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FOCUS: SOFTWARE DESIGN TRENDS SUPPORTING 
MULTICONCERN ASSURANCE

T h i s  w o r k  i s  l i c e n s e d  u n d e r  a  C r e a t i v e  C o m m o n s 
A t t r i b u t i o n  4 . 0  L i c e n s e .  F o r  m o r e  i n f o r m a t i o n ,  s e e 

h t t p s : //c r e a t i v e c o m m o n s .o r g / l i c e n s e s / b y /4 . 0 /d e e d . a s t .

SOFTWARE NEEDS TO be con-
tinuously updated and maintained 
to continue being useful.1 This is 

particularly true for open source 
software (OSS) components and li-
braries, which are more and more 

often integrated into large and com-
plex systems. For companies develop-
ing long-term projects, all embedded 
OSS components should guarantee 
lengthy life expectancies and be main-
tained as long as systems are in ser-
vice. Embedding abandoned OSS in 
critical systems could expose compa-
nies to severe risks. For example, new 
security vulnerabilities could be ex-
ploited, bugs and issues might never 
be resolved, and functions could be-
come obsolete and inadequate for 
new environments. Metaphorically, 
systems embedding abandoned OSSs 
are like vehicles with rusted gears or 
human bodies with malignant tu-
mors. Indeed, the abandonment of 
OSS components might produce a 
“domino effect” that results in the 
inoperability of full systems. The im-
portance of such a statement is in the 
fact that even if a single embedded 
software component is unavailable, a 
whole project can be compromised.

In this respect, we were recently 
asked by a local branch of a global 
company, which operates in different 
domains and with more than 200,000 
employees in 150-plus countries, to 
devise a methodology aimed at iden-
tifying components embedded in its 
software products that were the most 
likely to be abandoned soon. To meet 
the requirements, we designed the 
OSS Abandonment Risk Assessment 
(OSSARA) model, which we present 
in this article. The model aims to as-
sess the abandonment risk of a software 
system through prediction for every 
embedded OSS component and the crit-
icality that each component represents. 
With OSSARA, practitioners can mon-
itor a system’s risk level and choose to 
maintain or replace OSS components.

Related Work
During the past decade, research-
ers have been paying great attention 
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to  software sustainability. Samoladas 
et al.2 successfully exploited survival 
analysis methods to predict the sur-
vivability of software projects. Bus-
inge et al.3 analyzed the survivability 
of 1,447 versions of 467 Eclipse third-
party plug-ins and classified them into 
two categories: those relying on stable 
dependencies and those with at least 
one potentially unstable dependency. 
They observed that plug-ins that use 
only stable dependencies are like-
lier to maintain a higher source com-
patibility rate through time. Coelho 
et  al.4 leveraged machine learning to 
build a model to identify unmain-
tained GitHub projects, based on a 
set of 13 process metrics, achieving 
promising results. Afterward, they 
presented an extended version of the 
work,5 defining a metric to indicate 
how risky it would be to depend on a 
given GitHub project.

Valiev et al.6 assessed open source 
Python projects’ sustainability based 
on ecosystem-level factors, i.e., those 
describing interdependencies among 
packages. They calculated sustain-
ability by the mean of dormancy, i.e., 
the period of inactivity for a project 
repository. The results indicated that 
the number of connections as well as 
the dependency network position are 
significant factors affecting the proj-
ects’ sustainability. Later, Mujahid 
et al.7 proposed a scalable approach 
that relies on the package centrality 
in an ecosystem to identify packages 
in decline. The results of an evalua-
tion conducted on the Node Package 
Manager ecosystem showed strong 
prediction capabilities, thus indicat-
ing centrality as an important factor 
for forecasting project abandonment.

In previous work,8 we investigated 
approaches to automate the evalua-
tion of information from OSS proj-
ects, although we did not propose 
an assessment and risk model. In 

contrast to the related literature, 
we are introducing a method to cal-
culate abandonment risk based on 
the probability of embedded system 
components losing maintenance sup-
port. Moreover, thanks to the as-
sistance we received from our case 
company, our method is suitable for 
real industrial applications.

Software Composition 
Using OSS
Software composition via the adoption 
of components off the shelf (COTS) 
has long been considered an effective 
practice.9 Despite the disadvantages 
of COTS in terms of uneven perfor-
mance, a lack of evolution control, 
and insufficient interoperating capa-
bilities, using the components enables 
practitioners to avoid “reinventing the 
wheel.” OSS can be viewed as COTS 
since most of the embedded compo-
nents, e.g., libraries and plug-ins, are 
usually integrated as is. The main ad-
vantages of OSS components are the 
open licenses, which usually permit ac-
cess to the source code and, eventually, 
making extensions. Moreover, OSS is 
often accessible without paying license 
fees, thus reducing adoption costs.

When developing a software proj-
ect, the most common practice is to 
integrate several components and 
combine them by writing custom code. 
The amount of custom code is usually 
minimal compared to the size of the 
components. Developing all com-
ponents as custom software might 
require significant effort, not only for 
the process itself but also for main-
tenance. However, creating a system 
consisting of several OSS components 
introduces risks since the maintenance 
of each one is usually delegated to 
the developer community. There may 
be cases where the community does 
not continue the upkeep. Companies 
with integrated unmaintained OSS 

components need to find alternatives, 
either deciding to maintain the com-
ponents themselves or replacing them.

OSSARA
We propose OSSARA to assess a sys-
tem’s abandonment risk on the basis 
of embedded OSS components. The 
abandonment risk is calculated based 
on 1) the likelihood of each com-
ponent losing maintenance support 
during a certain period and 2) the 
importance that each component has 
for the main system, following the 
classic risk assessment notion Risk = 
Prob (Loss) # Size (Loss).10 Figure 1 
depicts the OSSARA process. Start-
ing from a software system that em-
beds several OSS components (14 in 
the example), we first calculate for 
each component the abandonment 
probability in the given time and the 
weight (abandonment probability 
and weight are represented by colors 
and box sizes, respectively). Then, 
we combine these two pieces of in-
formation to calculate the risk that 
the main system will be abandoned 
within the considered period.

More formally, the overall abandon-
ment risk Ra for a system ( [ , ])R 0 1a!  
that integrates k OSS components is 
calculated as follows:

( ) ( ),R w O r Oa
m

k
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1
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=

|

where ( ) [ , ]w O 0 1m !  represents the 
weight of the OSS component Om and 
( ) [ , ]r O 0 1m !  conveys the risk that 

Om will be abandoned. The weight of 
a component ( )w Om  can be quanti-
fied by counting the number of invo-
cations (e.g., the number of imports in 
the code).

Predicting OSS 
Abandonment
Identifying inactive and abandoned 
OSS could be easily performed by 
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directly checking for the presence of 
specific tags on SourceForge (https://
sourceforge.net). However, by then, 
it would be too late for a company 
to find proper alternatives. Thus, it is 
necessary to find a way to foresee po-
tential abandonment.

Predicting the abandonment risk 
for a software component is a mul-
ticoncern assurance problem since 
it could depend on several aspects, 
such as poor performance, insuf-
ficient maintainability, and so on. 
Commonly, an OSS component is 
considered abandoned based only on 
the number of commits performed on 
the system repository in a given time 
interval.2,11,12 Therefore, one could 
trivially think to use this information 
as a sole predictor to foresee aban-
donment; i.e., if the number of com-
mits on a certain project repository 
falls below a predefined threshold 
within a certain period, the compo-
nent is considered abandoned. How-
ever, the process for determining the 
threshold or period length will vary 
among practitioners.

Our case company considers an 
OSS project abandoned if the software 
has not had any releases or com-
mits within the previous six months, 
which is a comparatively stricter 
threshold than that suggested by 
Khondhu et  al.11 Furthermore, it 
is also possible that when an OSS 
community does not focus on com-
mitting, the contributors remain ac-
tive in handling pull requests and 
discussing relevant issues. In this 
case, the suggestion from our case 
company is that measures regarding 
committing (e.g., the daily number 
of commits), communication (e.g., 
the daily issue comments), and is-
sue handling activities (e.g., the daily 
closed pull requests) be taken into 
account. For these reasons, we pro-
pose to apply supervised techniques 
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to predict the abandonment likeli-
hood for an OSS component on the 
basis of key activities (e.g., commits, 
issues, pull requests, and so on). This 
would overcome the problem of sub-
jective thresholds: rather than relying 
on predefined thresholds, prediction 
can be adapted to a component.

In detail, to predict the abandon-
ment of an OSS component, we pro-
pose the following pipeline:

• Step 1—Data crawling: 
We gather data from all 
125,486,232 GitHub projects 
by using the GHTorrent data 
set (https://ghtorrent.org). The 
selected metrics consist of the 
number of commits, commit 
comments, unique committers, 
issues, issue comments, watch-
ers, and open and closed pull 
requests.

• Step 2—Data preprocessing: We 
create training data for each OSS 
project that fulfill the criteria 
specified by our case company, 
labeling projects active on the ba-
sis of 1) having more than 2,000 
commits, 2) having more than 
1,000 days of activity (from the 
day of creation to the final com-
mit day), 3) having at least one 
commit in the past six months, 
and 4) having days with zero 
commits equal less than 50% of 
the days of activity. Furthermore, 
labeled training data are prepared 
based on the target prediction 
period (e.g., one, two, or three 
months), with their dimensions 
set to provide the best accuracy.

• Step 3—Prediction: Using the 
labeled and preprocessed data, 
we train the classifiers with the 
best performance for the target 
prediction periods. With the 
target OSS component data as 
input, the classifier predicts 

whether a component is active or 
abandoned. Its accuracy is used 
as the probability of the OSS 
being active or abandoned, as it 
indicates the likelihood that the 
prediction is correct.

Validation
To validate the proposed methodol-
ogy, we conduct a preliminary evalu-
ation on 12,208 OSS projects that 
contain at least 1,000 commits from 
at least five unique contributors and 
are watched by at least 100 users 
(the data set is shared at https://doi.
org/10.6084/m9.figshare.16944001.
v1). Such criteria ensure the popu-
larity and longevity of the candi-
dates. The data set is extracted from 
GHTorrent (until the 1 June 2019 
dump) and labeled according to the 
preceding guidelines (see step 2). 
Among the four classification al-
gorithms we selected, i.e., decision 
tree, support vector machine, logis-
tic regression, and naive Bayes, we 
find that logistic regression has the 
highest accuracy with the data set. 
We also apply a 10-fold cross-vali-
dation strategy to assess the predic-
tion capabilities of the model. The 
results of the validation indicate an 
F1 score of ≈ 0.86 (a ±0.01 estimated 
error), with the Matthews correla-
tion coefficient being 0.73; hence, 
we conclude that the proposed meth-
odology is reliable enough.

Working Example
This section presents a working ex-
ample of the proposed method. Due 
to a nondisclosure agreement with 
our case company, we cannot pro-
vide details about the real industrial 
application of our technique. How-
ever, to demonstrate OSSARA at 
work, we apply it to an open source 
software project. We take Keras as 

an example of software developed 
in-house that needs to integrate 
various OSS components. Keras is 
an OSS project providing a Python-
written deep learning application 
programming interface for Tensor-
Flow libraries. For our analysis, we 
chose release 2.7.0 RC1 (https://
github.com/keras-team/keras/re
leases/tag/v2.7.0-rc1), accessed on 
26 October 2021. 

We conduct our analysis by fo-
cusing only on the 536 Python files 
from the repository and detect the 
OSS components (i.e., packages) 
imported within each file. Further-
more, to ease the computation as 
well as the explanation of the re-
sults, we consider the 20 packages 
most frequently imported in Keras. 
We examine only the five most com-
monly imported OSS components 
in Keras, namely, TensorFlow, CPy-
thon, Numpy, abseil-py, and h5py. 
The packages, e.g., re, random, col-
lections, and so on, belong to the 
CPython component and will be 
considered together. The weight of 
each component is calculated by the 
percentage of files importing it.

We conduct our analysis using 
three time frames to predict the aban-
donment risk of embedded OSS 
components in one, two, and three 
months. The same approach can be 
applied to longer periods. To sim-
plify the process, we quantify the 
weight of each imported Python 
package by counting the number of 
imports across all the project files. 
Figure 2 summarizes the results. 
They show that for one month, all 
components are safe from abandon-
ment. When considering a two-
month time frame, the abseil-py 
package appears to have a high risk 
of being abandoned (i.e., 85.8%). 
Finally, for the three-month analy-
sis, the risk that the h5py package 
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will be abandoned rises. The three 
key components, namely, Tensor-
Flow, Cpython, and Numpy, remain 
active throughout. Based on our 
calculation, the overall abandon-
ment risk for Keras grows from 
0.138 in one month to 0.215 in two 
months and 0.248 in three months. 
From the repository history of ab-
seil-py and h5py, we observe that 
since 2020, both projects have had 
very low committing and issue han-
dling rates from a small group of 
contributors, which legitimizes the 
risks assessment.

This example shows that OSSARA 
predicts the abandonment risk to soft-
ware systems that embed OSS compo-
nents. However, this oversimplified 

demonstration aims only to explain 
how our method works when prob-
ability-based conclusions might not 
reflect reality. Please note that we 
did not consider hierarchical rela-
tions. For example, the 20 selected 
packages might use other compo-
nents that have a high abandonment 
risk. Meanwhile, although the model 
meets real industrial needs—its main 
strength—its generalizability can be 
limited. Furthermore, the application 
of risk prediction toward component 
replacement and integration requires 
the support of software engineering 
assessment and decision making.13

Finally, other metrics might have dif-
ferent prediction power for abandon-
ment risk.

I ntegrating abandoned OSS in 
software-intensive systems is 
hazardous and could result in 

severe consequences, which con-
cerns practitioners. Especially when 
functions from abandoned compo-
nents are integrated into highly criti-
cal modules, the consequences from 
abandoned OSS that lacks mainte-
nance can be unbearable. To foresee 
such risks, we proposed OSSARA to 
provide an assessment and predic-
tion pipeline. The model also sup-
ports continuous adaptation and 
customization through which prac-
titioners can conduct optimized pre-
diction via up-to-date OSS activity 
data, with selectively effective and 
even customized algorithms. The 
model was positively received by our 
case company, which is adopting 
and integrating it into its continuous 
integration/continuous deployment 
pipeline. Future work will explore 
other analysis techniques, the inclu-
sion of different metrics in the pre-
diction model, and the integration 
of various types of OSS risk assess-
ment, e.g., security assessment, li-
cense compliance assessment, and so 
on, as well as dependency and hier-
archy analysis. 
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