
132 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

OUR ABILITY TO design software
is frustrated because critical in-
formation is shrouded by fog. We
misunderstand requirements, we im-
perfectly predict how those require-
ments will evolve, we misinterpret
the existing code, and we wish we
understood design principles better.
These forces are the fog of software
design. Developers who are aware of
them can take steps to overcome the
fog and deliver better software.

Carl von Clausewitz introduced
the phrase “the fog of war,” saying,
“War is the realm of uncertainty;
three quarters of the factors on which
action in war is based are wrapped
in a fog of greater or lesser uncer-
tainty.”1 Good military leaders work
to build up a “sensitive and discrimi-
nating judgment” when considering
battle reports, intelligence, and other
information—they suspect all of be-
ing incomplete, misleading, or factu-
ally wrong. von Clausewitz cautions

military leaders to anticipate uncer-
tainty and incomplete situational
awareness in military operations.

Software designers face similar
uncertainty. The fog analogy can
help us reflect on some of the in-
formation challenges we face in our
design work and avoid throwing up
our hands in frustration and just
coding. Many of the ideas in this ar-
ticle were raised by Parnas and Cle-
ments more than three decades ago
in their approach to “fake” a ratio-
nal design process.2

In this article, I will discuss the
fog of software design, the problems
it creates, and how to clear the fog
as much as we can. Let’s begin with
requirements.

 The Fog of Understanding
Requirements
Software requirements are rarely
well articulated or complete. Par-
nas and Clements lament, “In most
cases the people who commission
the building of a software system do
not know exactly what they want

and are unable to tell us all that they
know.”2 A humorous quote from
Henry Ford about requirements for
the automobile captures a similar
sentiment, “If I had asked people
what they wanted, they would have
said faster horses.” Understanding
requirements is a big topic that un-
derpins why teams today favor itera-
tive development. In my analogy, the
fog obscures the requirements, and
we have to invest time and effort to
make them clear. Information we
are given can be misleading (for ex-
ample, “faster horses”). Venturing
out into the dense fog is uncomfort-
able, and we tend to gravitate to the
less foggy areas of the problem do-
main—to our peril.

One large defense software proj-
ect I worked on failed because it
avoided dense fog, ignoring the risky
work of understanding the require-
ments for interfacing with aging sen-
sor systems. Engineers found it more
comfortable to work on designs for
clever data processing and a vibrant
new user experience. Management

The Fog
of Software Design
Timothy J. Halloran

Digital Object Identifier 10.1109/MS.2021.3056937
Date of current version: 16 April 2021

From the Editor

Your software projects never quite go as smoothly as the textbooks promise, do

they? Tim Halloran explains where the fog of design comes from and tells you

how to handle it. —George Fairbanks

THE PRAGMATIC DESIGNER

 MAY/JUNE 2021 | IEEE SOFTWARE 133

was thrilled, good progress was
made, and prototypes emerged that
looked wonderful. Sadly, after sev-
eral years of work, we never got the
sensor system drivers to keep up
with the data needs of other flashier
parts of the system. Costs got too
high, and the project was canceled.
The team focused on the low-risk
parts of the design and implementa-
tion where the fog wasn’t too thick
and doomed the project.

How can you deal with require-
ments in the fog? Spend your time on
risky or contentious design elements.
This is hard because it is human na-
ture to gravitate toward comfortable
work that we can make steady prog-
ress on. Resist this urge. Sound the
foghorn and venture into the thick-
est regions. Be worried if your design
work feels too comfortable or easy.
Work hard to uncover high-risk ele-
ments like the aging sensor systems
that doomed my project. My advice
contradicts the current fad of “high-
est customer value first.” You should
tackle the highest risk first. A risk-
driven approach works best in my

experience and is consistent with
Boehm’s spiral model.3

The Fog of Anticipating
Requirements
To make good design choices today,
software developers try to anticipate
future requirements. Guessing what
is going to change over time is like
peering into the fog to try to see into
the future. Most of the time, this
turns out to be a bad idea.

I have wasted many hours peer-
ing into the fog of system evolution
and getting it utterly wrong. One
example blunder was in a Java dy-
namic analysis tool I designed while
working for a start-up company.
This tool used a Structured Query
Language (SQL) database to store
Java program events (for example,
lock acquired and field read) and
query useful information for the
user (for example, race condition
observed). It used Apache Derby as
the database; however, I wanted to
support other databases, such as Or-
acle. There might have been a vague
business requirement but nothing

concrete—the marketing folks didn’t
need this flexibility. To implement
this feature, we used Java’s Resource-
Bundles to support database-specific
SQL language variations and ab-
stracted database bootstrapping. The
implementation was complex and
required weeks of work by multiple
engineers and thousands of lines of
code. The feature worked flawlessly,
was well tested, and was pretty easy
to maintain. But all of that time was
wasted. We never used a different da-
tabase or reused the code in another
tool, yet we paid the development
price and the complexity price for
our bad prediction.

Guessing system evolution and
building infrastructure software is
related. Good judgment in this area
is difficult. Of course, not all infra-
structure work is bad. However, I’ve
learned to be skeptical about infra-
structure projects. Is this needed?
Will it be used? Designers and en-
gineers (like me) love this kind of
work. Management tends to as well.
Most infrastructure, like my database
flexibility feature, is clever and can be

THE FOUR FOGS OF DESIGN

Our ability to design software is frustrated because critical information is shrouded by fog.

The fog of understanding requirements
 • Software requirements are rarely well articulated or

complete. Be tenacious about uncovering risks and
really understanding your problem domain. Avoid
“comfortable work” on low-risk parts of the system
even if this makes management happy.

The fog of anticipating requirements
 • Designers try to anticipate future requirements. Most

of the time, this is a bad idea. Don’t build what you
don’t need. Infrastructure projects take resources
away from other work. Be sure they are reusable and
really needed.

The fog of existing code
 • When we rewrite existing code, we often don’t under-

stand—or have forgotten—the key design decisions
that made the production system successful. Design
intent has been lost. This can doom a project or,
worse, cause it to drag on forever.

The fog of design knowledge
 • We don’t consider many potential designs due to our

limited expertise. Get feedback and deeply value
design ideas from others. Contention, while uncom-
fortable, helps you design better and longer-lasting
software systems.

THE PRAGMATIC DESIGNER

134 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

used in several of a company’s prod-
ucts. But there is an opportunity cost,
and that’s my caution—infrastructure
development means other projects
don’t get resourced. What would be
a good criterion with which to judge
an infrastructure project? Consider
if it abstracts a difficult requirement
and is usable by multiple software
systems. How many systems should
reuse it? I agree with Tracz, who ar-
gued that “you need to reuse it three
times” to have confidence that it is
really reusable.4

How do we clear the fog of sys-
tem evolution? Don’t guess. Base de-
cisions on requirements or the real
potential for reuse. My database flex-
ibility feature was based on neither
of these and should not have made
it into the design. Realize that in-
frastructure projects take resources
away from other, perhaps more prof-
itable, work. Remember Tracz’s rule
of three for reuse when contemplat-
ing nontrivial infrastructure projects.

The Fog of Existing Code
When we rewrite or modernize ex-
isting code, we often don’t under-
stand—or have forgotten—the key
design decisions that made the pro-
duction system successful. This cre-
ates a special kind of fog around a
production system: the fog of lost de-
sign intent. This can doom a project,
or worse, cause it to drag on forever.

I tend to sum up my Air Force ca-
reer with the phrase, “I retired a lot
of mainframe computers.” I’m being
a bit tongue in cheek, but moving
code off a mainframe to a modern
computer (typically to a new pro-
gramming language as well) is a
classic software modernization proj-
ect. It expends software development
costs to make the system easier (and
hopefully cheaper) for the organiza-
tion to support long term. Here, let’s

consider substantial modernization
efforts, such as a total system rewrite
in a new language. In these larger
projects, the fog around the existing
code is insidious—the gory details
are all there in the source code, and
teams often feel confident that they
understand it all. They never do.

One failure I observed was a proj-
ect trying to move a large mainframe
Cobol system to operating system
(OS)/2. It seemed to me that the de-
signer was far more concerned about
using every shiny new OS/2 feature
than understanding the production
system. More commonly, I’ve ob-
served a string of modernization proj-
ects that never quite seem to replace
the production system, taking years
to finally succeed (if they do succeed
at all). How do we overlook the suc-
cessful design elements of produc-
tion software? I believe it’s because
system maintainers rarely work on
them. They are stable, reliable, and
easily taken for granted.

How do we clear the fog of ex-
isting code? Design the updated
system such that its major compo-
nents (pieces) can be used in pro-
duction quickly—before the entire
implementation is complete. Avoid
implementing everything and then
“flipping the big switch.” Carefully
transition each piece into produc-
tion, for example, with an experi-
mental rollout, but take the time
and effort to launch them one by
one. Why? This approach exposes
your work to the unforgiving pro-
duction environment. You’l l cut
through the fog of existing code
and rediscover key design decisions
in the old system that you missed.
This is the only technique I’ve had
success with in practice, but it has
a cost. The emerging new code has
to interact with the old production
code. This increases the development

cost, creates a lot of work in the old
code base, might drive hardware
costs, and limits architectural im-
provements to the system (at least
during transition). However, in my
experience with “retiring” main-
frames, it ensures project success.

The Fog of Design Knowledge
None of us knows everything about
software design. This internal fog
starts where our design knowledge
ends or where we become uncom-
fortable. We don’t consider potential
designs because we haven’t been ex-
posed to them, or we view them as
risky because we don’t have personal
experience applying them. Further,
as Parnas and Clements note, “We
are often burdened by preconceived
design ideas—ideas that we in-
vented, acquired on related projects,
or heard about in a class.”2

As a concrete example of where
this type of fog blinded me, let’s con-
sider using the visitor pattern in pro-
gram analysis. When I first started
designing analysis tools for Java se-
curity, I did not know the visitor
pattern,5 so each time we added an
analysis, we also had to add another
polymorphic method to our Java ab-
stract syntax tree classes—which
turned into a maintenance mess.
When I was introduced to the visitor
pattern, I viewed it with suspicion.
Didn’t it seem complex? Wasn’t a sim-
ple method easier? My lack of knowl-
edge and discomfort with new ideas
resulted in us having to redesign our
tools within a year of launch.

How can you clear the fog of lim-
ited design knowledge? Get feed-
back. Treasure other design ideas
and feedback from as many folks
as you can engage. This is an excel-
lent way to expand the pool of de-
sign knowledge beyond yourself and
help you become comfortable with

THE PRAGMATIC DESIGNER

MAY/JUNE 2021 | IEEE SOFTWARE 135

new approaches. Deeply consider the
feedback you get from others, don’t
just dismiss it. I caution, however,
that this will create contention. Al-
ternative designs will be proposed,
and parts or all of your design will
be criticized. This can be uncomfort-
able but leads to a better outcome.
I’ve seen this advice to gather feed-
back and embrace a contentious de-
sign process ignored so often that
I’d almost call it Halloran’s law:
any noncontentious software design
will be reimplemented within a few
years. Why? Like my program analy-
sis systems that didn’t use the visitor
pattern, these designs tend to be me-
diocre. You might be able to imple-
ment them, as I did, but they will
quickly reveal their deficiencies.

Clearing the Fog
How can we clear the fog of software
design? Let’s look at three approaches,
and then I’ll give you my advice.

Your schedule-stressed coworkers
may espouse the “panic and hack”
approach. They argue that if we agree
the fog is an obstacle to design, let’s
skip design altogether and just imple-
ment features. They say that the code
will flow, we’ll meet our schedule,
and management will be happy (for
a while). Unfortunately, this won’t
scale. Larger software systems built
this way, if they ever launch, will
have both maintenance problems
and short lifetimes. I disagree with
your coworkers—design is critical
and should not be skipped.

Academics and design books tend
to take an omniscient perspective
on design, without any fog, so that
a student can learn the principles.
This is an essential simplification for
teaching; however, it is impractical.
Be wary. The perfection of a pat-
tern will get messy in a real system.
Specifications will rarely exist, and

you’ll have to infer them from code.
Things always look clean and easy in
a book, so learn the principles from
them, but you will need additional
advice for coping with the fog.

Parnas and Clements suggest that
we “fake” a rational design process
and produce (copious) documenta-
tion that rewrites the project’s messy
history.2 Their ideas benefited from
experience on the design of an up-
date to the A-7E Avionics System, a
complex real-time embedded system
for a military aircraft.6 Parnas and
Clements understood the fog but
perhaps overgeneralized their expe-
rience. With three decades of hind-
sight, I disagree with the volume
and precision of the documenta-
tion suggested by their process. For
most domains, such documentation
is economically impractical. All too
often, the rate of change on the proj-
ect would quickly render such docu-
ments obsolete. Even for real-time
embedded systems, new techniques
have emerged, such as model check-
ing, that enable precision in a more
useful form than documentation.

C ritical information driv-
ing your design will be
shrouded in fog, so expect

to find broken abstractions, incom-
plete specifications, and misleading

documentation. What is my advice?
You can’t prevent the fog, but you can
anticipate it and be ready. More con-
cretely, use design abstractions and it-
erate. Keep your work rigorously risk
driven. Tailor documentation formal-
ity to your problem domain. Solicit
feedback on your work. Vigorous
design discussions lead to better de-
signs. Don’t panic, keep your head,
and you can design despite the fog.

 References
1. C. v. Clausewitz, Vom Kriege, Bonn,

Germany: Dümmler, 1832, Book 1,

ch. 3, p. 101.

2. D. Parnas and P. Clements, “A

rational software process: How

and why to fake it,” IEEE Trans.

Softw. Eng., vol. SE-12, no. 2, pp.

251–257, Feb. 1986. doi: 10.1109/

TSE.1986.6312940.

3. B. Boehm, “A spiral model of soft-

ware development and enhancement,”

Computer, vol. 21, no. 5, pp. 61–72,

May 1988. doi: 10.1109/2.59.

4. W. Tracz, Confessions of a Used

Program Salesman. Reading, MA:

Addison-Wesley, 1995.

5. E. Gamma, R. Helm, R. Johnson, and

J. Vlissides, Design Patterns. Reading,

MA: Addison-Wesley, 1995.

6. L. Bass, P. Clements, and R. Ka-

zman, Software Architecture in

Practice, 2nd ed. Reading, MA:

Addison-Wesley, 2003.

ABOUT THE AUTHOR

TIMOTHY J. HALLORAN is a software engineer at Google, Pittsburgh,

Pennsylvania, 15206, USA and a retired U.S. Air Force Lieutenant Colonel.

Contact him at hallorant@gmail.com.

