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FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING

 HUMANS ARE ONE of the most 
expensive parts of software cre-
ation. While companies can always 
add more equipment, adding more 

people comes with additional re-
cruitment, training, and communi-
cation overhead. At Google, we have 
more than 30,000 developers, so if 
we can make even small improve-
ments to individual developers’ pro-
ductivity, we can attain large overall 

benefits for our products and their 
users. See “Actionable Insights” for a 
summary of what we learned build-
ing a system that combines data 
from multiple developer tools.

Motivation 
At Google, the engineering produc-
tivity research team’s goal is to help 
our engineers be more productive. 
To meet this goal, our main piece of 
technical infrastructure is a quantita-
tive logs pipeline that we call InSes-
sion, which helps us understand the 
behavior of developers by answering 
questions such as the following:

• Does a developer’s certification 
in a programming language im-
prove productivity?

• Can we predict negative inter-
personal interactions between 
code authors and reviewers?

• Do new version control sys-
tems help developers be more 
productive?

In this article, we describe InSes-
sion, which ingests logs from multi-
ple developer tools to build a picture 
of a developer’s behavior during 
their workday (see the supplemen-
tary material “Data Sources” on 
IEEE Xplore for additional details).  
Like integrated development envi-
ronment (IDE) monitors, such as 
Mylyn Monitor1 and ABB’s system,2

InSession captures behavioral data 
automatically, but it additionally 
captures data from tools outside of 
a developer’s IDEs. Like multitool 
monitors, such as HackyStat3 and 
PROM,4 InSession combines be-
havioral data from multiple devel-
oper tools, but in contrast to these 
systems, InSession ingests existing 
cloud-based tool logs, meaning that 
developer behavior is captured on 
every workstation without the need 
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to install custom sensor software for 
each individual tool.

 Privacy Principles
 To maintain the integrity of data and 
trust of employees, strong privacy 
principles are critical. In consulta-
tion with privacy experts, we identi-
fied the following core principles in 
the form of seven Dos and Don’ts:

1. Do ingest log data for only em-
ployees. InSession ingests data 
from employees’ use of the tools 
and systems provided by Google 
for them to do their work.

2. Do focus on tools used for work 
purposes. Avoid collecting task-iden-
tifying metadata from tools with 
mixed purposes, such as email, but 
do collect such metadata for tools 
that are used exclusively for work 
purposes (e.g., code review).

3. Don’t collect employee-generated 
content, with the exception of 
code repository paths, build rules, 
and similar artifacts that are avail-
able to the entire company.

4. Do encrypt stored data.
5. Do make stored data access audit-

able. We have an access logging 
system that tracks access to the raw 
files and their Structured Query 
Language (SQL)-table views.

6. Don’t report data for individual 
employees without the indi-
vidual’s prior consent. Individu-
als must not be identifiable in 
reported aggregate data. Some 
may be tempted to include this 
data in performance evalua-
tions. However, we do not do so, 
both on principle and because 
research suggests developers are 
opposed to such metrics.5

7. Do destroy data after a set reten-
tion period. We use a retention 
period of three years for indi-
vidual data, which allows for 

year-over-year studies. Aggre-
gated data are stored indefinitely.

 Design and Implementation 
of InSession

 Creating Events From Logs
We first discuss how InSession de-
fines and classifies developer events. 

 An event is a distinct usage of a tool 
or system by a developer or on a de-
veloper’s behalf. Each log source has 
its own importer, which extracts in-
formation into our common event 
data format. Events come from both 
developer-specific tools, like bug 
tracking, version control, and edi-
tors, and from more general purpose 
tools, including Gmail and Calendar.

We distinguish between two types 
of event: front end and back end. A 
front-end event is one that a devel-
oper actively initiates, e.g., clicking 
a user interface button. A back-end 
event is one that occurs asynchro-
nously on a developer’s behalf, e.g., 

cron jobs. Back-end events are useful 
for performing studies related to what 
developers do after launching a long-
running action, e.g., do they switch 
to another task or continue with re-
lated work while waiting? Events can 
also be either instantaneous or dura-
tional. An instantaneous event has an 
undefined end point, e.g., switching 

focus to a documentation page. A du-
rational event has a set start and end 
time, e.g., running a build.

 For most events, we also collect 
additional metadata about the event, 
which we call artifacts. These artifacts 
can be classified as task-identifying
or informational. A task-identifying 
artifact is one that identifies a spe-
cific development task that can be 
used to group related events together, 
e.g., a development workspace la-
bel or identifier for a changelist (the 
proposed change to a codebase that 
generally undergoes review). An infor-
mational artifact provides contextual 
information about an event, e.g., the 

ACTIONABLE INSIGHTS
• Cross-tool log data offer an opportunity for organizations to understand the 

behaviors of software engineers.
• Google gained insights from building a logs-ingesting system called 

InSession, whose design is described in this article.
• We use InSession to show that an engineer certification process reduces the 

time engineers spend reviewing code.

To maintain the integrity of data and 
trust of employees, strong privacy 

principles are critical. 
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path of a file viewed in a code search 
tool. Each event importer determines 
how artifacts from its log source 
should be classified. For example, 
the changelist identifiers for code 
review logs are always classified as 
task-identifying by their importers 
because it identifies the task of re-
viewing that changelist.  The core ar-
tifacts we collect include changelist 
identifiers, development workspace 
labels, bug-tracking identifiers, and 
code repository paths.

 Creating Sessions From Events
 To build a higher level picture of engi-
neering workflows, we organize groups 
of related events into sessions. Each ses-
sion is designed to represent a contigu-
ous block of time where the engineer 
works on a single task, such as coding 
or code review. Sessions are intended 
to represent active workflows, so we 
consider only front-end events when 
creating sessions. A session consists 
of a unique identifier, the ordered list 
of event identifiers included in the ses-
sion, the developer behind those events, 
the union of the artifacts from those 
events, a start time that corresponds 
to the time stamp of the first included 
event, and an end time that corre-
sponds to the time stamp of the last in-
cluded event.

Figure 1 visualizes how events are 
combined into sessions. Sessions are 
created by grouping multiple events 
into single sessions when they happen 
on the same day, happen within some 
time delta of each other (we use 10 
min), and have the same task-identify-
ing artifacts (or no task-identifying ar-
tifact at all).

 Creating Metrics From Sessions
Once events are organized into ses-
sions, those sessions can be used to 
derive other metrics about develop-
ers’ behaviors. We selected seven 

metrics because they are useful in 
answering various questions about 
developer behavior and ones that 
our events could plausibly capture:

1. Coding time: representing the 
time spent writing or maintaining 
code.

2. Reviewing time: representing the 
time spent reviewing code.

3. Shepherding time: representing 
the time spent addressing code 
review feedback.

4. Investigation time: represent-
ing the time spent reading 
documentation.

5. Development time: representing 
the time spent performing a de-
velopment activity, of any type.

6. Email time: the time spent inter-
acting with email.

7. Meeting time: the time spent in 
meetings.

InSession writes data in a for-
mat over which we can execute 
SQL queries, allowing for rapid 
analyses. For example, the fol-
lowing query examines total daily 
coding time before and after the 
declaration of COVID-19 as a 
global pandemic:

SELECT
  date,
   date >= DATE(‘2020-03-11’) as is_during

_pandemic,
   COUNT(DISTINCT employee) as num_work-

ing_employees,
   SUM(duration_micros) as total_coding

_duration_per_day
FROM coding_time
GROUP BY date;

Vali dation Study
To use InSession with confidence 
in future studies, we performed a 
validation to understand the ex-
tent to which our metrics and 

behavioral self-reports of time use 
agree. Prior research has lamented 
the lack of va l idat ion in s imi-
la r systems.3

To obtain behavioral reports, we 
recruited 25 Google engineers to 
create diaries about what they did 
for a day, then compared their di-
aries against our sessions, both 
qualitatively and quantitatively, 
using the prevalence and bias ad-
justments Kappa (PABAK) agree-
ment score,6 which ranges from −1 
(perfect disagreement) to 1 (perfect 
agreement).

Figure 2 visualizes PABAK scores. 
To interpret PABAK scores, we use 
Allen and Yen’s benchmarking ap-
proach called norm-referencing.7

Because email (PABAK = 0.84) and 
meeting times (0.74) are intuitively 
the simplest metrics, we treat their 
empirical agreement as de facto 
high, then compare all other metrics 
against this benchmark. By this mea-
sure, reviewing time has high agree-
ment (0.81), with coding (0.69) and 
investigation (0.70) nearly meeting 
this benchmark. Development time 
agreement (0.45) is well below this 
benchmark. (For meeting time, we 
excluded 10 participants because 
calendar data were unavailable for 
the day they completed the study; 
thus, N = 15 for meeting time agree-
ment, N = 25 for all other agree-
ment calculations. We return to the 
issue of missing data in the “Discus-
sion” section.)

To understand mismatches be-
tween logs and diaries, we hand-an-
alyzed data from the three participants 
for each session type who had the 
worst agreement scores among 
the 25 part icipants. Disagree-
ments stemmed from four main 
sources: participants using tools that 
we do not yet have logs for, meet-
ings that we did not have events for, 
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participants multitasking, and par-
ticipants forgetting to write tasks in 
their journals.

Overall, we interpret these results 
to mean that our reviewing, investi-
gation, and coding time metrics 
are acceptably accurate, but fur-
ther refinement to the development 
time metric is needed. The qualita-
tive results suggest improvements 
to InSession and some fundamental 
limitations of capturing developer 
behavior through log data.

Applic ation: The Impact 
of Readability
We next present a study illustrat-
ing the type of analysis that is pos-
sible with InSession. In this study, we 
evaluate the effects of readability, a 
process of programming language 
certification at Google. Readab ility 
certifies that a developer understands 
best practices and coding style for 

a specific programming language. 
We analyze C++ and Java read-
ability, but readability exists for 
other languages.

Readability has been in use for 
many years at Google, but the ben-
efits of readability were not clearly 
understood. We conducted a mixed-
methods study to examine this, us-
ing our sessions data to examine two 
hypotheses, and surveys to provide 
context to those hypotheses. Our hy-
potheses are that, after a developer 
obtains readability certification, 

• it will take reviewers less time to 
review their code

• it will take them less time to re-
spond to reviewers’ comments.

These hypotheses are based on 
the theory that if developers have 
readability, then their code will have 
fewer commonly encountered issues 

in code, resulting in reviewers not 
having to point these issues out, and 
the author not having to acknowl-
edge and fix the issues. To evaluate 
our hypotheses, we gathered code 
reviews of changelist authors who 
went through the readability pro-
cess in a 10-month window, includ-
ing their reviews before, during, and 
after the readability process. This 
included 104,947 code reviews for 
C++ and 99,614 code reviews for 
Java. We ran a linear regression 
that controlled for developer ten-
ure, number of reviewers, and the 
size of the change. We additionally 
included a random effect for author 
identity to control for characteristics 
of the individual developer.

The analysis shows the following 
effects (p < 0.05):

• An author having readability is 
associated with a review time that 
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FIGURE 1. (a) This is an example of code review and code search tool events and how they are grouped into three sessions. Based 

on the changelist (CL) they are associated with and the amount of time between them. (b) This is an example of an engineer’s time 
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is lower by 4.5% for C++ and a 
nonstatistically significant amount 
for Java. 

• An author having readability is 
associated with a shepherding 

time that is lower by 10.0% for 
Java and 10.5% for C++.

These quantitative data support 
the hypotheses that readability has a 

positive effect for C++, with some sup-
port for Java. Survey data bear this out 
as well. Eighty-eight percent of engi-
neers that completed the Java read-
ability process said they agree with the 
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FIGURE 2. The PABAK scores are segmented by activity type. Each data point in each histogram represents all of one participant’s 

activities of that type in their day. 



NOVEMBER/DECEMBER 2020 |  IEEE SOFTWARE 49

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CIERA JASPAN is software engineer and 

manager at Google in developer intelligence. 

Her research interests are empirical software 

engineering, mining software repositories, 

program analysis, and productivity metrics. 

Jaspan received her Ph.D. from Carnegie 

Mellon University. Further information about her 

can be found at https://research.google/people/

CieraJaspan/. Contact her at ciera@google.com. 

BEN HOLTZ is a software engineer at 

Google in developer intelligence. His research 

focuses on software developer productivity. 

Holtz received his M.S. in computer science 

from Stanford University. Contact him at 

benholtz@google.com. 

MATT JORDE is a software engineer at 

Google in developer intelligence. His research 

interests include software engineering 

topics, such as human factors and software 

quality. Jorde received his M.S. in computer 

science from the University of Nebraska at 

Lincoln. He is a member of ACM. Contact 

him at majorde@google.com. 

EDWARD SMITH is a software engineer 

at Bloomberg. Smith received his B.Sc. in 

computer science and psychology from 

the University of Maryland College Park. 

Contact him at esmith404@bloomberg.net. 

CAROLYN EGELMAN is a quantitative 

user experience researcher at Google in 

developer intelligence. Her research fo-

cuses on software developer productivity. 

Egelman received her Ph.D. from Carnegie 

Mellon University. Further information 

about her can be found at https://research

.google/people/106840/. Contact her at 

cegelman@google.com.

MAGGIE HODGES is a user experience 

researcher with Artech Information Systems 

at Google in developer intelligence. Her 

research focuses on software developer 

productivity. Hodges received her M.S. of 

public health from the University of Califor-

nia, Berkeley. Contact her at hodgesm@

google.com. 

COLLIN GREEN is a user experience 

researcher and manager at Google in 

developer intelligence. His research 

focuses on applying combined quantitative 

and qualitative methods to understand 

developer experience and engineering 

productivity. Green received his Ph.D. 

in psychology from the University of 

California, Los Angeles. Further informa-

tion about him can be found at  https://

research.google/people/107023/. Contact 

him at colling@google.com.

ANDREA KNIGHT is a user experience 

researcher at Google. Her research inter-

ests include product development research, 

office and engineering productivity, and user 

privacy. Knight received her M.S. in computer 

science from Carnegie Mellon University 

(Human–Computer Interaction Institute). 

Further information about her an be found at 

https://research.google/people/author11433/. 

Contact her at aknight@google.com.



50 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

LIZ KAMMER is a software engineer at 

Google. Her research interests are in soft-

ware engineering, specifically in software 

developer diversity and inclusion. Kammer 

received her M.S. in computer science 

from the University of Alabama. Contact 

her at eakammer@google.com. 

LAN CHENG is a quantitative user experi-

ence researcher at Google in developer 

intelligence. Her research interests are in 

measurement and impact evaluation of 

engineering productivity. Cheng received 

her Ph.D. in economics from the University 

of California, Davis. She is a member of the 

Agricultural & Applied Economics Associa-

tion. Contact her at lancheng@google.com. 

JILL DICKER is a software engineer at 

Google in developer intelligence. Her re-

search interests are in software engineering, 

specifically in software developer diversity 

and inclusion. Dicker received her M.Sc. in 

computer science from Simon Fraser Uni-

versity. Contact her at jdicker@google.com.

MARK CANNING is a software engineer at 

Google in developer intelligence. His research 

interests include engineering productivity and 

predictive modeling. Canning received his 

B.A. in physics and in mathematics from the 

University of California, Berkeley. Contact him 

at argusdusty@google.com. 

CAITLIN SADOWSKI is a software 

engineer and the manager of the Chrome 

Metrics and Analysis teams at Google. Her 

research interests include programming 

languages, software engineering, and 

human–computer interaction. Sadowski 

received her Ph.D. from the University of 

California, Santa Cruz. Further information 

about her can be found at https://research.

google/people/CaitlinSadowski/. Contact 

her at supertri@google.com. 

EMERSON MURPHY-HILL is a research 

scientist at Google in developer intelli-

gence. His research interests include soft-

ware engineering and human–computer 

interaction. Murphy-Hill received his Ph.D. 

in computer science from Portland State 

University. Further information about him 

can be found at https://research.google/

people/EmersonMurphyHill/. Contact him at 

emersonm@google.com.

JAMES LIN is a software engineer at 

Google in developer intelligence. Her re-

search interests are in software engineering, 

specifically in software developer diversity 

and inclusion. His research interests include 

end-user programming and user interface 

design tools. Lin received his Ph.D. in 

computer science from the University of Cali-

fornia, Berkeley. He is a member of ACM and 

a Member of IEEE. Further information about 

him can be found at http://jameslin.name. 

Contact him at jameslin@google.com. 



 NOVEMBER/DECEMBER 2020  |  IEEE SOFTWARE  51

statement, “My readability experience 
was positive overall,” with 87% say-
ing the same about the C++ readabil-
ity process.

InSession can help investigate 
other questions about developer 
behavior. For instance, we recently 
found that we can predict negative 
interpersonal interactions during code 
review by using the 90th percen-
tile of both reviewing and shepherd-
ing time.8 As another (unpublished) 
example, InSession helped us show 
that developers using a new version 
control system got their changes re-
viewed more quickly because the new 
tooling made it easier to create many 
small changes.

Finally, this study illustrates some 
of the limitations of InSession. For in-
stance, we must assume that changes 
before and after the readability pro-
cess are of equivalent quality; InSes-
sion itself provides no data to validate 
that assumption. Similarly, InSession 
does not say anything about whether 
engineers like the process, which is 
why we must collect complementary 
survey data.

Discussion
In this article, we have described the 
implementation, validation, and an 
application of InSession. Through 
building and maintaining InSession 
for more than three years, we have 
learned the following lessons:

• Prioritize log sources. Priori-
tize the inclusion of log sources 
based on how useful each source 
is and on how easily it can be 
included. We prioritize logs  
from highly adopted tools and 
those that are related to our re-
search goals.

• Enrich data as necessary. We 
found that some log sources 

benefited by enriching existing 
data; for example, adding gain 
and lose focus events to the code 
review tool logs increased the 
amount of measurable review ac-
tivity by about 2 h per week per 
engineer on average.

• Validate data and metrics. 
We found that the quality and 
consistency of data can differ 
between log sources, includ-
ing unset or nonsensical values 
for data fields (e.g., negative 
durations), periods of missing 
or reduced data due to tempo-
rary system instability (e.g., 
this missing calendar data, de-
scribed in our validation study), 
and outlier use cases (e.g., per-
sonal automation scripts). We 
also found that derived met-
rics, such as development time, 
while intuitive, can still dis-
agree with human assessments. 
Thus, we recommend human 
validation like we describe in 
this article, but we also recom-
mend automated monitoring 
and alerting for unexpected 
data during log ingestion.

While InSession isn’t perfect, 
we have found it useful to under-
stand developer behavior at scale. 
We envision a future where similar 
systems are deployed in other indus-
trial and open source ecosystems, 
helping answer the most pressing 
questions about developers’ behav-
ior at work.
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