
0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE 3

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

ALL SYSTEMS HAVE technical debt,
and it has to be continuously man-
aged. Thanks to the past decade
of research, software engineering
teams have now built an awareness
and understanding of technical
debt as a concept,1 have an improved
appreciation of code analysis to drive
down unintentional implementation
mistakes that may lead to technical
debt,2 and even started using some
practices to improve its manage-
ment.3 In fact, arguably, the manag-
ing technical debt research agenda,
which was initially summarized at
the 2010 National Science Founda-
tion Future of Software Engineering
Workshop,4 has been one of the few
bodies of work in software engineer-
ing where we have seen upfront and
engaged collaboration among aca-
demia, industry, and tool vendors.

During this past decade, technical
debt researchers and tool vendors did
not always get things right, however.
Blindsighted by the distorted promise

of quantification of all technical debt
and its financial impact with the push
of a button, researchers, software en-
gineers, and managers initially led
themselves to believe that a magic tool
would resolve all our technical debt,
consequently cost of ownership prob-
lems. This led to a lack of separation
between what causes debt, what its
symptoms are, what might be the ac-
cumulating consequences, and where
in the system is the debt that needs
to be resolved. These confusions are
often rooted in a well-intentioned de-
sire to eliminate technical debt alto-
gether. It is even better if a tool can do
it. However, dealing with symptoms
and root causes of technical debt and
removing the debt in the system often
necessitates different strategies, differ-
ent resources, and different quantifica-
tion approaches.

In software-intensive systems,
technical debt consists of design or
implementation constructs that are
expedient in the short term but that
set up a technical context that can
make future change more costly or
impossible.5 This definition, which

was the outcome of a Dagstuhl semi-
nar attended by researchers in the
area, select tool vendors, and industry,
has now become accepted by the soft-
ware engineering community. Rooted
in this definition is the recognition
that technical debt is about architec-
ture and design tradeoffs and their
consequences.6 The reason why soft-
ware developers embrace technical
debt as a concept is precisely due to its
power in expressing architecture and
design issues, which they did not have
a clear way of doing otherwise.

Tech Debt as a Distinct
Issue Category
Technical debt together with de-
fects and vulnerabilities are three
high-priority categories of issues
that need to be managed to deliver
high-quality software successfully
(Figure 1). And, in fact, managing
technical debt as an issue category
more systematically will not only en-
able concrete data-driven research,
but also will allow existing issue
management and defect quantifica-
tion techniques to be purposed for

A Plea to Tool Vendors:
Do Not Mislead How
Technical Debt Is Managed
Ipek Ozkaya

Digital Object Identifier 10.1109/MS.2021.3102361
Date of current version: 22 October 2021

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute,
ipek.ozkaya@computer.org

FROM THE EDITOR

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

quantifying consequences of techni-
cal debt.

Defects refer to errors in coding or
logic that cause a program to malfunc-
tion or to produce incorrect and unex-
pected results. Most, if not all, defects
should be caught through routine test-
ing and code analysis and code con-
formance checking practices including
unit and acceptance tests. Vulnerabili-
ties are weaknesses that can be accessed
and exploited by a capable attacker.
The criticality of a vulnerability is as-
sessed by determining the risk it pres-
ents, where risk is a measure of the
likelihood that a threat will exploit the
vulnerability coupled with the magni-
tude of the resultant impact. The higher
the risk, the higher the criticality. And,
last, technical debt consists of design or
implementation constructs that make
future changes more costly, issues that
neither defects nor vulnerabilities ef-
fectively address. There are subtleties in
these definitions that drive the reasons
why they need to be explicitly managed
and overlaps which are unavoidable
due to the complex nature of develop-
ing and sustaining software systems.

Software engineering and software
lifecycle management practices sup-
port teams to plan, develop, deploy,
and operate systems that meet the

organization’s business and mission
goals. Developing and deploying high-
quality software necessitates accepting
that defects, vulnerabilities, and tech-
nical debt items all need to be actively
managed to improve both the quality
and the delivery tempo of a system.
Consequently, the approach for manag-
ing and quantifying technical debt fol-
lows that for detecting any other issue
in your system that may affect software
quality and security. Uncovering techni-
cal debt, however, puts a much-needed
and neglected emphasis on design and
architecture choices and cost of change.

There are by all means situations
where technical debt, defects, and vul-
nerabilities get intertwined. Technical
debt as it lingers in the system increases
defect proneness and vulnerability
risks. Appropriate tool support can
be a huge assistance in detecting secu-
rity violations, implementation errors,
and conformance bugs. However, these
issues should not be equated and con-
flated with technical debt. Rather, de-
fects lingering over multiple iterations
or an increased number of security
problems often represent symptoms
of more critical underlying technical
debt issues, which need to be exam-
ined through an architecture analysis
lens and treated accordingly. Effective

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

contactcenter@ieee.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information,
visit www.ieee.org/publications/rights
/rights-link.html

FIGURE 1. The categories of issues that need to be managed in software system

development.

Defect proneness implies increased
vulnerability risks.

Technical debt as it lingers in the
system increases defect proneness.

Technical debt increases
vulnerability risks.

Some issues just overlap, making
it hard to tease apart.

Vulnerabilities

Technical
Debt

Defects

FROM THE EDITOR

 NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE 5

software analysis and automating this
process is, by all means, critical in get-
ting ahead of unintentional technical
debt from creeping into the system.
However, such unintentional defects,
implementation errors, and confor-
mance bugs are not the debt itself
where tool vendors advocate to catch.
These are symptoms of underlying
lacking software engineering practices.

An early and important observa-
tion that the technical debt research
community made was the fact that
developers in fact talk about technical
debt, both within their issue discus-
sions embedded among other issues7
and as part of their code comments as
self-admitted technical debt.8 Techni-
cal debt can also be discovered during
other testing and evaluation activities,
for example sprint retrospectives or
architecture evaluation exercises.

A systematic and commonly ac-
cepted approach to document techni-
cal debt as it is identified does not exist.
Some teams do record it in their issue
trackers clearly as technical debt, others
put it in their design records,9 some is
documented in the code as self-admit-
ted technical debt, and some organiza-
tions assume technical debt resolves
itself as an outcome of risk-tracking.
Lacking a practical, common mecha-
nism to express and track technical
debt is one of the barriers in its effec-
tive management. Empowering teams
to record technical debt as its special
category in issue trackers along with
other software development issues such
as feature requests, user stories, defects,
and vulnerabilities will improve soft-
ware engineering teams’ ability to con-
sistently track and quantify technical
debt. Today, explicitly recoding techni-
cal debt in issue trackers is a practice
only some teams follow. We hopefully
soon will see technical debt as part of
default setups of any common issue
trackers such as Jira, Team Foundation

Server, Bugzilla, and the like with a
consistent approach. This will be a
welcomed change from some of the
existing misleading guidance.

Today some divergent practices
exist. For example, GitLab, consis-
tent with industry best practices, rec-
ommends using technical debt as a
label as part of its core default issues
workflow.10 On the other hand, Jira
guidance suggests equating all differ-
ent types of issues that are open as
technical debt, which is not only in-
correct but also contributes to con-
fusion in practice.11 When issue and
bug tracking software tools embrace
the distinction in Figure 1, software
engineers will be able to scope and
fine-tune technical debt to its rele-
vant architecture and design tradeoff
discussions. This will also help ask
next step research questions as well,
for example, are all self-admitted
technical debt in fact technical debt
or simply routine to-dos and bugs?

An Open Call to
Tool Vendors
The key reason that technical debt
and the promise of dealing with it
in some objective way resonates
with software engineers is because
the concept communicates very suc-
cinctly the core challenge in software
engineering: quality software is de-
veloped and sustained as a series of
not so trivial tradeoffs that need to
be monitored and managed, just like
how we manage our money. The
reason we all care about technical
debt is because we all care about de-
veloping high-quality software that
serves its intended needs. The much-
needed shift in the practice of techni-
cal debt management, however, will
neither be enabled by researchers
nor software engineers. It will be the
tool vendors who will enable the con-
crete management of technical debt,

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Managing Editor: Jessica Welsh, j.welsh@ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@computer.org
Publications Staff Editor: Cathy Martin
Publications Operations Project Specialist: Christine
Anthony
Content Quality Assurance Manager: Jennifer Carruth
Publications Portfolio Manager: Carrie Clark
Publisher: Robin Baldwin
IEEE Computer Society Executive Director: Melissa
Russell
Senior Advertising Coordinator: Debbie Sims

CS PUBLICATIONS BOARD
David Ebert (VP of Publications),
Elena Ferrari, Chuck Hansen, Hui Lei, Timothy Pinkston,
Antonio Rubio Sola, Diomidis Spinellis, Tao Xie,
Ex officio: Robin Baldwin, Sarah Malik,
Melissa Russell, Forrest Shull

CS MAGAZINE OPERATIONS
COMMITTEE
Diomidis Spinellis (MOC Chair), Lorena Barba,
Irena Bojanova, Shu-Ching Chen, Gerardo Con Diaz,
Lizy K. John, Marc Langheinrich, Torsten Möller,
Ipek Ozkaya, George Pallis, Sean Peisert,
VS Subrahmanian, Jeffrey Voas

IEEE PUBLICATIONS OPERATIONS
Senior Director, Publishing Operations: Dawn M.
Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion and
Editorial Support: Neelam Khinvasara
Senior Managing Editor: Geraldine Krolin-Taylor
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles and
departments, as well as product and service descriptions, reflect
the author’s or firm’s opinion. Inclusion in IEEE Software does not
necessarily constitute endorsement by IEEE or the IEEE Computer
Society.

To Submit: Access the IEEE Computer Society’s Web-based
system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript type
when submitting. For complete submission information, please
visit the Author Information menu item under “Write for Us”
on our website: www.computer.org/software.

IEEE prohibits discrimination, harassment and bullying: For
more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2021.3102255

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

improved research, and better techni-
cal debt management practices.

Here is my call to tool vendors:
Dear vendors of static code analysis

and software quality management tools:

• Please do not market features that
detect code conformance bugs,
security violations, and imple-
mentation errors as technical
debt. These are indicative of much
more rooted issues in software,
are of course critical to avoid, and
are symptoms of technical debt.

• Embrace technical debt as an
architecture and design issue, and
align those features in your soft-
ware that can help with architec-
ture issues and only refer to those
as technical debt. Be blunt and
honest about these capabilities.

• Please do not overgeneralize ar-
chitecture analysis. There are only
a few handfuls of architecture
aspects that we can truly analyze
for with tools today, and they are
often limited to select quality at-
tribute concerns around module
view of the systems such as modifi-
ability, extensibility, and maintain-
ability. Automated architecture
analysis is a hard and still unsolved
research and tooling problem.

• Be clear and upfront about what
aspects of the architecture issues
your features can detect. Analyz-
ing for modifiability and related
technical debt differs from analyz-
ing for security or performance.

Dear vendors of issue and bug
tracking software tools:

• Please include an issue type of tech-
nical debt, maybe even shorthand
it as tech debt. Yes, I know, there
are customization features to allow
teams to do that if they chose to
do so. But we are together trying

to change practice. Including this
issue category as part of default
configurations will enable software
engineering teams to think differ-
ently and start improved tracking
of technical debt from the start.

T he availability of these shifts
in tools will have cascad-
ing positive effects of giving

software engineering teams more con-
crete ways to identify and express their
technical debt. Consequently, more
concrete and actionable data related to
technical debt will accumulate in our
software ecosystems, which will en-
able us to answer hard questions such
as how to quantify technical debt and
how to allocate better targeted re-
sources to its management. The next
decade of progress in our ability to
manage technical debt will be enabled
by tool vendors. I am confident they
will rise up to the challenge.

Acknowledgments
The ideas I share in this article are in-
fluenced by the many conversations I
have had the privilege to have within
the past decade with many colleagues
including Robert Nord, Philippe
Kruchten, Stephany Bellomo, James
Ivers, and countless others within the
Software Engineering Institute and
technical debt management researcher
community. The good ideas are in-
spired by them, the mistakes are mine.

References
1. P. Kruchten, R. Nord, and I. Ozkaya,

Managing Technical Debt: Reducing

Friction in Software Development.

Reading, MA: Addison-Wesley, 2019.

2. P. Avgeriou et al., “An overview

and comparison of technical debt

measurement tools,” IEEE Softw.,

vol. 38, no. 3, pp. 61–71, 2021. doi:

10.1109/MS.2020.3024958.

3. M. Keeling, T. J. Halloran, and G.

Fairbanks, “Garbage collect your

technical debt,” IEEE Softw., vol.

38, no. 5, pp. 113–115, 2021. doi:

10.1109/MS.2021.3086578.

4. N. Brown et al., “Managing technical

debt in software-reliant systems,” in

Proc. FoSER, 2010, pp. 47–52. doi:

10.1145/1882362.1882373.

5. P. Avgeriou, P. Kruchten, I. Ozkaya,

and C. Seaman, “Managing techni-

cal debt in software engineering,”

Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, Dagstuhl, Germany,

Rep. Dagstuhl Seminar 16162, 2016.

6. M. Soliman, P. Avgeriou, and Y. Li,

“Architectural design decisions that

incur technical debt — An industrial

case study,” Inf. Softw. Technol.,

vol. 139, p. 106,669, Nov. 2021. doi:

10.1016/j.infsof.2021.106669.

7. S. Bellomo, R. L. Nord, I. Ozkaya,

and M. Popeck, “Got technical debt?:

Surfacing elusive technical debt in

issue trackers,” in Proc. IEEE/ACM

13th Working Conf. Mining Software

Repositories, 2016, pp. 327–338. doi:

10.1145/2901739.2901754.

8. A. Potdar and E. Shihab, “An explor-

atory study on self-admitted techni-

cal debt,” in Proc. Int. Conf. Softw.

Maintenance Evol., 2014, pp. 91–

100. doi: 10.1109/ICSME.2014.31.

9. M. Keeling, “Design it! from pro-

grammer to software architect,” The

Pragmatic Bookshelf, 2017. http://

media.pragprog.com/titles/mkdsa/

architects.pdf

10. “Issues workflow—GitLab docs.”

https://docs.gitlab.com/ee/

development/contributing/issue

_workflow.html#technical-and

-ux-debt (accessed Aug. 2021).

11. D. Radigan, “3 steps to taming

technical debt with Jira,” Atlassian,

Apr. 1, 2015. https://www.atlassian

.com/blog/jira-software/3-steps

-taming-technical-debt (accessed

Aug. 2021).

