
ing pretty short, and that every few
years major system-rewrite projects
are somewhat inevitable. This was a
bit shocking to me as I observed mul-
tidecade software lifecycles in the U.S.
Air Force. Conway’s law can help ex-
plain their view when reorgs are con-
sidered. A newly reorganized team C
looks at their system, which was de-
signed to be split between two parts
of the organization as odd and unnat-
ural: abstraction boundaries no longer

make sense and the components and
programming languages may differ.
These rewrite projects tend to shift
the system architecture back into har-
mony with the current organization.

 Lesson 4: Drive Architecture
With Reorgs
Managers, I’d argue, should use the
power of the reorg to shift the soft-
ware architecture. One bad approach
is to avoid a reorg and instead form a
“council” or “technical steering com-
mittee” made up of senior manag-
ers that meet to enthusiastically push
for change on the system architecture
without making the corresponding
organizational changes. In my experi-
ence, some progress can be made, but
it is often resisted and isolated to teams
that become “targets” or the “focus of
attention” of the counsel. Conway’s
law predicts this limited outcome. A
better approach is for managers to
propose a reorg that aligns the organi-
zation with the desired goals.

Reorgs are powerful, but do not
overuse them. The risk is that your
teams spend all their time rewriting
existing code—to shift the architec-
ture back into harmony with the or-
ganization—rather than innovating.

There’s a strong connection
between Conway’s law and
Brooks’ law: both are savvy

observations about the communi-
cation paths within organizations.
Brooks’ law states that “adding peo-
ple to a late software project makes it
later” because new people adds new
communication paths. Conway’s law
states that a team’s designs will mir-
ror the communication paths set up
by its organizational structure.

Both Conway and Brooks cau-
tion against thinking of software
design or engineering as being lin-
ear, a fallacy Brooks called the
mythical man-month. One engi-
neer working for a month cannot
be interchanged with 30 engineers
working for a single day. That’s
because software tasks cannot be
trivially partitioned, which Con-
way humorously expressed the fol-
lowing way:2

Assumptions which may be
adequate for peeling potatoes and
erecting brick walls fail for design-
ing systems.

As you manage teams and guide
their work, I encourage you to con-
sider the advice of Conway and
Brooks. Keep in mind that manag-
ers have a tremendous influence on
the architecture, but this need not be
a bad thing if you design your orga-
nizations as carefully as you design
your software systems.

 References
1. A. M. Squires, The Tender Ship:

Governmental Management of Tech-

nological Change. Cambridge, MA,

USA: Birkhäuser, 1986.

2. M. E. Conway, “How do committees

invent?” Datamation, vol. 14, no. 5,

pp. 28–31, Apr. 1968.

3. F. P. Brooks Jr., The Mythical

Man-Month: Essays on Software

Engineering. Reading, MA, USA:

Addison-Wesley, 1982.

ABOUT THE AUTHOR

TIMOTHY J. HALLORAN is a software engineer at Google, Pittsburgh,

Pennsylvania, 15206, USA and a retired U.S. Air Force Lieutenant Colonel.

Contact him at hallorant@gmail.com.

