
FOCUS: GUEST EDITORS’ INTRODUCTION

Behavioral Science of
Software Engineering
Marian Petre, The Open University

Jim Buckley, University of Limerick

Luke Church, University of Cambridge

Margaret-Anne Storey, University of Victoria

Thomas Zimmermann, Microsoft Research

Digital Object Identifier 10.1109/MS.2020.3014413
Date of current version: 22 October 2020

074 0 -74 59 /20©2020 I E E E NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 21

FOCUS: GUEST EDITORS’ INTRODUCTION

LARGE-SCALE SOFTWARE DE-
VELOPMENT is a sociotechni-
cal activity only bounded by human
imagination, ingenuity, and cre-
ativity. It involves teams of develop-
ers progressing by coordinating their
activities and communicating their
bottlenecks, goals, and advancements
toward the wider goal of creating
large, high-quality software systems.
The stakeholders they serve are diverse
(for example, clients, infrastructure
providers, open source communities,
project managers, and regulatory au-
thorities), and often they have many
competing, implicit requirements.
But, as the political and legal implica-
tions of algorithms and data (https://
harvardmagazine.com/2000/01/
code-is-law-html) increasingly affect
society, it is imperative that the sys-
tems the developers build are high
quality in terms of accurately embody-
ing all of those requirements.

Consequently, understanding hu-
man reasoning and the social con-
text in the software engineering
process is crucial, promoting innova-
tion, productivity, and quality. There
is a well-established, international
community that conducts empirical
studies of the psychology of software
engineering, applying cognitive and
social psychological theory to soft-
ware development to make sense of
practice, and to lead to new insights,
methods, and tools.

Researchers in both industry and
academia have been studying the
cognitive, social, and behavioral as-
pects of software development for at
least 50 years. As outlined by Black-
well et al.,1 early work in the 1970s
focused on the cognitive work done
by programmers. For example, Wein-
berg’s The Psychology of Computer
Programming was first published
in 1971,2 and the first paper to di-
rectly address the psychology of

programming in the International
Journal of Man Machine Studies
(subsequently the International Jour-
nal of Human–Computer Studies)
was “Psychological Evaluation of
Two Conditional Constructions Used
in Computer Languages” by Sime
et al.3 Contemporaneously, the rel-
evance of the human and behavioral
aspects of software development was
highlighted by Brooks’ classic The
Mythical Man-Month.4

This trend of a cognitive approach
continued through the 1980s, with a
much-expanded range of studies ap-
plying psychological methods to the
study of software development at scale.
By the 1990s, the focus had shifted
from individual cognition to situated
practice, drawing on social psychol-
ogy to address professional skills and
contexts. The focus expanded in the
early 2000s to the social enterprise of
software development, drawing on the
range of behavioral sciences to study
bigger developments by larger devel-
opment teams, including distributed
teams in a global context.

This perspective has been ex-
plored extensively within a range of
communities including, but by no
means limited to the

• IEEE/ACM International Work-
shop on Cooperative and Human
Aspects of Software Engineering
(CHASE)

• ACM/IEEE International Sym-
posium on Empirical Software
Engineering and Measurement
(ESEM)

• PLATEAU workshop (evaluation
and usability of programming
languages and tools)

• ACM Conference on Computer-
Supported Collaborative Work
and Social Computing (CSCW)

• ACM Conference on Human Fac-
tors in Computer Systems (CHI)

• Psychology of Programming In-
terest Group (PPIG)

• IEEE Symposium on Visual Lan-
guages and Human-Centered
Computing (VL/HCC).

However, within many software en-
gineering venues, such as the Joint
European Software Engineering
Conference and Symposium on the
Foundations of Software Engineering
(ESEC/FSE) and the International
Conference on Software Engineer-
ing (ICSE), research remains primar-
ily focused on the technical aspects
of the tools and processes, without
considering humans in their evalu-
ations.5 That is not to say that all
studies should be exclusively hu-
man centric, but rather that “…there
is a need for strategies that aim at
a deeper understanding of human
and social aspects of software de-
velopment practice to balance the
design and evaluation of technical
innovations.”5 The raft of behavioral
science approaches available to re-
searchers means that this need can
be addressed toward a more holistic
understanding of software develop-
ment and thus identification of op-
portunities for improvement in the
process and the product.

This special issue of IEEE Soft-
ware aims to provide a snapshot of
how these worlds and approaches can
meet. As illustrated in Table 1, the
topics discussed are widely diverse,
tackling a range of important soft-
ware engineering challenges. These
include the improved incorporation
of requirements into Agile software
development (Sedano, Ralph, and
Péraire) and addressing the infor-
mation needs of developers tasked
with software evolution in general
(LaToza). Other topics include ad-
dressing resistance in software proj-
ects (Cheikh-Ammar, Bourdeau, and

22 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

 NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 23

Darveau) and reducing errors in soft-
ware by providing developers with
relevant contextual information and
illustrating how logging developer
behavior can lead to increased devel-
oper productivity and team building
(Jaspan et al.). They also cover topi-
cal, contextual issues, such as age-
ism (Baltes, Park, and Serebrenik)
and gender inclusivity (the “Re-
quirements” department) in soft-
ware engineering, toward providing
a more balanced inclusive makeup
of development teams.

Likewise, these articles illustrate
the range of behavioral science ap-
proaches available to researchers,
from in situ, industry-based studies
(such as the article by Sedano, Ralph,
and Péraire as well as that by Gui-
zani et al.) to more formal experi-
ments (Nagaria and Hall). Between
these two extremes are reviews of
tools (LaToza), analysis of social me-
dia (Baltes, Park, and Serebrenik),

interviews (Cheikh-Ammar, Bour-
deau, and Darveau), and a Google
study of the ethical behavioral log-
ging of software developers’ activities
(Jaspan et al.).

In summary, although the diver-
sity of software engineering topics
addressed shows the applicability and
importance of the behavioral science
lens to the study of software engi-
neering, the diversity of behavioral
science approaches employed by the
authors illustrates the breadth of ap-
proaches, methods, and analytic tools
available to researchers when they try
to develop a deeper understanding of
software engineering concerns.

The articles are summarized as
follows. Baltes, Park, and Serebrenik
analyzed the public discourse within
the U.S. developer media about per-
ceptions of age and employability.
They looked at both relevant online
articles, and the discussions about
them in Hacker News, and found that

many developers are now considered
“old” at 40+ years of age. They iden-
tified both the perceived employment
issues and the strategies used to miti-
gate them, both strategies associated
with technical skills (such as special-
ization and mastering modern tech-
nologies) and those associated with
social perceptions of the individual or
the company culture.

Nagaria and Hall studied the po-
tential of situation awareness train-
ing to reduce errors during software
development by enabling the reten-
tion of contextual knowledge during
task performance. They developed
an online situation awareness train-
ing package based on the cycle ob-
serve–orient–decide–act (OODA)
loop.6 They evaluated the effect in
a preliminary experiment with pro-
fessional developers that tested their
in situ development behavior over
five days before and five days after
training. Their preliminary results

Table 1. The articles in this issue use a range of methods to address diverse software
engineering challenges from a behavioral science perspective.

Authors Title Topic Methods

Baltes, Park, and
Serebrenik

“Is 40 the New 60? How Popular Media Portrays the
Employability of Older Software Developers”

Perceptions of age and
employability

Analysis of online media

Nagaria and Hall “Reducing Software Developer Human Errors by
Improving Situation Awareness”

Situation awareness and error
reduction

Training experiment

Cheikh-Ammar, Bourdeau,
and Darveau

“Navigating the Rough Seas of Software Project
Resistance”

Strategies for project
management within software
teams

Semistructured interviews

Jaspan et al. “Enabling the Study of Software Development
Behavior With Cross-Tool Logs”

Software development
productivity

Behavioral logging

LaToza “Information Needs: Lessons for Programming Tools” Cognitive and information
needs of developers

Analysis of tools

Sedano, Ralph, and Péraire “Dual-Track Development” Human-centric design in Agile
software development

In situ, industry-based
evaluation

Guizani et al.
(“Requirements”
department)

“Gender Inclusivity as a Quality Requirement:
Practices and Pitfalls”

Gender inclusivity in software In situ, industry-based
evaluation

24 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

suggested that developer errors were
reduced with OODA loop use.

Cheikh-Ammar, Bourdeau, and
Darveau used interviews with expe-
rienced project managers to charac-
terize the nature of resistance that
occurs within software projects.
They described how project man-
agers can intervene by adopting
one of four archetypal personas—
the coach, doctor, politician, and
priest—each of which supports dif-
ferent preventative and curative in-
terventions to overcome resistance.

Jaspan et al. looked at behavioral
logging of software developers and
how that might inform software de-
velopment practices. Specifically,
they described a behavioral logging
system developed at Google and dis-
cussed how that system can inform
on topics as diverse as the “benefits
of code-conventions training with

respect to code reviews” and “identi-
fying negative interpersonal interac-
tions” in their teams.

LaToza focused more on cogni-
tive aspects of individual develop-
ers, describing the information needs
experienced by individual software
engineers when onboarding open
source projects, when navigating and
debugging code, and when trying to
uncover aspects of the system’s de-
sign rationale. He pointed to several
tooling initiatives that address these
information needs congruently, as il-
lustrations of the impact understand-
ing human reasoning can have in
software development.

Sedano, Ralph, and Péraire re-
viewed focused how the software
development process can be reconfig-
ured to allow greater incorporation
of human-centered design in projects
that follow an Agile method. Their

approach has been refined/evalu-
ated in situ over three years in a
commercial organization (Pivotal),
and it has been well received by de-
velopers who attribute the success
of projects to the “constellation of
practices” described.

In the “Requirements” department,
Guizani et al. reported on the use of
their tool GenderMag (a method for
detecting and fixing gender inclusivity
issues in software) by 10 professional
software development teams. Drawing
on longitudinal data collection, their
column summarized key practices and
pitfalls observed in use.

 These articles represent just a
fraction of the more than 50 submis-
sions to the special issue, highlighting
again the broad span of excellent re-
search occurring in this space. This
is further highlighted by the “Prac-
titioners Digest” department, which

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

MARIAN PETRE is a professor of com-

puting at the School of Computing and

Communications, The Open University.

Contact her at m.petre@open.ac.uk.

MARGARET-ANNE STOREY is a professor

of computer science and a codirector of the

Matrix Institute for Applied Data Science,

University of Victoria, Canada. Contact her at

mstorey @uvic.ca.

JIM BUCKLEY is a senior lecturer at

Lero/The Department of Computer

Science and Information Systems at the

University of Limerick, Ireland. Contact

him at jim.buckley@ul.ie.

THOMAS ZIMMERMANN is a senior

principal researcher, Microsoft Research,

Redmond, Washington. Contact him at

tzimmer@microsoft.com.

LUKE CHURCH is an affiliated lecturer,

the Department of Computer Science

and Technology, University of Cam-

bridge, United Kingdom. Contact him at

luke@church.name.

 NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 25

details increased activity in fora
such as ICSE, for example. Unfortu-
nately, we could not include all the
excellent submissions we received in
this special issue, but we have rec-
ommended them for inclusion in
future issues of IEEE Software, to
further illustrate the possibilities
for applying behavioral methods to
understanding and supporting soft-
ware development practice, across
different developers, contexts, and
research questions.

However, some important dis-
cussions were missing. The study of
social and behavioral aspects of de-
veloping with new emerging technol-
ogies, such as machine learning, was
largely absent from the submissions,
as were discussions on the emerg-
ing politics of algorithms and the

negotiations of the role of software
in society beyond legal and regula-
tory frameworks. As the work on
inclusiveness and diversity shows,
these issues are now at the fore-
front of modern software practice.
We look forward to future research
growth in these important spaces,
with progress reflected in future sub-
missions to IEEE Software.

References
1. A. F. Blackwell, M. Petre, and L.

Church, “Fifty years of the psychol-

ogy of programming,” Int. J. Hu-

man–Comput. Stud., vol. 131, pp.

52–63, Nov. 2019. doi: 10.1016/j.

ijhcs.2019.06.009.

2. G. M. Weinberg, The Psychology

of Computer Programming. Dorset

House, 1971.

3. M. E. Sime, T. R. G. Green, and

D. J. Guest, “Psychological evalu-

ation of two conditional construc-

tions used in computer languages,”

Int. J. Man Mach. Stud., vol. 5, no.

1, pp. 105–113, 1973. doi: 10.1016/

S0020-7373(73)80011-2.

4. F. Brooks, The Mythical Man-

Month. Reading, MA: Addison-

Wesley, 1975.

5. M. Storey, N. A. Ernst, C. Williams,

and E. Kalliamvaku, “The who,

what, how of software engineering

research: A socio-technical frame-

work,” Empirical Softw. Eng.,

vol. 25, no. 5, pp. 4097–4129. doi:

10.1007/s10664-020-09858-z.

6. J. Boyd, “A discourse on winning and

losing [Briefing Slides],” Air Univ. Li-

brary. Maxwell Air Force Base, AL,

Document No. MU 43947, 1987.

CALL FOR ARTICLES
IT Professional seeks original submissions on technology
solutions for the enterprise. Topics include

•	 emerging technologies,
•	 cloud computing,
•	 Web 2.0 and services,
•	 cybersecurity,
•	 mobile computing,
•	 green IT,
•	 RFID,

•	 social software,
•	 data management and mining,
•	 systems integration,
•	 communication networks,
•	 datacenter operations,
•	 IT asset management, and
•	 health information technology.

We welcome articles accompanied by web-based demos.
For more information, see our author guidelines at
www.computer.org/itpro/author.htm.

WWW.COMPUTER.ORG/ITPRO
Digital Object Identifier 10.1109/MS.2020.3027396

