
12 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0740 -7459 / 20©2020 I EEE

LETTERS

The UML and the Rational
Unified Process

From the Editor
As we receive your reactions, reflec-
tions, and, in some cases, corrections to
the articles published, we may feature
them here. This column is another
way we hope to enhance our inter-
actions with the software engineering
community and our readers.

THE UML WAS developed to help main-
tain coherence among the many design
and implementation views and arti-
facts in an iterative development lifecy-
cle, keeping all stakeholders aligned as
changes are made from iteration to itera-
tion. Mr. Miller’s characterization of the
UML as designed to support Waterfall
development processes is false.1 Having
risen in the context not of academia but
rather of real-world, complex software-
intensive systems, the UML was devel-
oped as a pragmatic tool that reflected
best practices in software engineers, such
as the concepts of multiple views (as
now codified in ISO/IEC 42010), con-
tinuous integration, and continuous de-
ployment (both of which preceded and
became a part of modern agile methods).

Beginning in 1982, Rational em-
ployed iterative development to create
its integrated software engineering tool
set. The Rational Environment, first
released in 1985, included direct sup-
port for iterative development, incor-
porating knowledge gained during its
construction. To successfully deploy
this product, Rational’s field teams
engaged with customers to help them
transition from Waterfall to iterative

development. In developing the UML
during the mid-1990s, Grady, Jim, and
Ivar incorporated the experience gained
by these field teams as they worked
with customers developing com-
plex, long-lived software using an
iterative lifecycle, later formalized in
the Rational Unified Process. This
evolution took place not only in the
context of real, complex systems but
also in collaboration of the inven-
tors of Waterfall (Win Royce); spi-
ral methods (Barry Boehm); and the
software engineering work of Parnas,
Liskov, and others.

The UML came into being during
a particularly important sea change in
the nature of computing: from algo-
rithmic languages to object-oriented
ones; from mostly monolithic, single
computer systems to highly distributed
ones; and from systems that could be
built by small teams to large teams of
teams. Indeed, the UML and the Ra-
tional Unified Process did not reflect
the ossified, high-ceremony practices
of the earlier eras; they represented
the beginning of our current era of
software engineers and, through their
concepts, have made possible—and
are very much consistent with—mod-
ern agile approaches.

 Dave Bernstein
Contact: dave.bernstein@comcast.net

 Grady Booch
Contact: egrady@booch.com

 Reference
1. J. Doolittle, “Jeremy Miller on Water-

fall versus Agile,” IEEE Softw., vol.

37, no. 4, p. 107-C3, July/Aug. 2020.

doi: 10.1109/MS.2020.2987493.
Digital Object Identifier 10.1109/MS.2020.3019539
Date of current version: 22 October 2020

We welcome
your letters.
Send them to software@
computer.org. Include your full
name, title, af� liation, and email
address.
Letters are edited for clarity
and space.

