
48 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y

FOCUS: SOFTWARE DESIGN TRENDS SUPPORTING
MULTICONCERN ASSURANCE

T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e C o m m o n s
A t t r i b u t i o n 4 . 0 L i c e n s e . F o r m o r e i n f o r m a t i o n , s e e

h t t p s : //c r e a t i v e c o m m o n s .o r g / l i c e n s e s / b y /4 . 0 /d e e d . a s t .

SOFTWARE NEEDS TO be con-
tinuously updated and maintained
to continue being useful.1 This is

particularly true for open source
software (OSS) components and li-
braries, which are more and more

often integrated into large and com-
plex systems. For companies develop-
ing long-term projects, all embedded
OSS components should guarantee
lengthy life expectancies and be main-
tained as long as systems are in ser-
vice. Embedding abandoned OSS in
critical systems could expose compa-
nies to severe risks. For example, new
security vulnerabilities could be ex-
ploited, bugs and issues might never
be resolved, and functions could be-
come obsolete and inadequate for
new environments. Metaphorically,
systems embedding abandoned OSSs
are like vehicles with rusted gears or
human bodies with malignant tu-
mors. Indeed, the abandonment of
OSS components might produce a
“domino effect” that results in the
inoperability of full systems. The im-
portance of such a statement is in the
fact that even if a single embedded
software component is unavailable, a
whole project can be compromised.

In this respect, we were recently
asked by a local branch of a global
company, which operates in different
domains and with more than 200,000
employees in 150-plus countries, to
devise a methodology aimed at iden-
tifying components embedded in its
software products that were the most
likely to be abandoned soon. To meet
the requirements, we designed the
OSS Abandonment Risk Assessment
(OSSARA) model, which we present
in this article. The model aims to as-
sess the abandonment risk of a software
system through prediction for every
embedded OSS component and the crit-
icality that each component represents.
With OSSARA, practitioners can mon-
itor a system’s risk level and choose to
maintain or replace OSS components.

Related Work
During the past decade, research-
ers have been paying great attention

OSSARA:
Abandonment
Risk Assessment
for Embedded
Open Source
Components
Xiaozhou Li, Sergio Moreschini, Fabiano Pecorelli, and
Davide Taibi, Tampere University

// Systems with unmaintained embedded

open source software (OSS) components

are vulnerable to severe risks. This article

introduces the OSS Abandonment Risk

Assessment model to help companies

avoid potentially dire consequences. //

Digital Object Identifier 10.1109/MS.2022.3163011
Date of current version: 20 June 2022

	 JULY/AUGUST 2022 | IEEE SOFTWARE � 49

to software sustainability. Samoladas
et al.2 successfully exploited survival
analysis methods to predict the sur-
vivability of software projects. Bus-
inge et al.3 analyzed the survivability
of 1,447 versions of 467 Eclipse third-
party plug-ins and classified them into
two categories: those relying on stable
dependencies and those with at least
one potentially unstable dependency.
They observed that plug-ins that use
only stable dependencies are like-
lier to maintain a higher source com-
patibility rate through time. Coelho
et al.4 leveraged machine learning to
build a model to identify unmain-
tained GitHub projects, based on a
set of 13 process metrics, achieving
promising results. Afterward, they
presented an extended version of the
work,5 defining a metric to indicate
how risky it would be to depend on a
given GitHub project.

Valiev et al.6 assessed open source
Python projects’ sustainability based
on ecosystem-level factors, i.e., those
describing interdependencies among
packages. They calculated sustain-
ability by the mean of dormancy, i.e.,
the period of inactivity for a project
repository. The results indicated that
the number of connections as well as
the dependency network position are
significant factors affecting the proj-
ects’ sustainability. Later, Mujahid
et al.7 proposed a scalable approach
that relies on the package centrality
in an ecosystem to identify packages
in decline. The results of an evalua-
tion conducted on the Node Package
Manager ecosystem showed strong
prediction capabilities, thus indicat-
ing centrality as an important factor
for forecasting project abandonment.

In previous work,8 we investigated
approaches to automate the evalua-
tion of information from OSS proj-
ects, although we did not propose
an assessment and risk model. In

contrast to the related literature,
we are introducing a method to cal-
culate abandonment risk based on
the probability of embedded system
components losing maintenance sup-
port. Moreover, thanks to the as-
sistance we received from our case
company, our method is suitable for
real industrial applications.

Software Composition
Using OSS
Software composition via the adoption
of components off the shelf (COTS)
has long been considered an effective
practice.9 Despite the disadvantages
of COTS in terms of uneven perfor-
mance, a lack of evolution control,
and insufficient interoperating capa-
bilities, using the components enables
practitioners to avoid “reinventing the
wheel.” OSS can be viewed as COTS
since most of the embedded compo-
nents, e.g., libraries and plug-ins, are
usually integrated as is. The main ad-
vantages of OSS components are the
open licenses, which usually permit ac-
cess to the source code and, eventually,
making extensions. Moreover, OSS is
often accessible without paying license
fees, thus reducing adoption costs.

When developing a software proj-
ect, the most common practice is to
integrate several components and
combine them by writing custom code.
The amount of custom code is usually
minimal compared to the size of the
components. Developing all com-
ponents as custom software might
require significant effort, not only for
the process itself but also for main-
tenance. However, creating a system
consisting of several OSS components
introduces risks since the maintenance
of each one is usually delegated to
the developer community. There may
be cases where the community does
not continue the upkeep. Companies
with integrated unmaintained OSS

components need to find alternatives,
either deciding to maintain the com-
ponents themselves or replacing them.

OSSARA
We propose OSSARA to assess a sys-
tem’s abandonment risk on the basis
of embedded OSS components. The
abandonment risk is calculated based
on 1) the likelihood of each com-
ponent losing maintenance support
during a certain period and 2) the
importance that each component has
for the main system, following the
classic risk assessment notion Risk =
Prob (Loss) # Size (Loss).10 Figure 1
depicts the OSSARA process. Start-
ing from a software system that em-
beds several OSS components (14 in
the example), we first calculate for
each component the abandonment
probability in the given time and the
weight (abandonment probability
and weight are represented by colors
and box sizes, respectively). Then,
we combine these two pieces of in-
formation to calculate the risk that
the main system will be abandoned
within the considered period.

More formally, the overall abandon-
ment risk Ra for a system ([,])R 0 1a!
that integrates k OSS components is
calculated as follows:

() (),R w O r Oa
m

k

m m
1

)=
=

|

where () [,]w O 0 1m ! represents the
weight of the OSS component Om and
() [,]r O 0 1m ! conveys the risk that

Om will be abandoned. The weight of
a component ()w Om can be quanti-
fied by counting the number of invo-
cations (e.g., the number of imports in
the code).

Predicting OSS
Abandonment
Identifying inactive and abandoned
OSS could be easily performed by

50 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE DESIGN TRENDS SUPPORTING
MULTICONCERN ASSURANCE

directly checking for the presence of
specific tags on SourceForge (https://
sourceforge.net). However, by then,
it would be too late for a company
to find proper alternatives. Thus, it is
necessary to find a way to foresee po-
tential abandonment.

Predicting the abandonment risk
for a software component is a mul-
ticoncern assurance problem since
it could depend on several aspects,
such as poor performance, insuf-
ficient maintainability, and so on.
Commonly, an OSS component is
considered abandoned based only on
the number of commits performed on
the system repository in a given time
interval.2,11,12 Therefore, one could
trivially think to use this information
as a sole predictor to foresee aban-
donment; i.e., if the number of com-
mits on a certain project repository
falls below a predefined threshold
within a certain period, the compo-
nent is considered abandoned. How-
ever, the process for determining the
threshold or period length will vary
among practitioners.

Our case company considers an
OSS project abandoned if the software
has not had any releases or com-
mits within the previous six months,
which is a comparatively stricter
threshold than that suggested by
Khondhu et al.11 Furthermore, it
is also possible that when an OSS
community does not focus on com-
mitting, the contributors remain ac-
tive in handling pull requests and
discussing relevant issues. In this
case, the suggestion from our case
company is that measures regarding
committing (e.g., the daily number
of commits), communication (e.g.,
the daily issue comments), and is-
sue handling activities (e.g., the daily
closed pull requests) be taken into
account. For these reasons, we pro-
pose to apply supervised techniques

Custom System

OSS Component 1

OSS Component 3

O
S

S
 C

om
po

ne
nt

 2

O
S

S
 4 OSS 6

OSS 7

OSS 8O
S

S
 5

9 10 11

12 13 14

Custom System

OSS Component 1

OSS Component 3

O
S

S
 C

om
po

ne
nt

 2

O
S

S
 4 OSS 6

OSS 7

OSS 8O
S

S
 5 9 10 11

12 13 14

Predicting OSS Abandonment

Metrics Extraction

Commits

Unique
Committers

Open Pull
Request

Closed Pull
Request

Unique
Watchers

Issue
Comments

Commit
Comments

Issues

Training Data

Active
Inactive

Validation

Classification

10

8

6

4

2

0

–2
–2 –1 0 1 2 3 4 5 6

OSSARA Dashboard

One Month Two Months Three Months

Risk: 0.09 Risk: 0.16 Risk: 0.19

0%

25% 75%

7%

50%

100% 0%

25% 75%

14%

50%

100% 0%

25% 75%

18%

50%

100%

OSS Abandonment
Risk Assessment Model

FIGURE 1. The OSSARA process.

JULY/AUGUST 2022 | IEEE SOFTWARE 51

to predict the abandonment likeli-
hood for an OSS component on the
basis of key activities (e.g., commits,
issues, pull requests, and so on). This
would overcome the problem of sub-
jective thresholds: rather than relying
on predefined thresholds, prediction
can be adapted to a component.

In detail, to predict the abandon-
ment of an OSS component, we pro-
pose the following pipeline:

• Step 1—Data crawling:
We gather data from all
125,486,232 GitHub projects
by using the GHTorrent data
set (https://ghtorrent.org). The
selected metrics consist of the
number of commits, commit
comments, unique committers,
issues, issue comments, watch-
ers, and open and closed pull
requests.

• Step 2—Data preprocessing: We
create training data for each OSS
project that fulfill the criteria
specified by our case company,
labeling projects active on the ba-
sis of 1) having more than 2,000
commits, 2) having more than
1,000 days of activity (from the
day of creation to the final com-
mit day), 3) having at least one
commit in the past six months,
and 4) having days with zero
commits equal less than 50% of
the days of activity. Furthermore,
labeled training data are prepared
based on the target prediction
period (e.g., one, two, or three
months), with their dimensions
set to provide the best accuracy.

• Step 3—Prediction: Using the
labeled and preprocessed data,
we train the classifiers with the
best performance for the target
prediction periods. With the
target OSS component data as
input, the classifier predicts

whether a component is active or
abandoned. Its accuracy is used
as the probability of the OSS
being active or abandoned, as it
indicates the likelihood that the
prediction is correct.

Validation
To validate the proposed methodol-
ogy, we conduct a preliminary evalu-
ation on 12,208 OSS projects that
contain at least 1,000 commits from
at least five unique contributors and
are watched by at least 100 users
(the data set is shared at https://doi.
org/10.6084/m9.figshare.16944001.
v1). Such criteria ensure the popu-
larity and longevity of the candi-
dates. The data set is extracted from
GHTorrent (until the 1 June 2019
dump) and labeled according to the
preceding guidelines (see step 2).
Among the four classification al-
gorithms we selected, i.e., decision
tree, support vector machine, logis-
tic regression, and naive Bayes, we
find that logistic regression has the
highest accuracy with the data set.
We also apply a 10-fold cross-vali-
dation strategy to assess the predic-
tion capabilities of the model. The
results of the validation indicate an
F1 score of ≈ 0.86 (a ±0.01 estimated
error), with the Matthews correla-
tion coefficient being 0.73; hence,
we conclude that the proposed meth-
odology is reliable enough.

Working Example
This section presents a working ex-
ample of the proposed method. Due
to a nondisclosure agreement with
our case company, we cannot pro-
vide details about the real industrial
application of our technique. How-
ever, to demonstrate OSSARA at
work, we apply it to an open source
software project. We take Keras as

an example of software developed
in-house that needs to integrate
various OSS components. Keras is
an OSS project providing a Python-
written deep learning application
programming interface for Tensor-
Flow libraries. For our analysis, we
chose release 2.7.0 RC1 (https://
github.com/keras-team/keras/re
leases/tag/v2.7.0-rc1), accessed on
26 October 2021.

We conduct our analysis by fo-
cusing only on the 536 Python files
from the repository and detect the
OSS components (i.e., packages)
imported within each file. Further-
more, to ease the computation as
well as the explanation of the re-
sults, we consider the 20 packages
most frequently imported in Keras.
We examine only the five most com-
monly imported OSS components
in Keras, namely, TensorFlow, CPy-
thon, Numpy, abseil-py, and h5py.
The packages, e.g., re, random, col-
lections, and so on, belong to the
CPython component and will be
considered together. The weight of
each component is calculated by the
percentage of files importing it.

We conduct our analysis using
three time frames to predict the aban-
donment risk of embedded OSS
components in one, two, and three
months. The same approach can be
applied to longer periods. To sim-
plify the process, we quantify the
weight of each imported Python
package by counting the number of
imports across all the project files.
Figure 2 summarizes the results.
They show that for one month, all
components are safe from abandon-
ment. When considering a two-
month time frame, the abseil-py
package appears to have a high risk
of being abandoned (i.e., 85.8%).
Finally, for the three-month analy-
sis, the risk that the h5py package

52 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE DESIGN TRENDS SUPPORTING
MULTICONCERN ASSURANCE

will be abandoned rises. The three
key components, namely, Tensor-
Flow, Cpython, and Numpy, remain
active throughout. Based on our
calculation, the overall abandon-
ment risk for Keras grows from
0.138 in one month to 0.215 in two
months and 0.248 in three months.
From the repository history of ab-
seil-py and h5py, we observe that
since 2020, both projects have had
very low committing and issue han-
dling rates from a small group of
contributors, which legitimizes the
risks assessment.

This example shows that OSSARA
predicts the abandonment risk to soft-
ware systems that embed OSS compo-
nents. However, this oversimplified

demonstration aims only to explain
how our method works when prob-
ability-based conclusions might not
reflect reality. Please note that we
did not consider hierarchical rela-
tions. For example, the 20 selected
packages might use other compo-
nents that have a high abandonment
risk. Meanwhile, although the model
meets real industrial needs—its main
strength—its generalizability can be
limited. Furthermore, the application
of risk prediction toward component
replacement and integration requires
the support of software engineering
assessment and decision making.13

Finally, other metrics might have dif-
ferent prediction power for abandon-
ment risk.

I ntegrating abandoned OSS in
software-intensive systems is
hazardous and could result in

severe consequences, which con-
cerns practitioners. Especially when
functions from abandoned compo-
nents are integrated into highly criti-
cal modules, the consequences from
abandoned OSS that lacks mainte-
nance can be unbearable. To foresee
such risks, we proposed OSSARA to
provide an assessment and predic-
tion pipeline. The model also sup-
ports continuous adaptation and
customization through which prac-
titioners can conduct optimized pre-
diction via up-to-date OSS activity
data, with selectively effective and
even customized algorithms. The
model was positively received by our
case company, which is adopting
and integrating it into its continuous
integration/continuous deployment
pipeline. Future work will explore
other analysis techniques, the inclu-
sion of different metrics in the pre-
diction model, and the integration
of various types of OSS risk assess-
ment, e.g., security assessment, li-
cense compliance assessment, and so
on, as well as dependency and hier-
archy analysis.

References
1. M. M. Lehman, “Programs, life

cycles, and laws of software evolu-

tion,” Proc. IEEE, vol. 68, no. 9,

pp. 1060–1076, 1980, doi: 10.1109/

PROC.1980.11805.

2. I. Samoladas, L. Angelis, and I.

Stamelos, “Survival analysis on the

duration of open source projects,”

Inf. Softw. Technol., vol. 52, no. 9,

pp. 902–922, 2010, doi: 10.1016/j.

infsof.2010.05.001.

3. J. Businge, A. Serebrenik, and M. van

den Brand, “Survival of eclipse third-

party plug-ins,” in Proc. 2012 28th

IEEE Int. Conf. Softw. Maintenance

One Month (Risk: 0.138)

Two Months (Risk: 0.215) Three Months (Risk: 0.248)

h5py/h5py
Abandonment Risk: 14.2%

h5py/h5py
Abandonment Risk: 82.3%

h5py/h5py
Abandonment Risk: 13.8%

FIGURE 2. The abandonment risk assessment for Keras.

JULY/AUGUST 2022 | IEEE SOFTWARE 53

(ICSM), pp. 368–377, doi: 10.1109/

ICSM.2012.6405295.

4. J. Coelho, M. T. Valente, L. L.

Silva, and E. Shihab, “Identify-

ing unmaintained projects in

GitHub,” in Proc. 12th ACM/

IEEE Int. Symp. Empirical Softw.

Eng. Meas., 2018, pp. 1–10, doi:

10.1145/3239235.3240501.

5. J. Coelho, M. T. Valente, L. Milen,

and L. L. Silva, “Is this GitHub

project maintained? Measuring the

level of maintenance activity of open-

source projects,” Inf. Softw. Tech-

nol., vol. 122, p. 106,274, Jun. 2020,

doi: 10.1016/j.infsof.2020.106274.

6. M. Valiev, B. Vasilescu, and J.

Herbsleb, “Ecosystem-level deter-

minants of sustained activity in

open-source projects: A case study

of the PYPI ecosystem,” in Proc.

2018 26th ACM Joint Meeting Eur.

Softw. Eng. Conf. Symp. Found.

Softw. Eng., pp. 644–655, doi:

10.1145/3236024.3236062.

7. S. Mujahid, D. E. Costa, R. Ab-

dalkareem, E. Shihab, M. A. Saied,

and B. Adams, “Towards using

package centrality trend to iden-

tify packages in decline,” 2021,

arXiv:2107.10168.

8. X. Li, S. Moreschini, Z. Zhang,

and D. Taibi, “Exploring factors

and metrics to select open source

software components for integration:

An empirical study,” J. Syst. Softw.,

vol. 188, p. 111,255, Jun. 2022, doi:

10.1016/j.jss.2022.111255.

9. B. Boehm and C. Abts, “COTS inte-

gration: Plug and pray?” Computer,

vol. 32, no. 1, pp. 135–138, 1999,

doi: 10.1109/2.738311.

10. B. Boehm, “Software risk

management,” in Proc. Eur.

Softw. Eng. Conf., Springer-

Verlag, 1989, pp. 1–19, doi:

10.1007/3-540-51635-2_29.

11. J. Khondhu, A. Capiluppi, and

K.-J. Stol, “Is it all lost? A study

of inactive open source proj-

ects,” in Proc. IFIP Int. Conf.

Open Source Syst., Springer-

Verlag, 2013, pp. 61–79, doi:

10.1007/978-3-642-38928-3_5.

12. J. Coelho and M. T. Valente,

“Why modern open source proj-

ects fail,” in Proc. 2017 11th

Joint Meeting Found. Softw.

Eng., 2017, pp. 186–196, doi:

10.1145/3106237.3106246.

13. R. A. Ribeiro, A. M. Moreira,

P. Van den Broek, and A. Pimen-

tel, “Hybrid assessment method for

software engineering decisions,”

Decis. Support Syst., vol. 51, no. 1,

pp. 208–219, 2011, doi: 10.1016/j.

dss.2010.12.009.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

XIAOZHOU LI is a postdoctoral researcher in the Faculty

of Information Technology and Communication Sciences,

Tampere University, Tampere, 33720, Finland, where he is a

researcher in the Cloud Software Evolution and Assessment

group. Li received his Ph.D. in computer science from Tampere

University. His research interests include open source soft-

ware quality, software maintenance and evolution, and user

review opinion mining. Contact him at xiaozhou.li@tuni.fi.

SERGIO MORESCHINI is a Ph.D. candidate in the Faculty

of Information Technology and Communication Sciences,

Tampere University, Tampere, 33720, Finland, where he is a

researcher in the Cloud Software Evolution and Assessment

group. His research interests include extended light field

reconstruction for continuous parallax content. Contact him at

sergio.moreschini@tuni.fi.

FABIANO PECORELLI is a postdoctoral researcher in the

Cloud Software Evolution and Assessment group, Tampere

University, Tampere, 33720, Finland. His research interests in-

clude software code and test quality, predictive analytics, and

mining software repositories. Pecorelli received his M.S. in

computer science from the University of Salerno, Italy. Contact

him at fabiano.pecorelli@tuni.fi.

DAVIDE TAIBI is an associate professor at Tampere

University, Tampere, 33720, Finland, where he heads the

Cloud Software Evolution and Assessment research group.

His research interests include empirical software engineering

applied to cloud-native systems. Taibi received his Ph.D. in

computer science from University of Insubria. He is a member

of the International Software Engineering Network. Contact

him at davide.taibi@tuni.fi.

