
0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 113

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

 THERE IS A kind of design distortion
that happens when a team chooses to
build iteratively instead of looking at
all of the requirements at once. Ward
Cunningham coined the term tech-
nical debt to describe those design
distortions.1 By understanding the
causes of tech debt and connecting
them back to a team’s actions (or
inactions), it’s possible to minimize
the buildup of tech debt and keep a
system healthy indefinitely. The way
to minimize tech debt is to view a
software development process as
an algorithm, consider several algo-
rithms, and choose the right one for
the circumstances.

However, most developers don’t
think about their process as an algo-
rithm, so let’s ease into the idea by
looking at garbage collection algo-
rithms. Watching tech debt build up
on a project is a bit like watching a
program allocate memory. Consider
this description of garbage collection:

Running a program creates garbage,
which is memory that’s been allocat-
ed but is unused. Garbage creation
is unavoidable, so we must occa-
sionally pause to collect garbage.

It’s nicer when those pauses are pre-
dictable and short. There are various
garbage collection algorithms that
have different properties.

And here’s a description of tech debt,
using the same phrasing:

Running a timeboxed iteration
creates tech debt, which is work-
ing code with an obsolete design.
Creating tech debt is unavoidable,
so we must occasionally pause to
refactor the code. It’s nicer when
those pauses are predictable and
short. There are various iterative
software development processes
that have different properties.

Consider this: a team’s software
development process is an algo-
rithm, run by the team itself, that gen-
erates and cleans up a kind of garbage
that we call tech debt. We know
how to analyze algorithms, so let’s
analyze a team’s process just like any
other algorithm.

Software development processes
control tech debt using two tech-
niques. The first technique is clean-
ing up existing tech debt. Most
teams already do this by refactoring.
The second is avoiding the creation
of tech debt. This is less common but

more interesting. Let’s look at each
in turn.

 Technique: Tech Debt
Cleanup
You can control tech debt by clean-
ing it up after it exists. Often, a team
“bolts on” a feature without regard to
the existing design, identifies tech debt,
and only then refactors to clean it up.
Sometimes the cleanup happens imme-
diately, but it could be much later.

Small problems can be refactored
in minutes, but bigger problems
can take days, weeks, or months to
clean up. When developers take a
break from writing features to fix tech
debt, that’s like a garbage collector
pausing to clean up garbage. Spending
time on refactoring means less time
for new features. The bigger the prob-
lem, the longer it takes to refactor.

Because it requires stealing time
from feature building, teams can find
themselves under pressure to do less
refactoring, especially large refac-
torings. As a result, they clean up
the small problems but delay clean-
ing up big problems, such as the sys-
tem’s architecture.2 Postponing a
small cleanup can transform it into a
big cleanup because, over time, code
builds up around the problem, and it
too must be refactored.

Garbage Collect
Your Technical Debt
Michael Keeling, Timothy J. Halloran, and George Fairbanks

Digital Object Identifier 10.1109/MS.2021.3086578
Date of current version: 20 August 2021

THE PRAGMATIC DESIGNER

114	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Technique: Tech Debt
Avoidance
You can control tech debt by creating
less of it—that is, by avoiding it. Teams
do that by considering design alterna-
tives and choosing the one that creates
the least tech debt. When asked to add a
new feature, a team considers how well
the current design can accommodate
that feature. If the design is already
suitable, they add the feature. But if the
design is unsuitable, they update the de-
sign first, then add the feature.

Kent Beck summarized it this way:
“[F]or each desired change, make the
change easy (warning: this may be
hard), then make the easy change.”3
The wordplay in Beck’s quote is de-
lightful, but the idea here is not a
linguistic trick. Figure 1 shows two
possible software development pro-
cesses to control tech debt. The first al-
lows tech debt to happen, then cleans
it up. The second looks for upcoming
trouble and avoids it by redesigning
before implementing the feature.

To many developers, avoiding prob-
lems sounds better than cleaning them
up. Be aware, however, that some tech
debt is unavoidable. Sooner or later, a
new requirement will be an unpleas-
ant surprise. You might wonder if
peeking ahead at future requirements
would work, but that’s not foolproof
because the fog of design obscures our
view of the future.4

Some teams worry that tech debt
avoidance is a waterfall process in dis-
guise, or worse, big design up front.

That’s clearly not the case, as a water-
fall process would have the team look
at all the requirements and deliver one
system to handle them. Tech debt avoid-
ance means that the team works on the
requirements iteratively, delivering a
working system with each iteration.

Some teams worry that tech debt
avoidance will lead to analysis pa-
ralysis. Today, we see lots of teams
struggling to control their tech debt,
but we don’t know of any teams us-
ing an iterative process that are stuck
in analysis paralysis. Perhaps that’s
because there are strong forces push-
ing the team to deliver features with
each iteration.

Choosing a Tech Debt
Algorithm
We’ve explored two techniques to keep
tech debt low: cleanup and avoidance.
Expanding the combinations of those
two techniques yields four kinds of
tech debt algorithms to choose from:
none, reactive (cleanup only), proactive
(avoidance only), and balanced (both
cleanup and avoidance). These algo-
rithms are summarized in Figure 2.

We’ve seen teams succeed with all of
these algorithms. We’ve also seen teams
choose an unsuitable algorithm and
suffer, then conclude that tech debt is
an untamable monster. Choosing the
right algorithm for your team depends
on circumstances, including the team
and project size, domain knowledge,
design experience, technology experi-
ence, and schedule pressure.

None
Some teams don’t do anything to con-
trol tech debt, and the parallel with
garbage collection holds up: there
are no-operation garbage collectors.
If you write a quick script for your-
self, and you don’t plan to reuse it,
why worry about tech debt? The same
thinking applies to bigger projects,
such as commercial computer games,
where developers know they will start
a fresh codebase for the next game.
The developers suffer with tech debt
only until the game is released.

Reactive
The reactive algorithm, using only
tech debt cleanup, is what most teams
do today. Teams can focus primar-
ily on the stream of features to build,
pausing occasionally to clean up tech
debt “garbage.” Bigger cleanup ef-
forts are hard, so early mistakes lin-
ger because they are too expensive to
refactor later. It’s easier to recognize
problems than it is to avoid them, so
reactive makes sense when the devel-
opers have limited design skills.

Proactive
The proactive algorithm, using only
tech debt avoidance, is uncommon
today. If you can avoid tech debt
with a bit of thinking, that’s more ef-
ficient than blundering into obvious
problems. On the other hand, if you
don’t have experience with the tech-
nology being used, you may waste
time based on bad assumptions. De-
spite efforts to avoid tech debt, it will
happen, so teams that start with the
proactive algorithm may switch to the
balanced algorithm to clean it up.

Balanced
Most teams wish their tech debt were
lower, so they should use the balanced
algorithm because it includes both
cleanup and avoidance. Depending on FIGURE 1. Tech debt cleanup and avoidance.

Let tech debt happen, then clean it up

1) Get new requirement/feature.
2) Write the test case.
3) Edit code minimally
 so the test passes.
4) Later on, refactor to remove
 code duplication.

Anticipate tech debt and avoid it

1) Get new requirement/feature.
2) Revise the design, if necessary.
 (Is the architecture OK?
 Is the domain model OK?)
3) Write the test case.
4) Revise code to match the design.

THE PRAGMATIC DESIGNER

	 SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE � 115

the circumstances, they can do more
or less of each technique.

Here’s an example of a balanced
algorithm that we find pragmatic.
At the start of each iteration, the
team discusses how the feature re-
quests will affect the current design.
That keeps the iteration design-fo-
cused and the design fresh in every-
one’s minds.

They may peek ahead at future
feature requests, even though they
aren’t working on them now, be-
cause knowing what’s coming may
help them answer today’s design
questions. Sometimes a feature is
hard to add to the design. It could
contradict an assumption about the
domain, or it could be hard to build
within the current architecture.

If the developers can rework the
design and add the feature within
the current iteration, that’s great.
When they cannot, they chat with
the product owner. They weigh po-
litical, economic, and social forces
as well as schedule pressure and en-
gineering risk before deciding. The
answer might be to bolt the feature

on and clean up the tech debt later,
postpone the feature entirely, or some-
thing in between.

Finite and Infinite Games
Perhaps the most important factor in
deciding which tech debt algorithm
suits your team is whether your team
is playing a finite or infinite game.
Finite games can be lost or won. In-
finite games can be lost, but winning
just means you can keep playing. Tech
debt feels a bit like an infinite game: If
you can keep it under control, you can
keep playing. Otherwise, you lose and
declare tech debt bankruptcy.

Teams with a strict schedule are
playing a finite game. One of the au-
thors (Halloran) developed a mili-
tary wargame simulation, StratWar,
that had to be completed so students
could use it in the next semester. He
met the deadline but built up vast
amounts of tech debt.5

Start-up companies are playing
a series of finite games. They oper-
ate in do-or-die mode to reach the
next milestone, and failure means the
company dies. Halloran also worked

at a static code analysis start-up
company that scrambled to build a
product to show at the JavaOne con-
ference. As you would expect, the
demo built up a lot of tech debt, but
showing up at the trade show with
working software let the company
live another day and kept hope alive
to switch to playing an infinite game.

Inexperience can force you to play
a finite game. If developers don’t
know the problem domain or the im-
plementation technologies, they are
in a finite game until they can build
something that works. Prototyping
can build experience faster than up-
front design or refactoring, but tech
debt will make that code unsuitable
for the long term.

Switching from a finite to an infi-
nite game runs the risk of tech debt
bankruptcy. Sometimes you dis-
card the code from the finite game,
as we did in the StratWar example.
Other times you nurse the code back
to health, as we did in the analysis
start-up.

If you declare bankruptcy and decide
to rewrite the system, it is critical to

Clean Up Tech Debt

No Yes

Avoid
Tech
Debt

No None: Ignore Tech Debt

Some code is never touched after it is delivered,
so it makes sense to code right up to the deadline,
ignoring tech debt.

Reactive: Clean Up Existing Tech Debt

New features are added in a bolt-on fashion, without
regard to the design. Afterward, if the design looks
lousy, the team refactors to clean up the problem
(very common).

Yes Proactive: Avoid Creating Tech Debt

When starting on a new feature, team members
consider how well the current design can
accommodate it. If the design is already suitable,
they add the feature. But if the design is
unsuitable, they update the design before
implementing the feature.

Balanced: Clean Up and Avoid Tech Debt

The balance may change depending on the maturity
of the system, with mature systems needing less
avoidance because their design is already a good fit
for the problem domain. This is the best way to
minimize tech debt for most projects.

FIGURE 2. The kinds of tech debt algorithms. A program may clean up garbage once it exists, avoid creating garbage, both, or neither.

Similarly, an iterative software development process may guide developers to remove existing tech debt, avoid creating it, both, or neither.

THE PRAGMATIC DESIGNER

116 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

re-evaluate your tech debt al gorithm.
Don’t keep using an algorithm tuned
to a finite game and hope it’s suitable
for an infinite game. It’s a good time
to try the balanced algorithm, both
avoiding tech debt through good de-
sign practices and cleaning up the in-
evitable debt through refactoring.

 Minimize Your Tech Debt
Managing tech debt is a bit like man-
aging memory allocation. By choosing
your software development process, you
can control how tech debt accumulates,
just like a garbage collector reclaiming
memory. It’s helpful to think of your
software development process as an al-
gorithm that controls your system’s
tech debt.

Building software iteratively leads
inevitably to tech debt because we

choose to deliver systems before we
have looked at all the requirements.
Not knowing what’s next distorts
our designs, and that distortion is the
tech debt. In theory, waterfall could
avoid that distortion, but, in practice,
it introduces other design distortions
by peering far into a foggy future.6

Software processes have a domi-
nant decomposition: either a stream
of features or the system’s design. To-
day, most teams focus on a stream of
features, and it follows naturally that
those teams rely primarily, or even
exclusively, on tech debt cleanup.7

We have spoken with teams that
work differently. In addition to refac-
toring, they also proactively avoid
tech debt. They have flipped the dom-
inant decomposition, making the sys-
tem’s design their primary concern.

Their iterations are design-focused,
not feature-focused.

Today, teams struggle with tech
debt. Some managers believe
it’s uncontrollable and ex-

pect tech debt bankruptcy after a few
years. The idea that our own software
development process is contribut-
ing to tech debt is liberating because
our process is under our control. By
looking at tech debt as analogous to
garbage creation, you change your
perspective. Tech debt might be in-
evitable, but you can minimize it by
choosing a suitable algorithm.

References
1. G. Fairbanks, “Ur-technical debt,”

IEEE Softw., vol. 37, no. 4, pp.

95–98, July–Aug. 2020. doi: 10.1109/

MS.2020.2986613.

2. M. Keeling, “Headwinds to rede-

sign,” IEEE Softw., vol. 38,

no. 2, pp. 128–132, Mar.–Apr. 2021.

doi: 10.1109/MS.2020.3043081.

3. K. Beck, “for each desired change,

make the change easy (warning: this

may be hard), then make the easy

change,” Twitter, Sept 25, 2012. [On-

line]. Available: https://twitter.com/

kentbeck/status/250733358307500032

4. T. Halloran, “The fog of software

design,” IEEE Softw., vol. 38, no. 3,

pp. 132–135, May–June 2021. doi:

10.1109/MS.2021.3056937.

5. T. Halloran, “Development of the
StratWar Wargame Software,” LeMay

Center, Maxwell AFB, AL, Practicum

Rep., DTIC ADA428794, Feb. 2004.

6. G. Fairbanks, “The rituals of iterations

and tests,” IEEE Softw., vol. 37,

no. 6, pp. 105–108, Nov.–Dec. 2020.

doi: 10.1109/MS.2020.3017445.

7. G. Fairbanks, “Why is it getting

harder to apply software architec-

ture?” IEEE Softw., vol. 38, no. 4,

pp. 126–129, July–Aug. 2021.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

MICHAEL KEELING is a software engineer at LendingHome, San

Francisco, California, 94104, USA, and the author of Design It!: From
Programmer to Software Architect. Further information about him

can be found at http://neverletdown.net/. Contact him at mkeeling@

neverletdown.net.

TIMOTHY J. HALLORAN is a software engineer at Google,

Pittsburgh, Pennsylvania, 15206, USA and a retired U.S. Air Force

Lieutenant Colonel. Contact him at hallorant@gmail.com.

GEORGE FAIRBANKS is a software engineer at Google. Contact

him at gf@georgefairbanks.com.

