
44 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y

This work is l icensed under a
Creative Commons At tribution 4.0 License. For more information,

see ht tps://creativecommons.org/licenses/by/4.0/deed.ast

FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING

 HUMANS ARE ONE of the most
expensive parts of software cre-
ation. While companies can always
add more equipment, adding more

people comes with additional re-
cruitment, training, and communi-
cation overhead. At Google, we have
more than 30,000 developers, so if
we can make even small improve-
ments to individual developers’ pro-
ductivity, we can attain large overall

benefits for our products and their
users. See “Actionable Insights” for a
summary of what we learned build-
ing a system that combines data
from multiple developer tools.

Motivation
At Google, the engineering produc-
tivity research team’s goal is to help
our engineers be more productive.
To meet this goal, our main piece of
technical infrastructure is a quantita-
tive logs pipeline that we call InSes-
sion, which helps us understand the
behavior of developers by answering
questions such as the following:

• Does a developer’s certification
in a programming language im-
prove productivity?

• Can we predict negative inter-
personal interactions between
code authors and reviewers?

• Do new version control sys-
tems help developers be more
productive?

In this article, we describe InSes-
sion, which ingests logs from multi-
ple developer tools to build a picture
of a developer’s behavior during
their workday (see the supplemen-
tary material “Data Sources” on
IEEE Xplore for additional details).
Like integrated development envi-
ronment (IDE) monitors, such as
Mylyn Monitor1 and ABB’s system,2

InSession captures behavioral data
automatically, but it additionally
captures data from tools outside of
a developer’s IDEs. Like multitool
monitors, such as HackyStat3 and
PROM,4 InSession combines be-
havioral data from multiple devel-
oper tools, but in contrast to these
systems, InSession ingests existing
cloud-based tool logs, meaning that
developer behavior is captured on
every workstation without the need

Enabling the
Study of Software
Development
Behavior With
Cross-Tool Logs
Ciera Jaspan, Matt Jorde, Carolyn Egelman, Collin Green, and
Ben Holtz, Google

Edward Smith, Bloomberg

Maggie Hodges, Artech Information Systems, Google

Andrea Knight, Liz Kammer, Jill Dicker, Caitlin Sadowski, James Lin,
Lan Cheng, Mark Canning, and Emerson Murphy-Hill, Google

// Capturing developers’ behavior at scale can be

challenging. In this article, we describe our experience

creating a system that integrates log data from dozens

of development tools at Google. //

Digital Object Identifier 10.1109/MS.2020.3014573
Date of current version: 18 September 2020

NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 45

to install custom sensor software for
each individual tool.

 Privacy Principles
 To maintain the integrity of data and
trust of employees, strong privacy
principles are critical. In consulta-
tion with privacy experts, we identi-
fied the following core principles in
the form of seven Dos and Don’ts:

1. Do ingest log data for only em-
ployees. InSession ingests data
from employees’ use of the tools
and systems provided by Google
for them to do their work.

2. Do focus on tools used for work
purposes. Avoid collecting task-iden-
tifying metadata from tools with
mixed purposes, such as email, but
do collect such metadata for tools
that are used exclusively for work
purposes (e.g., code review).

3. Don’t collect employee-generated
content, with the exception of
code repository paths, build rules,
and similar artifacts that are avail-
able to the entire company.

4. Do encrypt stored data.
5. Do make stored data access audit-

able. We have an access logging
system that tracks access to the raw
files and their Structured Query
Language (SQL)-table views.

6. Don’t report data for individual
employees without the indi-
vidual’s prior consent. Individu-
als must not be identifiable in
reported aggregate data. Some
may be tempted to include this
data in performance evalua-
tions. However, we do not do so,
both on principle and because
research suggests developers are
opposed to such metrics.5

7. Do destroy data after a set reten-
tion period. We use a retention
period of three years for indi-
vidual data, which allows for

year-over-year studies. Aggre-
gated data are stored indefinitely.

 Design and Implementation
of InSession

 Creating Events From Logs
We first discuss how InSession de-
fines and classifies developer events.

 An event is a distinct usage of a tool
or system by a developer or on a de-
veloper’s behalf. Each log source has
its own importer, which extracts in-
formation into our common event
data format. Events come from both
developer-specific tools, like bug
tracking, version control, and edi-
tors, and from more general purpose
tools, including Gmail and Calendar.

We distinguish between two types
of event: front end and back end. A
front-end event is one that a devel-
oper actively initiates, e.g., clicking
a user interface button. A back-end
event is one that occurs asynchro-
nously on a developer’s behalf, e.g.,

cron jobs. Back-end events are useful
for performing studies related to what
developers do after launching a long-
running action, e.g., do they switch
to another task or continue with re-
lated work while waiting? Events can
also be either instantaneous or dura-
tional. An instantaneous event has an
undefined end point, e.g., switching

focus to a documentation page. A du-
rational event has a set start and end
time, e.g., running a build.

 For most events, we also collect
additional metadata about the event,
which we call artifacts. These artifacts
can be classified as task-identifying
or informational. A task-identifying
artifact is one that identifies a spe-
cific development task that can be
used to group related events together,
e.g., a development workspace la-
bel or identifier for a changelist (the
proposed change to a codebase that
generally undergoes review). An infor-
mational artifact provides contextual
information about an event, e.g., the

ACTIONABLE INSIGHTS
• Cross-tool log data offer an opportunity for organizations to understand the

behaviors of software engineers.
• Google gained insights from building a logs-ingesting system called

InSession, whose design is described in this article.
• We use InSession to show that an engineer certification process reduces the

time engineers spend reviewing code.

To maintain the integrity of data and
trust of employees, strong privacy

principles are critical.

46 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING

path of a file viewed in a code search
tool. Each event importer determines
how artifacts from its log source
should be classified. For example,
the changelist identifiers for code
review logs are always classified as
task-identifying by their importers
because it identifies the task of re-
viewing that changelist. The core ar-
tifacts we collect include changelist
identifiers, development workspace
labels, bug-tracking identifiers, and
code repository paths.

 Creating Sessions From Events
 To build a higher level picture of engi-
neering workflows, we organize groups
of related events into sessions. Each ses-
sion is designed to represent a contigu-
ous block of time where the engineer
works on a single task, such as coding
or code review. Sessions are intended
to represent active workflows, so we
consider only front-end events when
creating sessions. A session consists
of a unique identifier, the ordered list
of event identifiers included in the ses-
sion, the developer behind those events,
the union of the artifacts from those
events, a start time that corresponds
to the time stamp of the first included
event, and an end time that corre-
sponds to the time stamp of the last in-
cluded event.

Figure 1 visualizes how events are
combined into sessions. Sessions are
created by grouping multiple events
into single sessions when they happen
on the same day, happen within some
time delta of each other (we use 10
min), and have the same task-identify-
ing artifacts (or no task-identifying ar-
tifact at all).

 Creating Metrics From Sessions
Once events are organized into ses-
sions, those sessions can be used to
derive other metrics about develop-
ers’ behaviors. We selected seven

metrics because they are useful in
answering various questions about
developer behavior and ones that
our events could plausibly capture:

1. Coding time: representing the
time spent writing or maintaining
code.

2. Reviewing time: representing the
time spent reviewing code.

3. Shepherding time: representing
the time spent addressing code
review feedback.

4. Investigation time: represent-
ing the time spent reading
documentation.

5. Development time: representing
the time spent performing a de-
velopment activity, of any type.

6. Email time: the time spent inter-
acting with email.

7. Meeting time: the time spent in
meetings.

InSession writes data in a for-
mat over which we can execute
SQL queries, allowing for rapid
analyses. For example, the fol-
lowing query examines total daily
coding time before and after the
declaration of COVID-19 as a
global pandemic:

SELECT
 date,
 date >= DATE(‘2020-03-11’) as is_during

_pandemic,
 COUNT(DISTINCT employee) as num_work-

ing_employees,
 SUM(duration_micros) as total_coding

_duration_per_day
FROM coding_time
GROUP BY date;

Vali dation Study
To use InSession with confidence
in future studies, we performed a
validation to understand the ex-
tent to which our metrics and

behavioral self-reports of time use
agree. Prior research has lamented
the lack of va l idat ion in s imi-
la r systems.3

To obtain behavioral reports, we
recruited 25 Google engineers to
create diaries about what they did
for a day, then compared their di-
aries against our sessions, both
qualitatively and quantitatively,
using the prevalence and bias ad-
justments Kappa (PABAK) agree-
ment score,6 which ranges from −1
(perfect disagreement) to 1 (perfect
agreement).

Figure 2 visualizes PABAK scores.
To interpret PABAK scores, we use
Allen and Yen’s benchmarking ap-
proach called norm-referencing.7

Because email (PABAK = 0.84) and
meeting times (0.74) are intuitively
the simplest metrics, we treat their
empirical agreement as de facto
high, then compare all other metrics
against this benchmark. By this mea-
sure, reviewing time has high agree-
ment (0.81), with coding (0.69) and
investigation (0.70) nearly meeting
this benchmark. Development time
agreement (0.45) is well below this
benchmark. (For meeting time, we
excluded 10 participants because
calendar data were unavailable for
the day they completed the study;
thus, N = 15 for meeting time agree-
ment, N = 25 for all other agree-
ment calculations. We return to the
issue of missing data in the “Discus-
sion” section.)

To understand mismatches be-
tween logs and diaries, we hand-an-
alyzed data from the three participants
for each session type who had the
worst agreement scores among
the 25 part icipants. Disagree-
ments stemmed from four main
sources: participants using tools that
we do not yet have logs for, meet-
ings that we did not have events for,

NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 47

participants multitasking, and par-
ticipants forgetting to write tasks in
their journals.

Overall, we interpret these results
to mean that our reviewing, investi-
gation, and coding time metrics
are acceptably accurate, but fur-
ther refinement to the development
time metric is needed. The qualita-
tive results suggest improvements
to InSession and some fundamental
limitations of capturing developer
behavior through log data.

Applic ation: The Impact
of Readability
We next present a study illustrat-
ing the type of analysis that is pos-
sible with InSession. In this study, we
evaluate the effects of readability, a
process of programming language
certification at Google. Readab ility
certifies that a developer understands
best practices and coding style for

a specific programming language.
We analyze C++ and Java read-
ability, but readability exists for
other languages.

Readability has been in use for
many years at Google, but the ben-
efits of readability were not clearly
understood. We conducted a mixed-
methods study to examine this, us-
ing our sessions data to examine two
hypotheses, and surveys to provide
context to those hypotheses. Our hy-
potheses are that, after a developer
obtains readability certification,

• it will take reviewers less time to
review their code

• it will take them less time to re-
spond to reviewers’ comments.

These hypotheses are based on
the theory that if developers have
readability, then their code will have
fewer commonly encountered issues

in code, resulting in reviewers not
having to point these issues out, and
the author not having to acknowl-
edge and fix the issues. To evaluate
our hypotheses, we gathered code
reviews of changelist authors who
went through the readability pro-
cess in a 10-month window, includ-
ing their reviews before, during, and
after the readability process. This
included 104,947 code reviews for
C++ and 99,614 code reviews for
Java. We ran a linear regression
that controlled for developer ten-
ure, number of reviewers, and the
size of the change. We additionally
included a random effect for author
identity to control for characteristics
of the individual developer.

The analysis shows the following
effects (p < 0.05):

• An author having readability is
associated with a review time that

CL Review A

CL Review B

Coding Workspace 1

Coding Workspace 2

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

CL Review

Coding

CL Review

Coding

CL Review A CL Review A CL Review B

Code Review Event

Code Search Event

CL Review A CL Review A CL Review B

Code Review Event

Code Search Event

> 10-min

Gap

(a)

(b)

FIGURE 1. (a) This is an example of code review and code search tool events and how they are grouped into three sessions. Based

on the changelist (CL) they are associated with and the amount of time between them. (b) This is an example of an engineer’s time

line of sessions split by task. Gaps can indicate, for example, breaks for lunch, unscheduled discussions, and tool usage for which we

have not yet implemented log processing.

48 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING

is lower by 4.5% for C++ and a
nonstatistically significant amount
for Java.

• An author having readability is
associated with a shepherding

time that is lower by 10.0% for
Java and 10.5% for C++.

These quantitative data support
the hypotheses that readability has a

positive effect for C++, with some sup-
port for Java. Survey data bear this out
as well. Eighty-eight percent of engi-
neers that completed the Java read-
ability process said they agree with the

Median = 0.45

Median = 0.69

Median = 0.7

Median = 0.74

Median = 0.81

Median = 0.84

Email

Reviewing

Meeting

Investigation

Coding

Development

−1 −0.5 0 0.5 1

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

PABAK Agreement

C
ou

nt
 o

f E
ng

in
ee

r
D

ay
s

FIGURE 2. The PABAK scores are segmented by activity type. Each data point in each histogram represents all of one participant’s

activities of that type in their day.

NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 49

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CIERA JASPAN is software engineer and

manager at Google in developer intelligence.

Her research interests are empirical software

engineering, mining software repositories,

program analysis, and productivity metrics.

Jaspan received her Ph.D. from Carnegie

Mellon University. Further information about her

can be found at https://research.google/people/

CieraJaspan/. Contact her at ciera@google.com.

BEN HOLTZ is a software engineer at

Google in developer intelligence. His research

focuses on software developer productivity.

Holtz received his M.S. in computer science

from Stanford University. Contact him at

benholtz@google.com.

MATT JORDE is a software engineer at

Google in developer intelligence. His research

interests include software engineering

topics, such as human factors and software

quality. Jorde received his M.S. in computer

science from the University of Nebraska at

Lincoln. He is a member of ACM. Contact

him at majorde@google.com.

EDWARD SMITH is a software engineer

at Bloomberg. Smith received his B.Sc. in

computer science and psychology from

the University of Maryland College Park.

Contact him at esmith404@bloomberg.net.

CAROLYN EGELMAN is a quantitative

user experience researcher at Google in

developer intelligence. Her research fo-

cuses on software developer productivity.

Egelman received her Ph.D. from Carnegie

Mellon University. Further information

about her can be found at https://research

.google/people/106840/. Contact her at

cegelman@google.com.

MAGGIE HODGES is a user experience

researcher with Artech Information Systems

at Google in developer intelligence. Her

research focuses on software developer

productivity. Hodges received her M.S. of

public health from the University of Califor-

nia, Berkeley. Contact her at hodgesm@

google.com.

COLLIN GREEN is a user experience

researcher and manager at Google in

developer intelligence. His research

focuses on applying combined quantitative

and qualitative methods to understand

developer experience and engineering

productivity. Green received his Ph.D.

in psychology from the University of

California, Los Angeles. Further informa-

tion about him can be found at https://

research.google/people/107023/. Contact

him at colling@google.com.

ANDREA KNIGHT is a user experience

researcher at Google. Her research inter-

ests include product development research,

office and engineering productivity, and user

privacy. Knight received her M.S. in computer

science from Carnegie Mellon University

(Human–Computer Interaction Institute).

Further information about her an be found at

https://research.google/people/author11433/.

Contact her at aknight@google.com.

50 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BEHAVIORAL SCIENCE OF SOFTWARE ENGINEERING
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

LIZ KAMMER is a software engineer at

Google. Her research interests are in soft-

ware engineering, specifically in software

developer diversity and inclusion. Kammer

received her M.S. in computer science

from the University of Alabama. Contact

her at eakammer@google.com.

LAN CHENG is a quantitative user experi-

ence researcher at Google in developer

intelligence. Her research interests are in

measurement and impact evaluation of

engineering productivity. Cheng received

her Ph.D. in economics from the University

of California, Davis. She is a member of the

Agricultural & Applied Economics Associa-

tion. Contact her at lancheng@google.com.

JILL DICKER is a software engineer at

Google in developer intelligence. Her re-

search interests are in software engineering,

specifically in software developer diversity

and inclusion. Dicker received her M.Sc. in

computer science from Simon Fraser Uni-

versity. Contact her at jdicker@google.com.

MARK CANNING is a software engineer at

Google in developer intelligence. His research

interests include engineering productivity and

predictive modeling. Canning received his

B.A. in physics and in mathematics from the

University of California, Berkeley. Contact him

at argusdusty@google.com.

CAITLIN SADOWSKI is a software

engineer and the manager of the Chrome

Metrics and Analysis teams at Google. Her

research interests include programming

languages, software engineering, and

human–computer interaction. Sadowski

received her Ph.D. from the University of

California, Santa Cruz. Further information

about her can be found at https://research.

google/people/CaitlinSadowski/. Contact

her at supertri@google.com.

EMERSON MURPHY-HILL is a research

scientist at Google in developer intelli-

gence. His research interests include soft-

ware engineering and human–computer

interaction. Murphy-Hill received his Ph.D.

in computer science from Portland State

University. Further information about him

can be found at https://research.google/

people/EmersonMurphyHill/. Contact him at

emersonm@google.com.

JAMES LIN is a software engineer at

Google in developer intelligence. Her re-

search interests are in software engineering,

specifically in software developer diversity

and inclusion. His research interests include

end-user programming and user interface

design tools. Lin received his Ph.D. in

computer science from the University of Cali-

fornia, Berkeley. He is a member of ACM and

a Member of IEEE. Further information about

him can be found at http://jameslin.name.

Contact him at jameslin@google.com.

 NOVEMBER/DECEMBER 2020 | IEEE SOFTWARE 51

statement, “My readability experience
was positive overall,” with 87% say-
ing the same about the C++ readabil-
ity process.

InSession can help investigate
other questions about developer
behavior. For instance, we recently
found that we can predict negative
interpersonal interactions during code
review by using the 90th percen-
tile of both reviewing and shepherd-
ing time.8 As another (unpublished)
example, InSession helped us show
that developers using a new version
control system got their changes re-
viewed more quickly because the new
tooling made it easier to create many
small changes.

Finally, this study illustrates some
of the limitations of InSession. For in-
stance, we must assume that changes
before and after the readability pro-
cess are of equivalent quality; InSes-
sion itself provides no data to validate
that assumption. Similarly, InSession
does not say anything about whether
engineers like the process, which is
why we must collect complementary
survey data.

Discussion
In this article, we have described the
implementation, validation, and an
application of InSession. Through
building and maintaining InSession
for more than three years, we have
learned the following lessons:

• Prioritize log sources. Priori-
tize the inclusion of log sources
based on how useful each source
is and on how easily it can be
included. We prioritize logs
from highly adopted tools and
those that are related to our re-
search goals.

• Enrich data as necessary. We
found that some log sources

benefited by enriching existing
data; for example, adding gain
and lose focus events to the code
review tool logs increased the
amount of measurable review ac-
tivity by about 2 h per week per
engineer on average.

• Validate data and metrics.
We found that the quality and
consistency of data can differ
between log sources, includ-
ing unset or nonsensical values
for data fields (e.g., negative
durations), periods of missing
or reduced data due to tempo-
rary system instability (e.g.,
this missing calendar data, de-
scribed in our validation study),
and outlier use cases (e.g., per-
sonal automation scripts). We
also found that derived met-
rics, such as development time,
while intuitive, can still dis-
agree with human assessments.
Thus, we recommend human
validation like we describe in
this article, but we also recom-
mend automated monitoring
and alerting for unexpected
data during log ingestion.

While InSession isn’t perfect,
we have found it useful to under-
stand developer behavior at scale.
We envision a future where similar
systems are deployed in other indus-
trial and open source ecosystems,
helping answer the most pressing
questions about developers’ behav-
ior at work.

References
1. G. Murphy, M. Kersten, and

L. Findlater, “How are Java software

developers using the Elipse IDE?”

IEEE Softw., vol. 23, no. 4,

pp. 76–83, 2006. doi: 10.1109/

MS.2006.105.

2. K. Damevski, D. C. Shepherd, J.

Schneider, and L. Pollock, “Mining

sequences of developer interactions

in visual studio for usage smells,”

IEEE Trans. Softw. Eng., vol. 43, no.

4, pp. 359–371, 2016. doi: 10.1109/

TSE.2016.2592905.

3. P. Johnson, “Requirement and

design trade-offs in Hackystat: An

in-process software engineering

measurement and analysis system,”

in Proc. 1st Int. Symp. Empirical

Software Engineering and Measure-

ment (ESEM), 2007, pp. 81–90. doi:

10.1109/ESEM.2007.36.

4. A. Sillitti, A. Janes, G. Succi, and

T. Vernazza, “Collecting, integrat-

ing and analyzing software metrics

and personal software process data,”

in Proc. Euromicro Conf., Sept.

2003, p. 336–343. doi: 10.1109/

EURMIC.2003.1231611.

5. A. Begel and T. Zimmermann,

“Analyze this! 145 questions for data

scientists in software engineering,”

in Proc. 36th Int. Conf. Software

Engineering, 2014, pp. 12–23. doi:

10.1145/2568225.2568233.

6. T. Byrt, J. Bishop, and J. B. Car-

lin, “Bias, prevalence and kappa,”

J. Clin. Epidemiol., vol. 46,

no. 5, pp. 423–429, 1993. doi:

10.1016/0895-4356(93)90018-V.

7. M. Allen and W. Yen, Introduction

to Measurement Theory. Monterey,

CA: Brooks, 1979.

8. C. D. Egelman et al., “Pushback:

Characterizing and detecting negative

interpersonal interactions in code

review,” in Proc. Int. Conf. Software

Engineering, to be published.

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

