
SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 23

FOCUS: GUEST EDITORS’ INTRODUCTION

 Blockchain and Smart
Contract Engineering
 Xabier Larrucea, TECNALIA, Basque Research and Technology Alliance

Cesare Pautasso, University of Lugano

Digital Object Identifier 10.1109/MS.2020.3000354
Date of current version: 20 August 2020

0 7 4 0 - 7 4 5 9 / 2 0 © 2 0 2 0 I E E E SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 23

FOCUS: GUEST EDITORS’ INTRODUCTION

24 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

 BLOCKCHAINS HELP TO build trust
among a decentralized network of
unknown and untrusted peers who
need to agree on a common protocol
and trust the correctness and compat-
ibility of the corresponding software
implementations. The software engi-
neering discipline cannot ignore this
trend, as it fundamentally affects the
way software is designed, developed,
deployed, and delivered .1 As with the
emergence of the Internet, software

evolved from a closed to an open2

and programmable3 world, where
every “thing” can be and eventually
will be interconnected. Smart con-
tracts and blockchains further push
the boundary toward fully decen-
tralized architectures of distributed
applications. The goal of this IEEE
Software special issue is to bring to
light the fundamental connection be-
tween blockchains and software engi-
neering, where the latest advances in
software engineering may potentially
find a natural application to the rigor-
ous construction of safe and verifiable
blockchain systems, while recogniz-
ing that blockchain and smart con-
tract development also poses novel
challenges for further software engi-
neering research.

 Software engineers need guidance
for matching application domain re-
quirements with the specific charac-
teristics of blockchain solutions. This
enables them to take advantage of

smart contracts for solving new classes
of real-world problems, as opposed to
introducing blockchains everywhere,
where they may be unnecessary, or
provide an inefficient and environ-
mentally unsound solution .4

 As witnessed by a surge of dedi-
cated standardization bodies, sci-
entific workshops, conferences, and
journal special issues, blockchain is
making an impact well beyond com-
puter science research. There are many

potential industrial applications be-
yond online currencies, digital asset
management, and distributed ledger
technologies (DLTs), including prod-
uct traceability along supply chains ,5

energy smart grids, healthcare, cus-
tomer relationship management,
programmable money, verifiable qual-
ifications, business choreographies ,6

and e-voting ,7 to name a few.

Software Versus Smart
Contract Engineering
To frame the articles in this special is-
sue, here we give a brief overview of
the most important differences be-
tween traditional software engineer-
ing practices and the assumptions
that blockchain developers make when
writing smart contracts. For more
background information, see “The
Origin of Blockchain.”

Buggy smart contracts can have
a serious financial impact, when, for
example, funds leak or get locked

forever inside a smart contract. Since
smart contracts are immutable, by
default they cannot be fixed. Upgrad-
ing them requires maintaining a del-
egation chain between smart contract
versions or a registry so that the latest
version can be looked up and dynam-
ically bound. Code verification and
static analysis have found a promis-
ing niche to help with early detec-
tion of bugs thus preventing incorrect
smart contracts from being released .8

The original vision of utility com-
puting 9 introduced the pay-per-use
model which turned software into
a service .10 Cloud service provid-
ers would charge by the hour; now
with serverless, the meter is ticking
every second. Blockchain virtual ma-
chines running smart contracts have
figured out how to charge for every
microinstruction they execute.

 Software engineers had to learn
how to deal with limited resources
by, for example, recycling allocated
memory. On the blockchain, code
execution may fail also because it has
run out of funds. Developers have a
big incentive to minimize the con-
sumed storage, bandwidth, and the
amount of computation performed,
so that the cost of running smart
contracts is kept within budget; the
cost of running failed smart con-
tracts which have reached the limit is
not refunded.

 While software as a service needs
to be protected from malicious cli-
ents sending malformed input or
performing denial of service attacks,
smart contracts are an easier target
because attackers have full visibility
into their source code and their in-
ternal private state. Also, they can
control the order in which transac-
tions are processed.

 Rate l imits have been used in
the past to keep over eager Web ap-
plication programming interface

Software evolved from a clo sed to
an open and programmable world,

where every “thing” can be and
eventually will be interconnected.

	 SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE� 25

THE ORIGIN OF BLOCKCHAIN

What turns bits into money? It is the same force that
turns paper cash bills into money: faith. Most human
cultures believe in money as a store of value and as
a unit of accounting, but mostly as a medium of ex-
change to facilitate payment transactions. Tradition-
ally, money was based on scarce commodities (e.g.,
precious metals), which had to be divisible (to repre-
sent arbitrary amounts), durable over long periods of
time, and easy to transfer (with minimal transaction
costs). Incidentally, cash payments also happened to
be anonymous: the parties exchanging cash could do
so without revealing their identity to one another or to
the central bank which printed the paper bills.

Long gone are the days of gold-backed currencies;
now most of the money in circulation is digital, carefully
preserved in your bank’s data centers. There runs the
software watching over the consistency of your account’s
balance, whose amount is a secret shared between you
and your bank.

Every payment takes time and costs money. This
is why financial institutions charge more for deliver-
ing express payments into your account. These costs
also impact what is the smallest amount worth getting
paid for. The vision of electronic money, digital cash, or
cryptocurrencies like bitcoin was to disrupt the finan-
cial industry by lowering both the fees and the latency of
payments over the Internet.S1

What turns bitcoins into money? The protocol every-
one agrees to follow, whose goal is to allow everyone to
exchange payment transactions directly while prevent-
ing double spending.S2 As a consequence, not only does
everyone need to be aware of everyone’s payment history,
but everyone has to agree about the order in which every
payment transaction occurs. Since everyone is tracking
everyone else’s payments, anonymity is possible only if you
remember to digitally sign every payment using a different
pseudo-identity.

From a software design perspective, to keep track of the
state (i.e., the account balance), we are using event sourc-
ing to log the entire history of all state transitions (i.e., the
payment transactions). Instead of entrusting your bank’s
database with this log, we fully replicate the log across an
entire peer-to-peer network.

While forgery where money is concerned has always
been attempted, it has never been easier to create money
from nothing by flipping a few bits and then submitting fake
payment transactions with money already spent. How does
one validate payments and prevent untrusted peers from
tampering with the log? Cryptography.

In the same way memory chips periodically refresh
the bits they have stored to prevent data loss, all network
participants continuously verify their copy of the log. To en-
sure that the order of transaction is preserved, each block
of transactions refers to the previous one, identified by its

(Continued on next page)

consumers in check or to encourage
them to upgrade their subscription
plan. In the blockchain, rate limits
are supposed to be used when trans-
ferring funds just in case the transfer
has been triggered by mistake. They
also offer a safety net to prevent at-
tackers to instantaneously drain the
balance of the smart contract they
have taken over.

Whereas traditional containers
protect the underlying environ-
ment from the untrusted code they

execute, on the blockchain the smart
contract code itself needs to be pro-
tected from its sandbox. The sand-
box should not be trusted as it may
attempt to steal the funds carried by
the smart contract.

Software engineering promotes
modular design and it has never
been easier to rapidly assemble reus-
able components.11 While the blind
trust software developers put in the
transitive closure of their dependen-
cies not to contain any malicious

code is remarkable, smart contracts
also inherit the same security is-
sues. One the one hand, smart con-
tracts should be kept small so they
can be understood, properly veri-
fied, and fully tested. On the other
hand, their small size implies a mod-
ular architecture in which cal l-
ing external contracts may execute
malicious code and external callers
may exploit and misuse smart con-
tracts by arbitrarily invoking their
public interface.

FOCUS: GUEST EDITORS’ INTRODUCTION

26	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Software engineers are great at man-
aging the history of their software
projects; they have invented ver-
sion control branches after all. The
blockchain applies the concept of
“hard forks” to capture the moment
in which there is no longer a single,
agreed-upon perspective over the his-
tory of how the collective state of a
system has evolved.

Electrical engineers introduced
circuit breakers. Microservice architects

adopted them to prevent cascading
failures. The same metaphor is used
with smart contracts, whose circuit
breakers can automatically or manu-
ally suspend their operation if a bug
is discovered.

In the Cloud, open source code
gets deployed out of sight, and one
may only wonder whether the origi-
nal “open” source code is the one
actually running. The blockchain en-
ables open execution; everyone can

verify that your smart contract has
not been tampered with by reexecut-
ing it themselves and comparing the
outcome. Agreeing on the outcome
of replicated executions requires
smart contracts to be deterministic.
Any external interference (e.g., time,
randomness, local configuration de-
tails) is forbidden.

Most applications have been built
and can still be built using their own
centralized database. To ensure the

THE ORIGIN OF BLOCKCHAIN (CONT.)

cryptographic hash value. As long as malicious peers do not
computationally overpower the network, this forms an im-
mutable chain, to which new blocks of transactions can only
be appended.

Why should everyone volunteer to store a copy of the
blockchain and pay for the electricity needed to keep the
blockchain software running? And how do we put money
into the system? In the same way miners would dig the
earth looking for gold; there is an incentive: freshly mint-
ed bitcoins are awarded to the peer who first computes
a valid hash for a new block and adds it to the longest
chain. Computing such cryptographic proof requires a
significant processing time and effort,S3 hence the term
proof of work; bitcoin miners race to be the first to solve
an inverse hashing problem whose difficulty increases
over time to compensate for Moore’s law.

A side effect of this race is the huge energy con-
sumption to work on redundant computations.S4 More
sustainable consensus mechanisms are being worked
out, with what is termed proof of stake being a promis-
ing one. As opposed to the miner controlling the most
computational power, the likelihood for a validator to
issue the next block depends on the amount of owned
cryptocurrency.

While first-generation blockchains focused on cryptocur-
rency applications, supporting only monetary transactions,
second-generation blockchains are much more flexible, as
they can execute arbitrary transactions programmed using
so-called smart contracts.S5 Since smart contracts control

the ownership of digital assets, they have been used to
encode, execute, and enforce the terms of legal contracts
established between business or institutional parties.S6
The blockchain thus evolved from a replicated, immutable,
append-only data structure into a virtual machine for open
execution.S7

References
	 S1.	 P. Franco, Understanding Bitcoin: Cryptography, Engineering and

Economics. Hoboken, NJ: Wiley, 2015.

	 S2.	 S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”

Bitcoin, 2008. Accessed on: June 16, 2020. [Online]. Available:

https://bitcoin.org/bitcoin.pdf

	 S3.	 C. Dwork, and M. Naor, “Pricing via processing or combatting

junk mail,” in Advances in Cryptology—CRYPTO 1992, E. F. Brick-

ell, Ed. Berlin, Heidelberg: Springer, 1992, pp. 139–147.

	 S4.	 Digiconomist, “Bitcoin energy consumption index.” Accessed

on: June 16, 2020. [Online]. Available: https://digiconomist.net/

bitcoin-energy-consumption.

	 S5.	 V. Buterin, “A next-generation smart contract and decentralized ap-

plication platform,” Ethereum.org white paper. Accessed on: June 16,

2020. [Online]. Available: https://ethereum.org/whitepaper/

	 S6.	 N. Szabo, “Smart contracts: Building blocks for digital markets,”

in EXTROPY J. Transhumanist Thought, no. 16, 1996.

	 S7.	 K Salah, E. Damiani, A. Al-Fuqaha, T. Martin, K. Taha, and

M. K. Khan, “Open execution—The blockchain model,” IEEE

Blockchain Technical Briefs, Dec. 2018. [Online]. Available:

https://blockchain.ieee.org/technicalbriefs/december-2018/

open-execution-the-blockchain-model

	 SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE� 27

durability of the stored information
the database needs a backup, from
time to time. To make its data highly
available, the database can be repli-
cated.12 Read-only data sets can be
mirrored along a content-delivery
network. With the blockchain, the
append-only data structure shared by
all applications gets fully replicated
everywhere. For more information,
see “For the Blockchain Skeptic” and
“Research Challenges.”

In This Theme Issue
In this special issue of IEEE Software,
we invited submissions to explore the
intersection between blockchain and
software engineering. We received
65 submissions, out of which we se-
lected six articles with the help of
many reviewers, to whom we are
grateful for their timely and con-
structive feedback. The small col-
lection of articles you are about to
read presents the latest advances and

experiences in exploring the implica-
tions of blockchain on software en-
gineering techniques, methods, and
tools such as service-orientation,
design patterns, model-driven engi-
neering and fault tolerance.

In “Design Pattern as a Service
for Blockchain-Based Self-Sovereign
Identity,” the authors present a ref-
erence architecture for self-sovereign
identity management using block-
chain. The article describes how to

FOR THE BLOCKCHAIN SKEPTIC

Just like any other overhyped technology, will the blockchain
bubble burst and leave no trace behind? Or is there a funda-
mental breakthrough, which has the potential to change once
again the way we design, develop, and deliver our software?
Here, we discuss the former.

Blockchain has been characterized as a “solution looking
for a problem.”S8 At the same time, it also fits the “golden
hammer” antipattern,S9 as it has been proposed as the
means to solve every problem (including the coronavirus
pandemic).S10 A still unsolved problem, micropayments, did
not work out with blockchain as originally intended due to
the growth and volatility of transaction fees, also affected
by the speculative bubble affecting the cryptocurrency ex-
change rates. From an innovation perspective, blockchain
smart contracts have been compared with database-stored
procedures.S11 Smart contracts programming languages are
Turing-complete, but programs should be kept deterministic.

From a security perspective, complex systems are as
secure as their weakest link: if the core blockchain pro-
tocols are too difficult to conquer, the target of attack-
ers shifts to the exchanges at the edge of the networkS12
or the private keys in your wallet. The performance—in
terms of the transaction confirmation time—of centralized
payment solutions is also hard to beat with a peer-to-peer
network of untrusted but also churning and highly het-
erogeneous nodes.S13 Blockchain seems to have found a
niche as a payment channel of last resort,S14 available to
those whose access to traditional payment mechanisms

has been denied (e.g., refugees or financial crisis victims,
but also cybercriminals, such as ransomware authors).

References
	 S8.	 J. Bloomberg, “Eight reasons to be skeptical about block-

chain,” Forbes, May 31, 2017. [Online]. Available: https://

www.forbes.com/sites/jasonbloomberg/2017/05/31/

eight-reasons-to-be-skeptical-about-blockchain/#40f1cfb85eb1.

	 S9.	 W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray,

AntiPatterns: Refactoring Software, Architectures, and Projects In

Crisis. New York: Wiley, 1998.

	 S10.	 D. C. Nguyen, M. Dinh, P. N. Pathirana, and A. Seneviratne, “Block-

chain and AI-based solutions to combat coronavirus (COVID-19)-like

epidemics: A survey,” Preprints, vol. 2020, pp. 2020040325, doi:

10.20944/preprints202004.0325.v1.

	 S11.	 S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, and P. Jay-

achandran, “Blockchain meets database: Design and imple-

mentation of a blockchain relational database,” Proc. VLDB

Endowment, vol. 12, no. 11, pp. 1539–1552, July 2019. doi:

10.14778/3342263.3342632

	 S12.	 C. Decker, and and R. Wattenhofer, “Bitcoin transaction malleability

and MtGox,” in Computer Security-ESORICS 2014, M. Kutyłowsk, J.

Vaidya, Eds. Cham, Switzerland: Springer, 2014,

pp. 313–326.

	 S13.	 M. Swan, Blockchain: Blueprint for a New Economy. Sebastopol, CA:

O’Reilly Media, 2015.

	 S14.	 C. M. Christopher, “Why on earth do people use bitcoin?” Bus.

Bankruptcy Law J., vol. 2, no. 1, pp. 1–10, 2014.

FOCUS: GUEST EDITORS’ INTRODUCTION

28	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

introduce blockchain to provide a
decentralized solution for the critical
problem of identity management.

In “From Domain-Specific Lan-
guage to Code: Smart Contracts and
the Application of Design Patterns,”
the authors present how they applied
model-driven engineering to gener-
ate smart contracts. They propose a
domain-specific language known as
contract modeling language based
on a set of smart contracts design

patterns and show that it is possible
to transform high-level smart con-
tract specifications into code to be
executed on the blockchain.

The article “Neural Distributed
Ledger” presents a novel approach for
building and interconnecting block-
chains. Ledger-of-ledgers develop-
ments approaches require a shift of
developers’ mindsets and a clear soft-
ware design strategy and method. As
stated by the Software Engineering

Body of Knowledge, a software de-
sign strategy and method is useful as
a common framework for teams of
software engineers. This article pro-
vides a method and a tool suite for
developing complex blockchains as
ledgers of ledgers. In addition, authors
present a set of assumptions that lead
to a rapid and business-oriented DLT
applicability assessment.

Two articles focus on smart con-
tract failures. In “On the Need of

RESEARCH CHALLENGES
The intersection of software engineering with blockchain is
an area rich in research challenges,S15 some of which are
represented by the articles featured in this special issue. We
highlight two main topics, focusing on how to engineer 1)
software for running the blockchain itself and 2) applica-
tions running within (i.e., smart contracts) or just outside
the blockchain.

Blockchain software needs to be reliableS16 and se-
cure, at scale, with a fully decentralized architecture. How
does one significantly increase the performance of the
current generation of blockchain virtual machines within
these constraints? How does one define the right mix
of incentives to ensure the long term sustainability of
the blockchain?

Given the rapid expansion of competing blockchain
networks, with different consensus protocols or new
smart contract programming languages, how likely is it
that only one will prevail? To deal with such ecosystem
fragmentation, interoperability and portability solutions
and standards will need to emerge once the technology
matures.S17 Will smart contracts be able to dynamically
migrate between different blockchains, or will it be enough
to run some form of distributed transactions across mul-
tiple blockchains?

Smart contracts that own and control valuable digital
assets need to be correct and secure.S18 There is a grow-
ing research niche of software analysis, measurement,
verification, testing, and other quality assurance techniques
being applied to smart contracts.S19 This is critical, because

smart contracts deployed in production are immutable. It-
erative and incremental methods are difficult to apply.

Regarding applications, should every application use the block-
chain? Or more precisely, which part of an application should run
on-chain and which part off-chain?S20 Is existing knowledge and
experience gained for similar decisions (e.g., client versus server,
or mobile versus cloud) transferable to this scenario?

References
	 S15.	 S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-

oriented software engineering: Challenges and new directions,”

in Proc. of the 39th Int. Conf. Software Engineering Companion,

Buenos Aires, Argentina, May 2017, pp. 169–171.

	 S16.	 I. Weber et al., “On availability for blockchain-based systems,” in

2017 IEEE 36th Symp. Reliable Distributed Systems (SRDS), pp.

64–73. doi: 10.1109/SRDS.2017.15.

	 S17.	 S. Schulte, M. Sigwart, P. Frauenthaler, and M. Borkowski, “To-

wards blockchain interoperability,” Proc. BPM Blockchain Forum,

2019, pp. 3–10.

	 S18.	 S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract:

Attacks and protections,” IEEE Access, vol. 8, pp. 24416–24427,

2020. doi:10.1109/ACCESS.2020.2970495

	 S19.	 E. Viglianisi, M. Ceccato, and P. Tonella, “A federated society of

bots for smart contract testing,” J. Syst. Softw. , vol. 168, Oct.

2020. doi:10.1016/j.jss.2020.110647

	 S20.	 J. Eberhardt and S. Tai, “On or off the blockchain? Insights on

off-chaining computation and data,” in Proc. European Conf.

Service-Oriented and Cloud Computing (ESOCC), Oslo, Norway,

2017, pp. 3–15. doi: 10.1007/978-3-319-67262-5_1.

SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 29

Understanding the Failures of Smart
Contracts,” the authors introduce a
smart contract debugger, which helps
developers track failed smart contract
executions by means of well-known
software engineering techniques: code
instrumentation, fuzzing, and failure
location through binary search. In
“Reducing Smart Contract Runtime Er-
rors on Ethereum,” the authors present
both a taxonomy of different types of
smart contract failures and empirically
measure which are the most frequently
occurring errors. The authors propose
different error-avoidance heuristics,
which can potentially save wasted
computational efforts by using miners
as canaries.

In “Unified Integration of Smart
Contracts Through Service Orienta-
tion,” the authors transfer service-
oriented computing abstractions
to the blockchain domain. Their
smart contract description lan-
guage , locator, and invocat ion
protocol will foster the reusabil-
ity, discoverability, and interoper-
ability of smart contracts deployed

within heterogeneous blockchain
platforms.

Two of the columns in this issue
also tie in with our theme. In the
“Insights” column, you will find
an interview with experts reflecting
on the state of the blockchain and
its relationship with software engi-
neering. The “Practitioners’ Digest”
is also planning to summarize re-
cent publications at the intersection
between software engineering and
blockchain research.

 References
1. X. Xu, I. Weber, and M. Staples,

Architecture for Blockchain Applica-

tions. New York: Springer, 2019.

2. L. Baresi, E. Di Nitto, and C. Ghezzi,

“Toward open-world software: Is-

sues and challenges,” Comput., vol.

39, no. 10, pp. 36–43, 2006. doi:

10.1109/MC.2006.362.

3. A. Taivalsaari and T. Mikkonen, “A

roadmap to the programmable world:

Software challenges in the IoT era,”

IEEE Softw., vol. 34, no. 1, pp. 72–

80, 2017. doi:10.1109/MS.2017.26.

4. B. A. Scriber, “A framework for

determining blockchain applicabil-

ity,” IEEE Softw., vol. 35, no. 4, pp.

70–77, July/Aug. 2018. doi: 10.1109/

MS.2018.2801552

5. Q. Lu and X. Xu, “Adaptable block-

chain-based systems: a case study for

product traceability,” IEEE Softw.,

vol. 34, no. 6, pp. 21–27, Nov. 2017.

doi: 10.1109/MS.2017.4121227.

6. J. Ladleif, M. Weske, and I. Weber,

“Modeling and enforcing block-

chain-based choreographies,” in

Business Process Management

(BPM 2019), vol 11675. New York:

Springer, 2019, pp. 69–85.

7. N. Kshetri and J. Voas, “Blockchain-

enabled e-voting,” IEEE Softw., vol.

35, no. 4, pp. 95–99, Jul/Aug 2018.

doi: 10.1109/MS.2018.2801546

8. D. Magazzeni, P. McBurney, and W.

Nash, “Validation and verification of

smart contracts: A research agenda,”

Comput., vol. 50, no. 9, pp. 50–57,

2017. doi:10.1109/MC.2017.3571045

9. G J. Feeney, R D. Hilton, R L.

Johnson, T J. O’Rourke, and T

E. Kurtz. “Utility computing: A

superior alternative?” in Proc.

Nat. Computer Conf. and Expo.

(AFIPS), 1974, pp. 1003 –1004. doi:

10.1145/1500175.1500370.

10. C. Szyperski. “Component technol-

ogy—what, where, and how?,” in

Proc. 25th Int. Conf. Software

Engineering, (ICSE 2003), pp.

684–693.

11. T. Mikkonen and A. Taivalsaari,

“Software reuse in the era of oppor-

tunistic design,” IEEE Softw., vol.

36, no. 3, pp. 105–111, 2019. doi:

10.1109/MS.2018.2884883.

12. B. Kemme and G. Alonso, “A new

approach to developing and imple-

menting eager database replica-

tion protocols,” ACM Trans.

Database Syst. (TODS), vol.

25, no. 3, pp. 333–379, 2000.

doi:10.1145/363951.363955.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

 XABIER LARRUCEA is a project leader at TECNALIA, Basque

Research and Technology Alliance. He is a Senior Member of

the IEEE. Contact him at xabier.larrucea@tecnalia.com.

CESARE PAUTASSO is a full professor at the Software

Institute, USI Faculty of Informatics, Lugano, Switzerland.

He is a Senior Member of the IEEE. Contact him at

c.pautasso@ieee.org.

