
0740 -7459 / 19©2019 I EEE NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 79

REQUIREMENTS
Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

SOUNDING BOARD

ACCORDING TO RECENT estimates,
computing and communications could
account for 20% of energy usage glob-
ally by 2025.1 This trend shows no
sign of slowing. The annual growth in
power consumption of Internet-con-
nected devices is 20%. Data centers
alone are now accounting for more
than 3% of global emissions. Even if
you are not worried about this trend
on the mega scale, you are likely con-
cerned with the power consumption
of the devices in your pocket, on your
wrist, and in your ears.

Software, hardware, and network
attributes all contribute to power
usage, but little attention has been
given to this topic by the informa-
tion and communications technol-
ogy (ICT) community. For example,
as software engineers, we were never
taught to consider, much less man-
age, the energy consumption of the
software systems we created. Despite
our lack of awareness and prepara-
tion, we are now facing an undeni-
able reality: the software community
must learn to design for, monitor,
and manage the energy usage of
software. For this reason, we argue
the need for energy-aware software

and present a manifesto describing
nine guiding principles. By energy-
aware software, we mean software
that is consciously designed and de-
veloped to monitor and react to en-
ergy preferences and usage. Energy
efficiency is, therefore, one possible
(but not the only) response to being
energy aware.

This manifesto and the principles
it proposes have arisen from our ex-
perience and from the experience of
more than 100 researchers and prac-
titioners who have participated in
six international workshops on the
engineering of green and sustainable
software.2 Why do we need a mani-
festo? Why now? Although there has
been some attention to this area,3 we
believe it has been grossly insuffi-
cient given the high stakes involved.
The vast majority of practitioners
(and researchers) are completely ig-
norant of energy concerns; they, and
the programs they create, are any-
thing but energy aware.4

 The Nine Principles
of Energy Awareness
Energy awareness is a necessary but
not sufficient precondition for en-
ergy efficiency. Energy awareness
is required from all stakeholders,
such as end users who may choose

product A versus product B based
on energy characteristics. Our goal in
this manifesto is to call for changes
in how we think and what we do.
This will not come for free, but we
believe that the cost of inaction is
far greater.

Public Awareness Is Key for
Widespread Adoption
We believe that the key to widespread
adoption of energy-aware software
is to sensitize and empower end us-
ers. The scary statistics regularly
published have proven ineffective so
far (the amount of energy being con-
sumed by ICT, the increasing amount
of energy consumed by cloud provid-
ers, the massive amounts of data be-
ing stored in data centers as opposed
to the negligible percentages of data
being actually used, and so forth).
Neither do the worrisome energy-
consumption predictions seem to spur
us to action (such as the increasing
number of things being connected to
the Internet or the booming growth
in mobile devices and their increas-
ingly sophisticated applications).

We need to turn these alarming
trends into an opportunity: 1) to sen-
sitize end users to the amount of en-
ergy consumed by the software they
use and 2) to create awareness of

A Manifesto for
Energy-Aware Software
Alcides Fonseca, Rick Kazman, and Patricia Lago

Digital Object Identifier 10.1109/MS.2019.2924498
Date of current version: 22 October 2019

SOUNDING BOARD

80	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

the fact that software solutions with
similar features may yield very dif-
ferent energy profiles. Imagine that
we were able to attach “green” labels
(like Energy Star ratings) to the apps
available in Google Play or the Apple
Store. End users of mobile devices
could then compare the apps they are
seeking (such as apps for “medita-
tion” or for “scanning documents”)
not only in terms of features, rat-
ing, and price; if green labels were
added, end users would be empow-
ered to make better-informed deci-
sions based on the labeled level of
energy use. Such labels would force
software companies to invest in opti-
mizing the energy impact of their ap-
plications (if they wanted to improve
their market position), with a result-
ing positive effect on the resources
(for example, cloud services and net-
works) that such applications use.

Incentives for Software Stakeholders
Should Be Provided
We believe that, although some peo-
ple are altruistic, most people re-
spond to incentives. Therefore, such
incentives should be put in place to
encourage the creation of energy-
aware systems, which will, in turn,
lead to energy efficiency. Such in-
centives would also help raise the
consciousness of engineers and end
users. Most stakeholders need to be
incentivized to actively pursue soft-
ware and systems that are energy
aware. This is a key step to raising
the priority of energy-aware software
in our companies and in our soci-
ety. Such incentives, both positive
and negative, have been used suc-
cessfully for decades in other parts
of our economy: there are so-called
sin taxes to discourage drinking and
smoking, and there are tax rebates
to encourage people to make their
homes more energy efficient.

Energy-Aware Software
Engineering Should Be a Priority
for Every Stakeholder
The efficiency of system energy con-
sumption is relevant for everyone,
regardless of their roles in the de-
velopment process—from end users,
concerned with their battery life,
to business owners, concerned with
reducing their electricity costs and
from the developers, who should un-
derstand the energy impact of their
contributions, to the product own-
ers, who have to decide in what way
energy efficiency is a requirement.

Energy-related information should
flow to all stakeholders. Early in the
development process, clients should
be asked about their energy require-
ments. These should then be prop-
agated to developers, testers, and
operations personnel so that they
can be taken into account, tested for,
and monitored. Results from these
phases should be reported back to the
stakeholders, just like other impor-
tant metrics.

Education and Professional
Training Should Cover Energy-Aware
Software by Default
To create energy-aware software, we
must educate the next generation of
engineers who need to acquire the
competencies (and provide training
for the current-generation work-
force, too). Depending on the target
audience and the learning objectives,
educational programs may adopt a
centralized approach (concentrat-
ing the competencies crucial for en-
ergy-aware systems in one or two
courses), distributed (revising tradi-
tional courses to include competen-
cies for energy awareness), or blended
(including both types of courses across
the curriculum). Just as every pro-
grammer should understand algo-
rithmic complexity, energy awareness

must become a standard competency
of every ICT practitioner and a stan-
dard consideration for every decision
maker and end user.

Broad Adoption Requires
Attention to Usability
To encourage broad adoption of en-
ergy-aware systems, we must pay
attention to the usability, from a de-
veloper perspective, of the tools that
we create. Best practices for energy-
aware software engineering should
end up being embedded in the tools,
packages, and frameworks we cre-
ate so that software engineers do
not need to reinvent the wheel. You
should not need a soldering iron
or a circuit diagram—or a degree
in electrical engineering—to man-
age the energy consumption of an
ICT system. Furthermore, it should
be easy to reuse experience and best
practices for engineering energy-
aware software.

Energy Awareness Should Be
Engineered Throughout the Lifecycle
Energy awareness can and should be
treated like an architectural quality
attribute,5 no different from how we
design for, analyze, prototype, and
manage other qualities in an archi-
tecture such as modifiability, per-
formance, availability, or security.
This means that architectures are
design blueprints with system-wide
resource-management strategies. For
example, power usage requirements
should be explicitly collected dur-
ing requirements gathering, designed
for, and tested for.

In particular, energy awareness
and energy efficiency must be de-
signed into a system early in its life-
cycle and considered when making
major changes to the system. Leav-
ing this consideration until the sys-
tem is already built is a recipe for

SOUNDING BOARD

NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 81

disaster. Experience tells that any
quality that you address late in de-
velopment tends to be treated super-
ficially (or at great cost). If you don’t
measure it, you cannot manage it.6

This energy awareness will have an
associated cost, in terms of system
complexity, and this cost must be
acknowledged and accepted by the
ICT community.

Software Quality Should Not Come at
the Expense of Energy Awareness
Energy-aware software development
does not imply that energy efficiency
should be prioritized over other qual-
ity attributes. Being energy aware in-
volves taking into account the energy
consumption of software across the
software development lifecycle. En-
ergy awareness cannot be ignored
and should be explicitly considered
in tradeoff decisions, even if the final
decision is to prioritize some other
quality attribute over it.

Making software development pro-
cesses explicitly energy aware allows
for stakeholders to be informed of
the options chosen regarding the
energy consumption of software.
Data about the energy impact of de-
sign choices can be used to inform
future decisions and improve de-
signs with respect to their energy
efficiency.

Energy Awareness Demands
Dynamic Adaptability
Energy awareness is heavily influ-
enced by the context in which soft-
ware is being used, both because
resource availability varies over time
(for example, the battery load is lim-
ited, network connectivity is location
dependent, or electricity rates change
during the day) and because as end
users move, their needs change (for
example, driving the most energy-
aware route depends on our location,

and if we need to charge our car bat-
tery, it depends on the availability of
charging stations nearby).

We believe that software should
perform its core functionality while
simultaneously ensuring energy
awareness. If this happens, end us-
ers can count on software applica-
tions to be reliable and to promise
the best tradeoff between energy
and functionality. To do so, software
must be able to detect that its con-
text has changed and that (possibly)
some resources have become scarce
and flexibly adapt by replacing them
with alternatives or downgrading
the delivered functionality.

We Value Measures Over Beliefs
(and Reliable Trends Over Precision)
Energy awareness can be easily ig-
nored early in the software lifecycle

if there are no data to support the
fact that energy should be a concern.
Another common pitfall is to believe
that optimizing for energy efficiency
is difficult, if not impossible.7 Mea-
suring energy consumption is a first
step toward energy awareness. At a
minimum, it provides a baseline to
compare when introducing changes
into the system. Costly additions, in
terms of energy, may need to be re-
vised or even discarded if low power
consumption is a priority.

Different methods for measur-
ing energy consumption exist. Be-
cause software is often dynamic and
depends on runtime information,
such as the size of exchanged data,
understanding the trend of energy
efficiency is more important than
knowing the raw logged values.
Just like the Big-O notation in time

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ALCIDES FONSECA is an assistant professor at LASIGE, Fac-

uldade de Ciências da Universidade de Lisboa, Portugal. Contact

him at alcidesfonseca@gmail.com.

RICK KAZMAN is a professor at the University of Hawaii, Mãnoa,
Honolulu, and a visiting scientist at the Software Engineering Insti-
tute, Pittsburgh, Pennsylvania. Contact him at kazman@hawaii.edu.

PATRICIA LAGO is a professor in software engineering at the
Vrije Universiteit Amsterdam, The Netherlands. Contact her at
p.lago@vu.nl.

SOUNDING BOARD

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

complexity, energy efficiency can be
seen as another complexity metric.

We believe that energy-
aware ICT is inevita-
ble for many reasons:

economic reasons, sustainabilit y
reasons, and because users will in-
creasingly demand it. To hasten its
emergence, we have polled the R&D
community in a series of workshops
and collected these nine principles to
help focus the emergence of energy
awareness as a true subdiscipline of
ICT and software engineering. We can
see that the successful emergence of
this discipline depends on three foun-
dations: 1) awareness, 2) education and
training, and 3) the creation of a body
of engineering knowledge. We need all

of them to make energy-aware soft-
ware a reality.

References
1. “‘Tsunami of data’ could consume

one fifth of global electricity by

2025,” The Guardian, Dec. 11, 2017.

[Online]. Available: https://www

.theguardian.com/environment/2017/

dec/11/tsunami-of-data-could

-consume-fifth-global-electricity

-by-2025

2. “6th International Workshop on

Green and Sustainable Software.”

[Online]. Available: http://greens

.cs.vu.nl

3. C. Becker et al., “Sustainability de-

sign and software: The Karlskrona

manifesto,” in Proc. 37th Int. Conf.

Software Engineering, vol. 2, pp.

467–476.

4. G. Pinto and F. Castor, “Energy ef-

ficiency: A new concern for applica-

tion software developers,” Comm.

ACM, vol. 60, no. 12, pp. 68–75,

Dec. 2017.

5. N. Condori-Fernandez and P. Lago,

“Characterizing the contribution

of quality requirements to software

sustainability,” J. Syst. Softw., vol.

137, pp. 289–305, Mar. 2018. doi:

10.1016/j.jss.2017.12.005.

6. “Peter Drucker,” Wikipedia. Ac-

cessed on: Sept. 16, 2019. [Online].

Available: https://en.wikipedia.org/

wiki/Peter_Drucker

7. C. Pang, A. Hindle, B. Adams, and

A. E. Hassan, “What do program-

mers know about software energy

consumption?” IEEE Softw., vol. 33,

no. 3, pp. 83–89, 2016. doi: 10.1109/

MS.2015.83.

IEEE TRANSACTIONS ON

BIG DATA

For more information on paper submission, featured articles, calls for papers,
and subscription links visit: www.computer.org/tbd

TBD is financially cosponsored by IEEE Computer Society, IEEE Communications Society, IEEE Computational Intelligence
Society, IEEE Sensors Council, IEEE Consumer Electronics Society, IEEE Signal Processing Society, IEEE Systems, Man &
Cybernetics Society, IEEE Systems Council, and IEEE Vehicular Technology Society

TBD is technically cosponsored by IEEE Control Systems Society, IEEE Photonics Society, IEEE Engineering in Medicine &
Biology Society, IEEE Power & Energy Society, and IEEE Biometrics Council

SUBSCRIBE AND SUBMIT

SUBMIT
TODAY

Digital Object Identifier 10.1109/MS.2019.2944045

