
0740 -7459 / 19©2019 I EEE JULY/AUGUST 2019 | IEEE SOFTWARE 3

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute,
ipek.ozkaya@computer.org

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

FRED BROOKS, IN his well-known
classic The Mythical Man-Month, al-
ready told the software engineering in-
dustry in 1975 that there are no silver
bullets in gaining an order-of-magnitude
improvement in software productiv-
ity.1 He also observed that “most of
the big past gains in software pro-
ductivity have come from removing
artificial barriers that have made the
accidental tasks inordinately hard,
such as severe hardware constraints,
awkward programming languages,
lack of machine time.” The hope and
goal of software development pro-
cesses in orchestrating the essential
and accidental software engineering
and development tasks is precisely to
remove artificial barriers to deliver-
ing better, faster, cheaper software
to the users. Our next silver bul-
let seems to have emerged as auto-
mating repeatable, manual process

tasks. While, on one hand, we de-
bate how to scale agile, on the other,
we run to DevOps, continuous in-
tegration, and continuous deliv-
ery tools to achieve the so-called
orders of magnitude of productiv-
ity improvement.

Automation enshrines a process
step without necessitating further com-
munication if the process step is well
understood and the automated solu-
tion addresses its goal on target. The
place for automation is well-bounded,
repetitive tasks. In fact, the DevOps
movement lives on the mantra, “If you
do a task more than twice, automate
it.” Automation facilitates concrete
communication through artifacts,
saving time in handovers as well
as misinterpretations.

Bass et al.2 define DevOps as “a
set of practices intended to reduce the
time between committing a change to
a system and the change being placed
into normal production, while ensur-
ing high quality.” DevOps is not a

software development process, but
it supplements these processes to
eliminate time wasted on handovers
between tasks, eliminating the need for
accidental activities. DevOps delivers
value of collaboration between devel-
opment and operations staff through-
out all stages of the development
lifecycle and supports this through
tools and infrastructure. The ability to
automate aspects of this collaboration
not only saves on eliminating inconsis-
tencies, it also promises to achieve the
ever-so-longed-for speed of develop-
ment and propagating change—the sil-
ver bullet.

Over the past several decades, we
have seen many “next best” processes
rise and decline in popularity: water-
fall, Rational Unified Process, Ex-
treme Programming, Scrum, Lean,
Kanban, test-driven development,
and all of the various frameworks to
scale Scrum in larger contexts, such as
Scaled Agile Framework,3 Nexus,4
and Large-Scale Scrum.5 With the

Digital Object Identifier 10.1109/MS.2019.2910943
Date of publication: 18 June 2019

Are DevOps and
Automation Our Next
Silver Bullet?
Ipek Ozkaya

FROM THE EDITOR

4	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

abundance of methodologies to
choose from, process improvement
initiatives, such as Capability Matu-
rity Model Integration in its heyday,
helped hundreds of organizations
assess and evolve their software de-
velopment processes. Software devel-
opment organizations learned some
valuable lessons along the way:

•	 The higher the level of cer-
emony involved in the software
development process, it be-
comes increasingly likely that
the process will not achieve
its intended productivity
consequences.

•	 No process definition will magi-
cally deliver results without a
committed, disciplined team,
and organization behind it.

•	 Context is key; there is no “one
size fits all” solution.

Almost two decades after “Ag-
ile Manifesto”6 was written, we are
still debating what it really means to
be agile, how to scale agile software
development processes and combine
them with other development pro-
cesses, and whether hybrid processes
are the way to go. I will argue here,
reflecting Brooks’s observation, that
any of the successes we have seen in
the software development processes,
in particular, agile and lean software
development processes, were pre-
cisely due to their success in removing
barriers, such as the overhead from
document-driven approaches being
replaced by working software demon-
strations, which helped to eliminate
some accidental tasks. Many agile
software development success stories
have been attributed to the adoption
of practices such as increased team
communication, collective owner-
ship, frequent customer-visible re-
leases, backlog-driven requirements

management, continuous integration,
and shorter iterations.7

Yet still, failures are abundant,
even with all the guidance and les-
sons learned from case studies. The
journey to defining and following a
golden software development process
still has not delivered on the prom-
ise of order-of-magnitude improve-
ment, leaving software organizations
in the fog of war with two enduring
challenges: customization to context
and communication. The solution to
these challenges is not in defining the
next software development process or
scaling our favorite one up. In fact, any
of the existing iterative, incremental
software development processes will
do just fine as long as we understand
the context we are developing in and
the essential communication channels
that need to be managed. DevOps and
automation can help further by re-
moving accidental mistakes through
incorporating tools of our trade to
leave precious time for the most essen-
tial manual-effort-requiring tasks,
such as design.1

Customization to Context
At a minimum, the business environ-
ment, team, governance structure,
criticality of the system, size and age
of the system, and rate of change
will influence how to orchestrate any
software development process for
its context. Software development
processes, out of their box, do not
always fit their context, while most
of them use the same building blocks.
The software industry learned this
lesson during its journey through em-
bracing agile software development.
The software factories paradigm of
the 1980s failed to deliver its prom-
ises. Many scaled agile-development
endeavors failed due to assuming that
scaling simply meant a matter of
tailoring Scrum to work with larger

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

help@computer.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information,
visit www.ieee.org/publications/rights
/rights-link.html

FROM THE EDITOR

	 JULY/AUGUST 2019 | IEEE SOFTWARE � 5

groups of people.8 The poster-child
examples of such failures were often
in the context of dependable software
systems where high assurance and
compliance requirements dominated,
such as avionics, financial industry,
or embedded command-and-control
software. Ad hoc cherry picking of
activities, for example, agile says
design emerges, so we do not spend
time architecting, were at the root of
many failures.

The lesson, going forward, is no
matter what the choice of process
is, you will need to understand and
map the essential characteristics of
your selection to the essential char-
acteristics of your context. It is often
not the process that does not scale or
fails; more often than not, it is its in-
terpretation and application.

Communication
A common goal of all processes is
to eliminate nonessential activities
that consume resources away from
development and delivery of function-
ality that provides quality to its us-
ers. Software development processes
define roles, responsibilities, and ac-
tivities, with the ultimate goal of or-
chestrating these activities efficiently,
mapping them to people and time. The
activities of understanding business
goals; grasping and specifying re-
quirements; comprehending the data,
modeling, designing, developing, and
testing; and deploying functionality
to the targeted users do not change.
How these essential activities are or-
dered and how information flows
between roles are where the pro-
cesses differ. Software development
processes that replace communica-
tion with over-the-wall tasks conse-
quently fail. Software development
processes that encourage frequent
and on-task communication among
all stakeholders and team members

receive increased adoption. Agile and
lean software development processes
exemplify this.

Again, the software organiza-
tions learned their lesson the hard
way here. A process definition can-
not eliminate misunderstood require-
ments, customers who keep changing
their minds, and team members who
do not agree on technical tasks.

The Role of DevOps
and Automation
In our quest for the silver bullet since
1975, software engineering organiza-
tions definitely have achieved some
successes, in particular, in transform-
ing to agile development processes.8
Organizations that eliminate waste
and inconsistencies through targeted
automation of handovers and activi-
ties do see the benefits of reduced cycle
time and resource expenditure. What-
ever new process definition we may see
in the future is likely to build on reap-
ing the benefits of continuing to auto-
mate more of the lifecycle activities.

But has the automation promised
through DevOps helped to achieve
the order of magnitude of produc-
tivity improvement? Some accounts
coming out of organizations adopting
effective tooling and continuous de-
livery infrastructures describe gains
in reducing rework costs,10 while oth-
ers also report on overheads and fail-
ures as well. Failure stories are often
similar: not understanding the con-
text, dropping key activities between
communication barriers, failing to
collaborate—none of these activities
can be automated, and that is where
all processes fail in their adoption. As
Brooks told us in 1975, there is no sil-
ver bullet. Neither DevOps nor auto-
mation is one, either.

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Managing Editor: Jessica Welsh, j.welsh@
ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@
computer.org
Publications Portfolio Manager: Carrie Clark
Publisher: Robin Baldwin
Senior Advertising Coordinator: Debbie Sims
IEEE Computer Society Executive Director:
Melissa Russell

CS PUBLICATIONS BOARD
Fabrizio Lombardi (VP for Publications),
Alfredo Benso, Cristiana Bolchini,
Javier Bruguera, Carl K. Chang, Fred Douglis,
Sumi Helal, Shi-Min Hu, Sy-Yen Kuo,
Avi Mendelson, Stefano Zanero, Daniel Zeng

CS MAGAZINE OPERATIONS
COMMITTEE
Sumi Helal (Chair), Irena Bojanova,
Jim X. Chen, Shu-Ching Chen,
Gerardo Con Diaz, David Alan Grier,
Lizy K. John, Marc Langheinrich,
Torsten Möller, David Nicol, Ipek Ozkaya,
George Pallis, VS Subrahmanian

IEEE PUBLICATIONS
OPERATIONS
Senior Director, Publishing Operations:
Dawn M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion
and Editorial Support: Neelam Khinvasara
Senior Managing Editor: Geraldine Krolin-Taylor
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, reflect the author’s or firm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript
type when submitting. Articles must be original and not
exceed 4,700 words including figures and tables, which
count for 200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2019.2910944
(continued on page 95)

IMPACT

	 JULY/AUGUST 2019 | IEEE SOFTWARE � 95

Boeing 737MAX,” Mar. 18, 2019.

[Online]. Available: http://newsin

flight.com/2019/03/18/the-updating-

changes-to-mcas-software-on-boeing-

737max/

11.	S. Masson, “Volkswagen admits

17,000 complaints about dieselgate

fix fails,” Dec. 7, 2017. [Online].

Available: https://www.thecarexpert

.co.uk/volkswagen-17000-comp

laints-dieselgate/

12.	P. Mellor, “CAD: Computer-aided

disaster,” High Integrity Syst., vol. 1,

no. 2, pp. 101–156, 1994.

13.	A.-F. Rutkowski and C. Saunders,

Emotional and Cognitive Overload:

The Dark Side of Information Tech-

nology. Evanston, IL: Routledge, 2019.

14.	D. Yadron and D. Tynan, “Tesla

driver dies in first fatal crash while

using autopilot mode,” June 30, 2016.

[Online]. Available: https://www

.theguardian.com/technology/2016

/jun/30/tesla-autopilot-death-

self-driving-car-elon-musk

15.	T. Mann and S. Hughes, “Fast-

tracked aircraft certification,

pushed by Boeing, comes under

the spotlight,” Wall Street J.,

Mar. 24, 2019. [Online]. Available:

https://www.wsj.com/articles

/fast-tracked-aircraft-certification-

pushed-by-boeing-comes-under-

the-spotlight-11553428800

16.	A. Pasztor, A. Tangel, R. Wall, and

A. Sider, “How Boeing’s 737 MAX

failed. The plane’s safety systems, and

how they were developed, are at the

center of the aerospace giant’s unfold-

ing crisis,” Wall Street J., Mar. 27,

2019.

17.	J. A. Whittaker, How to Break Soft-

ware. Reading, MA: Addison-Wesley,

2002.

18.	N. Jones et al., “Conversion from ro-

botic surgery to laparotomy: A case-

control study evaluating risk factors

for conversion,” Gynecol. Oncol.,

vol. 134, no. 2, pp. 238–242, 2014.

doi: 10.1016/j.ygyno.2014.06.008.

19.	G. Travis, “How the Boeing 737

Max disaster looks to a software

developer,” IEEE Spectr., Apr. 10,

2019. [Online]. Available: https://

spectrum.ieee.org/aerospace/aviation

/how-the-boeing-737-max-disaster-

looks-to-a-software-developer

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

References
1.	F. Brooks, The Mythical Man-Month:

Essays on Software Engineering, 2nd

ed. Reading, MA: Addison-Wesley,

1995.

2.	L. J. Bass, I. M. Weber, and L. Zhu,

DevOps: A Software Architect’s

Perspective. Reading, MA: Addison-

Wesley, 2015.

3.	SAFe. Accessed on: May 7, 2019.

[Online]. Available: https://www

.scaledagileframework.com

4.	Scrum.org, “An introduction to the

Nexus framework.” Accessed on:

May 7, 2019. [Online]. Available:

https://www.scrum.org/resources

/introduction-nexus-framework

5.	LeSS. Accessed on May 7, 2019.

[Online]. Available: https://less

.works

6.	Agile Manifesto. Accessed on: May

7, 2019. [Online]. Available: https://

agilemanifesto.org

7.	S. Bellomo, R. L. Nord, and I. Ozkaya,

“A study of enabling factors for rapid

fielding: Combined practices to bal-

ance speed and stability,” in Proc.

35th Int. Conf. Software Engineering

(ICSE 2013), San Francisco, CA, pp.

982–991.

8.	W. Hayes, M. A. Lapham, S. Miller,

E. Wrubel, and P. Capell, “Scaling

agile methods for Department

of Defense programs,” Carnegie

Mellon Univ., Pittsburgh, PA,

Rep. CMU/SEI-2016-TN-005,

2016. [Online]. Available: https://

resources.sei.cmu.edu/asset_files

/TechnicalNote/2016_004_001_

484647.pdf

9.	M. Paasivaara, B. Behm, C. Las-

senius, and M. Hallikainen,

“Large-scale agile transformation

at Ericsson: A case study,” Em-

pirical Software Eng., vol. 23, no. 5,

pp. 2550–2596, 2018. doi: 10.1007/

s10664-017-9555-8.

10.	Google Cloud, “New research from

DORA: What sets top-performing

DevOps teams apart.” Accessed

on: May 7, 2019. [Online]. Avail-

able: https://cloudplatformonline

.com/2018-state-of-devops.html

FROM THE EDITOR  (continued from page 5)

