
0740 -7459 / 20©2020 I EEE NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 105

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

 WHEN I WAS a kid, my mother
would tell me to clean my room, and
I would dutifully push the vacuum
cleaner around. It wasn’t until I was
living on my own that I realized that
this was the right ritual, but the goal
was to have a clean room, and the
ritual might or might not achieve
that goal. It was a minor epiphany of
youth: my elders had handed down
wisdom in the form of a ritual, but
that ritual wasn’t strong enough to
ensure the outcome.

That’s the situation we find our-
selves in with software development
processes. Today, there is a broad
consensus that the best way to de-
velop software is to follow an it-
erative process: evolving a working
system and using automated testing
to avoid regression. In fact, this has
been the standard way to do things
for so long that it’s easy to just fol-
low the ritual and not think much
about it.

We must not fool ourselves and
think that software development is
mechanical. The rituals of iterative
development and testing are a good
starting point, but, unless we go be-
yond them, a project will become a

tangled mess. Projects that follow
the ritual are still endangered by
two slippery slopes: the accumula-
tion of ur-technical debt and loss
of intellectual control. Before we
take a look at those slippery slopes,
let’s make sure we’re using terms for
software processes the same way.

Waterfall, Incremental,
and Iterative
If you were building a car using a wa-
terfall process, you would proceed
through stages including gathering
requirements, analyzing the problem,
designing a solution, building the car,
testing it, and delivering it. The as-
sumption is that you can mostly finish
each stage before starting the next, but
things rarely work out that way.

If you were building a car using
an incremental process, you’d follow

the same stages but would deliver
a series of parts that add up to a
car—perhaps the wheels first, then
the frame, then the engine, and
so on. Notice that you must have
a design before you start building
the parts; otherwise the parts will
not fit together, so this is really

just a waterfall process with a se-
ries of deliveries.

If you were building a car using
an iterative process, you would pick
up just a few requirements and build
something simple, for example, a skate-
board. Then, you’d pick up a few more
requirements and evolve the skate-
board into a scooter. This would pro-
ceed through a bicycle and motorcycle
before becoming a car. The critical
insight is that you deliver something
quickly so you can learn from that

The Rituals of
Iterations and Tests
George Fairbanks

Digital Object Identifier 10.1109/MS.2020.3017445
Date of current version: 22 October 2020

It was a minor epiphany of youth: my
elders had handed down wisdom in
the form of a ritual, but that ritual wasn’t
strong enough to ensure the outcome.

THE PRAGMATIC DESIGNER

106 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

experience, both about your technol-
ogy and what your users want.

However—and this is a big ca-
veat—in an iterative process, the parts
you build early on will not fit the final
product. It would be remarkably lucky
if they did, because you had seen only
some of the requirements. Besides, a
skateboard with car wheels would be
a lousy design. When using an itera-

tive process, there is no way to avoid
going back and revising existing parts.

 Slippery Slope:
Sedimentary Process
Despite that, teams drag their feet
about substantive revisions. Once the
code exists, many teams find excuses
to avoid that expensive rework. Man-
agers might say, “Our developers are
smart, so why would they have writ-
ten bad code?” Ward Cunningham
invented the debt metaphor to explain
exactly this situation to his manage-
ment: it’s not that smart developers
write bad code, it’s that they had a
partial understanding of the problem
and built a skateboard, but now they
are asked to build a motorcycle.

Because they know refactoring is
necessary, developers go through the
refactoring ritual, but it’s expensive,
so they often don’t finish the job and
leave behind evidence of earlier itera-
tions. They might leave behind code
referring to skateboards or motorcy-
cles even though they have delivered

a car. I’m not aware of a name for
an iterative process with imperfect
cleanup across iterations, so I’ve
been calling it a sedimentary process
because the old ideas are still there
in the code but partially covered in
layers of new code.1

You can cope with the old ideas in
code by mentally translating. For ex-
ample, when you see a data structure

still named “motorcycle,” you men-
tally translate that to “car.” Tougher
translations are not syntactic. For
example, steering a motorcycle is
deeply different from steering a car—
not a word-for-word substitution.

Our minds are only so big. We are
able to work on larger, harder prob-
lems when we allow those thoughts
to spill out onto an external repre-
sentation, like pencil marks on pa-
per. The machine an engineer builds
also acts as an external representa-
tion, and a clock maker can reason
about the clock’s operation more eas-
ily when looking at the gears and le-
vers in the mechanism. This effect is
stronger with software engineering
because source code expresses our
ideas far more directly than steel or
concrete can. A well-chosen variable
name relieves a mental burden, but a
misnamed variable sends us quickly
down a line of mistaken reasoning.2

A sedimentary process is a slip-
pery slope. At first, it’s easy to re-
call what you wrote yesterday and

translate in your head, but, over time
and with many developers, it be-
comes increasingly hard to look at
code that says one thing while think-
ing about a different thing. The code
fails as your external representation,
even though it works fine as a ma-
chine and passes all of the tests.

This is ur-technical debt, and it is
what Ward Cunningham warned us
about. As ur-technical debt accumu-
lates, more of your effort goes to the
translation instead of to new features.
As he put it, “Every minute spent on
not-quite-right code counts as in-
terest on that debt. Entire engineer-
ing organizations can be brought to a
stand-still under the debt load of an
unconsolidated implementation. . . .”3

Slippery Slope: Loss
of Intellectual Control
A second slippery slope is the loss
of intellectual control. We gain con-
fidence that our code does the right
thing from two sources: reasoning
about it and running it. Reason-
ing gives us intellectual control, for
example, confidence that it doesn’t
deadlock because of the locking algo-
rithm. Running code gives us statis-
tical control, for example, confidence
that it doesn’t deadlock because we’ve
been successfully running tests on it.
As Dijkstra warned us, testing can re-
veal the presence of bugs but not their
absence. The more tests we run, the
more confidence we get, in a statisti-
cal sense.4,5

How does a project lose intellec-
tual control? Let’s assume that the
team is following the rituals of itera-
tive development and testing. The
team will have intellectual control
over the first module, since there was
an idea that led to its being created,
and the team will have statistical
control over it, since the team wrote
tests covering the module.

A well-chosen variable name relieves
a mental burden, but a misnamed
variable sends us quickly down a line
of mistaken reasoning.

THE PRAGMATIC DESIGNER

 NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 107

But then the edits begin. Let’s say
I pick up a requirement and edit the
module to handle a new Boolean, and
you separately do the same for another
similar requirement. The state space
handled by the system has grown, but
it’s easy for each of us to focus only on
our own requirement, not the overall
state space, and so we lose some in-
tellectual control over how the system
should work. A series of edits like this
continues, driving down intellectual
control over the module until nobody
can explain the ideas behind it: it’s
just a jumble of code that happens to
pass the tests, which by their nature
are incomplete. At some point, we
may recognize the mess, but at each
step of the way, it seems expedient to
just add to the jumble. That’s how a
team can lose intellectual control over
a single module.

That single module tends to in-
fect modules around it. When I write
a new module that works with that
messy one, I have clear ideas about
my new module but not about the
other. Where the two interact, I have
to adjust my code to compensate
for quirks in the messy one, quirks
that I don’t understand. That causes
parts of my new code to have no
clear explanation, often with com-
ments warning others not to change
this because it’s working and I’m not
sure why. That’s how the loss of in-
tellectual control is a slippery slope,
with trouble in one module dragging
down others.

There is also a human element to
this slippery slope. When you write a
module that’s under good intellectual
control, it is easy for your coworkers
to use. The other way around is trou-
ble: you will have a hard time under-
standing and using your coworker’s
module that’s not under intellectual
control. You may be tempted to re-
exert intellectual control over that

other module first, but that is ex-
tra time and effort for you, far out
of proportion to just adding a quirk
to your module. Perversely, you are
punished for doing what’s good for
the team.

This is a classic prisoner’s dilemma.
Both of you prosper when you both
create modules under intellectual con-
trol, and both of you suffer from a
tangled mess when you both neglect
intellectual control. However, your
coworker who neglects intellectual
control will prosper at your expense
if you alone try to clean up the mess.
In the abstract, it’s easy to point blame
at coworkers, but, in practice, they are
not trying to cause trouble. It’s easy to
see if tests exist and are passing, but it
takes rare (but teachable) skill to no-
tice intellectual control slipping away.

Technical Zombies
Most projects use iterative develop-
ment and automated testing. This
is best practice, but it’s not enough.
Your team must avoid the buildup
of ur-technical debt from sedimen-
tary development and must keep a
healthy balance of intellectual and
statistical control.

The adage “a stitch in time saves
nine” has two pieces of wisdom for
us here. First, the nature of slippery
slopes is that, early on, the risks
seem manageable, but you may al-
ready be sliding into disaster. Sec-
ond, it’s easier and cheaper to keep
your project on track (a stitch) than
it is to recover (nine stitches).

As a result, even before the team
senses it, some projects are already
sliding toward disaster, and it’s too ex-
pensive to reverse course. I call these
projects technical zombies because
they are walking around like regular
projects, but their vitality is gone.

When I think about technical
zombies, my thoughts first turn to

ancient Cobol systems dragged into
the 21st century, but some zom-
bies are brand new. Just last year, a
friend told me about his current proj-
ect. His team had created a techni-
cal zombie using modern languages,
processes, and DevOps—and had
done so in just a few years. I imagine
that, with key people departing the
project, a technical zombie could be
created in just months.

Is your project a technical zom-
bie? If you see any of these, consider
them to be warning signs:

• The codebase reveals ideas from
early iterations, like a skate-
board.json data structure despite
the product now being a car.

• When developers talk about the
problem or solution, the terms
they use are different from what
you see in the code, and devel-
opers mentally translate those
ideas.

• You know what refactorings to
do, but the effort seems too great.

• The design has been evolved into
something that nobody would
have created deliberately.

• Newcomers to the project must,
in effect, relearn the history of
the project to understand the
code.

• The system lacks names and
types that largely explain the
problem and solution.

• It’s hard to state universal
truths about the system, like
“all customers are stored in the
customers table and only in the
customers table.”

• Few developers can deliver an
impromptu chalk talk about
how the system works.

We should expect some of these in
every healthy project. The nature of
iterative development means that we

THE PRAGMATIC DESIGNER

108 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

may tolerate bicycle wheels on the
motorcycle we build—just not for-
ever, and definitely not a car with
skateboard wheels. It’s not that ev-
erything must be perfect all the time;
it’s that we can’t allow the troubles
to snowball out of control.

 Ritual With a Goal
As a kid, I performed the ritual of
pushing the vacuum around, but I
did not always achieve the goal of a
clean room. To do a good job, I first
had to recognize (years later, sorry
mom) that the rituals alone were not
enough, and I had to figure out what
the goal was.

Decades ago, we rejected waterfall
processes because any mistakes we
made early on were magnified by the
end of the project. Today, we use iter-
ative processes because they allow us
to fix our mistakes as we go. We are
right to follow the rituals of iterative
processes and automated tests. We
just have to keep in mind that these
are a means to an end, not the goal.

So, what is the goal? Ward Cun-
ningham advised us to keep our
technical debt low by expressing our
consolidated understanding in the
code. Before him, in the age of wa-
terfall development, Fred Brooks said
the most important characteristic of
a system is its conceptual integrity.
I agree, and I think they are talking

about the same idea: that a team
works hard to invent and evolve a co-
herent theory that explains the prob-
lem and solution, and they work even
harder to keep the code expressing
that theory.

Reaching that goal means avoid-
ing the two slippery slopes. First, to
avoid sliding into a sedimentary pro-
cess, we can take advantage of what
iterations offer us: the chance to fix
our mistakes as we go. I particularly
like how Kent Beck said it: “[M]ake
the change easy (warning: this may be
hard), then make the easy change.”6

I’ve heard teams proudly talk about
their refactoring efforts, but they
sometimes boil down to consolidat-
ing duplicated code. Unless your
worst design mistake is duplication,
the repairs must go much deeper.

Second, to avoid sliding into over-
reliance on statistical control via
tests, we can create theories of how
the problem domain works and how
our solution works. We can evolve
our code so that it expresses these
theories, works as an external repre-
sentation, and can be read by new-
comers who infer our theories.

This is intellectually demanding
work, and, unlike story points or
passing tests, it is hard to quantify.
How do we really know if we’re pil-
ing up layers of sediment or building
an effective theory? There is no easy

answer; the team is going to wrestle
with those questions throughout the
project. Software development is nei-
ther easy nor mechanical.

 References
1. G. Fairbanks, “Ur-technical debt,”

IEEE Softw., vol. 37, no. 4, pp. 95–

98, July/Aug. 2020. doi: 10.1109/

MS.2020.2986613.

2. G. Fairbanks, “Code is your partner

in thought,” IEEE Softw., vol. 37,

no. 5, pp. 109–112, Sept./Oct. 2020.

3. W. Cunningham, “The WyCash

portfolio management system,” in

Proc. Object-Oriented Programming

Systems, Languages, and Applications

(OOPSLA 92), Vancouver, Canada,

Oct. 5–10, 1992, pp. 29–30. doi:

10.1145/157709.157715.

4. G. Fairbanks, “Intellectual control,”

IEEE Softw., vol. 36, no. 1, pp. 91–

94, Jan./Feb. 2019. doi: 10.1109/

MS.2018.2874294.

5. G. Fairbanks, “Testing numbs us to

our loss of intellectual control,” IEEE

Softw., vol. 37, no. 3, pp. 93–96, May/

June 2020. doi: 10.1109/MS.2020

.2974636.

6. K. Beck, “For each desired change,

make the change easy (warning: this

may be hard), then make the easy

change,” Twitter post, Sept. 25,

2012. [Online]. Available: https://

twitter.com/kentbeck/status/

250733358307500032

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

ABOUT THE AUTHOR

GEORGE FAIRBANKS is a software engineer at Google. Contact him at

gf@georgefairbanks.com.

