
0740 -7459 / 19©2019 I EEE 	 MARCH/APRIL 2019 | IEEE SOFTWARE � 127

Editor: Jeffrey C. Carver
University of Alabama
carver@cs.ua.edu

PRACTITIONERS’
DIGEST

THIS ISSUE’S “PRACTITIONERS’
Digest” department reports from the
34th International Conference on
Software Maintenance and Evolu-
tion, the 44th Euromicro Conference
on Software Engineering and Ad-
vanced Applications, and the 12th In-
ternational Symposium on Empirical
Software Engineering and Measure-
ment (ESEM). Feedback or sugges-
tions are welcome. In addition, if you
try or adopt any of the practices in-
cluded in the column, please send Jef-
frey C. Carver and the authors a note
about your experiences.

The Pareto Principle
for Defects
“Are 20% of Files Responsible for
80% of Defects?” by Neil Walkin-
shaw and Leandro Minku reports
on an empirical study investigating
industrial anecdotes stating that the
Pareto principle holds for the rela-
tionship between source code and
the number of defects in a system.1
The Pareto principle (also known as

the 80/20 rule, the law of the vital
few, or the principle of factor spar-
sity) states that, for many events,
roughly 80% of the effects come
from 20% of the causes. Manage-
ment consultant Joseph M. Juran
suggested the principle and named
it after Italian economist Vilfredo
Pareto, who noted the 80/20 con-
nection in 1896 when he found that
approximately 80% of the land in
Italy was owned by 20% of the pop-
ulation. In this study, the authors
analyzed 100 systems from active
GitHub repositories. They analyzed
the relationships among files, ba-
sic metrics, such as code churn and
lines of code (LOC), and defect
fixes. The analysis shows that the
Pareto principle holds only if each
fix counts as an individual defect—
in other words, if the bug exists in
multiple files, it counts as multiple
defects. In addition, code churn
was a more reliable indicator of de-
fect proneness than was LOC but
only for extremely high-churn val-
ues. The overall conclusion is that
it is difficult to identify the “most
fixed” 20% of files using only basic
metrics. However, even if those files

could be identified, focusing only
on those files would be insufficient
because fixes often involve multiple
files, including those fixed less fre-
quently. Access this paper at http://
bit.ly/PD_2019_March_1.

Nontechnical Skills
and Agile Development
“Non-Technical Individual Skills Are
Weakly Connected to the Maturity of
Agile Practices,” by Lucas Gren and
colleagues, reports on a developer sur-
vey that studies the belief that the non-
technical skills of individual developers
are able to predict team-level perfor-
mance in relation to collaboration.2
Because agile approaches emphasize
people and their skills, many believe
that both technical and nontechnical
individual competencies contribute to
team capabilities. This survey of 113
agile developers from six organizations
in The Netherlands and Brazil found
a different result by asking develop-
ers how personally satisfied they were
with their competency in a specific
nontechnical skill. In this case, per-
sonal satisfaction was more important
than simply rating their level of com-
petency because personal satisfaction

Quality, Nontechnical
Skills, Blind Programmers,
and Deep Learning
Jeffrey C. Carver, Birgit Penzenstadler, Alexander Serebrenik, and Miroslaw Staron

Digital Object Identifier 10.1109/MS.2018.2883874
Date of publication: 22 February 2019

PRACTITIONERS’ DIGEST

128	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

relates to putting the skill into practice
in a team. Interestingly, the results of
the survey showed that individual non-
technical skills had little power in pre-
dicting (i.e., explaining the variance in)
how mature the agile practices were
within a team. The authors concluded
that, to advance the maturity of agile
practices, it is more important to focus
on assessing and improving the capac-
ity of the team relative to nontechnical
skills rather than ensuring that indi-
vidual team members possess those
skills. Access this paper at http://bit.ly/
PD_2019_March_2.

Technical Debt
“The Most Common Causes and Ef-
fects of Technical Debt: First Results
From a Global Family of Industrial Sur-
veys,” by Nicolli Rios and colleagues,
reports the views of technical debt (TD)
from a survey of 107 Brazilian software
practitioners.3 TD contextualizes the
tradeoffs between the short-term benefit
of a software development choice, e.g.,
increased productivity or shorter re-
lease time, and the long-term “debt”
incurred by that choice, e.g., later tasks
become more time-consuming or error-
prone. The concept is that the debt in-
curred for the short-term benefit must
be paid back, with interest, later in the
development process. Software projects
commonly incur TD, which brings risks
and management difficulties. Because the

authors believe that it is often cheaper
to prevent TD than to repay the debt
later, the goal of this survey was to
understand the most common causes
and effects of TD-to-TD prevention.
The results of the survey showed that
the survey respondents were familiar
with the concept of TD. Some of the
most likely causes of TD were dead-
lines, inappropriate planning, lack of
knowledge, and lack of a well-defined
process. Some of the most impactful ef-
fects of TD were low quality, delivery
delay, low maintainability, rework,
and financial loss. The authors plan to

repeat this survey in the coming years
to continue to gain a better and more
generalizable understanding of TD,
based on empirical results. This paper
appears in the Industry Track of ESEM
2018. Access this paper at http://bit.ly/
PD_2019_March_3.

Supporting Blind
Programmers
“AudioHighlight: Code Skimming for
Blind Programmers,” by Ameer Ar-
maly and colleagues, addresses the
challenges of making IDE- and web-
based tools more accessible for blind
programmers.4 Currently, IDEs and
web-based platforms such as GitHub
contain tools to support the daily
tasks of sighted programmers. Unfor-
tunately, blind programmers often

cannot take advantage of these tools.
The AudioHighlight tool begins to
bridge this gap by providing code navi-
gation support for blind programmers
and rendering the code in a browser
or IDE with Hypertext Markup
Language (HTML) tags on struc-
tural elements, such as classes, func-
tions, and control flow structures.
Using a virtual cursor, these HTML
tags allow a blind programmer to
quickly navigate all methods in a class
rather than having to go line by line
with a traditional screen reader. An
evaluation with 10 blind program-
mers showed that AudioHighlight
was faster and easier to use than
the state-of-the-art tools, without
reducing accuracy. The tool also
promoted faster and easier program
comprehension. Access this paper at
http://bit.ly/PD_2019_March_4.

Quality Metrics
Misperceptions
“Improving Code: The (Mis)per-
ception of Quality Metrics,” by Jev-
genija Pantiuchina and colleagues,
focuses on the ability of software
metrics to capture how software de-
velopers perceive source code qual-
ity.5 The authors extracted 1,282
commits from 986 GitHub projects
in which the comment explicitly re-
ferred to the developers’ intention to
improve quality attributes such as
cohesion, coupling, code readabil-
ity, or code complexity. They then
determined whether the code qual-
ity, as measured by state-of-the-art
software metrics, reflected this im-
provement. Results showed that the
quality metrics often did not reflect
the developer’s perception of im-
proved quality. This mismatch sug-
gests that the developer’s perception
of quality is multifaceted and the met-
rics might be, at best, reflecting only
some of these facets. Therefore, the

Because agile approaches emphasize
people and their skills, many believe
that both technical and nontechnical
individual competencies contribute to
team capabilities.

PRACTITIONERS’ DIGEST

	 MARCH/APRIL 2019 | IEEE SOFTWARE � 129

authors call for caution with build-
ing and using software quality metrics
and, thus, the applications built upon
those metrics, such as code smell de-
tectors and refactoring recommend-
ers. Access the paper at http://bit.ly/
PD_2019_March_5.

Deep-Learning Challenges
“Software Engineering Challenges of
Deep Learning,” by Anders Arpteg
and colleagues, shares their expe-
riences with building deep-learning

systems.6 While production-level
deep-learning systems are increasing
in popularity through their use in
applications, including weather pre-
diction, house pricing prediction, and
autonomous driving software, their
construction is challenging. Produc-
tion-level deep-learning systems present
a number of difficulties, including
choice of the proper algorithm, data
filtering, and run-time quality. Us-
ing experiences from seven industrial
deep-learning projects, the authors of

this paper identified three categories
of 12 specific challenges:

•	 development challenges, which
are related to the software
engineering of deep learning,
include experience management,
limited transparency, trouble-
shooting, resource allocation,
and testing.

•	 production challenges, which are
related to postdeployment life-
cycle phases, include dependency
management, monitoring and
logging, unintended feedback
loops, and glue code.

•	 organizational challenges, which
are related to organizing the de-
velopment of deep-learning sys-
tems, include effort estimation,
privacy and safety, and cultural
differences.

T his paper provides a nice
overview of the challenges
developers must address to

be prepared for large-scale software
development methodologies for deep-
learning systems built to analyze big
data. Access this paper at http://bit.
ly/PD_2019_March_6.

References
	 1.	N. Walkinshaw and L. Minku, “Are

20% of files responsible for 80% of

defects?” in Proc. 12th ACM/IEEE

Int. Symp. Empirical Software En-

gineering and Measurement (ESEM

18), 2018.

	 2.	L. Gren, A. Knauss, and C. Johann

Stettina, “Non-technical individual

skills are weakly connected to the

maturity of agile practices,” Inf.

Softw. Technol., vol. 99, pp. 11–20,

2018.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JEFFREY C. CARVER is a professor in the University of Alabama’s

Department of Computer Science. Contact him at carver@cs.ua.edu.

BIRGIT PENZENSTADLER is an assistant professor of software

engineering at California State University, Long Beach. Contact her

at birgit.penzenstadler@csulb.edu.

ALEXANDER SEREBRENIK is an associate professor in Eind-

hoven University of Technology’s Department of Mathematics and

Computer Science. Contact him at a.serebrenik@tue.nl.

MIROSLAW STARON is a professor of software engineering in

the University of Gothenburg’s Department of Computer Science

and Engineering. Contact him at miroslaw.staron@gu.se.

(continued on page 136)

THE PRAGMATIC DESIGNER

136	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

simply maximize code health, we
must instead contribute to a making a
good decision.

This article has laid out my way of
thinking about decisions. There are
topics that are relevant to good deci-
sion making that, in my experience,
are rarely discussed, such as the cul-
tural dynamics that affect code qual-
ity and how well the code expresses
theories about the problem domain
and the architecture.

Long-term health of the code de-
pends on the decision makers having
the right information and knowing
the implications of their decisions. As
someone who reads and writes soft-
ware for a living, you have a special
role: you must inform the others about
what’s happening in the code because
what they know about the code comes
only from you. If you are able to col-
laborate with the decision makers and
bring the information about tradeoffs
happening in the code, then they will
avoid the temptation to decide based
simply on features and timelines, a

short-sighted approach that can lead
us to never change the oil in our cars
because we simply must get to our
appointments.

References
	 1.	M. Fowler, Refactoring. Reading,

MA: Addison-Wesley, 2018.

	 2.	M. Feathers, Working Effectively

With Legacy Code. Englewood

Cliffs, NJ: Prentice Hall, 2004.

	 3.	A. Tsakiris, “Managing software inter-

faces of on-board automotive controllers,”

IEEE Softw., vol. 28, no. 1, pp. 73–76,

Jan.-Feb. 2011. doi: 10.1109/MS.2011.11.

	 4.	T. Wolfe, From Bauhaus to Our

House. New York: Farrar, Straus, and

Giroux, 1981.

	 5.	P. Naur, “Programming as the-

ory building,” Microprocessing

Microprogramming, vol. 15, no.

5, pp. 253–261, May 1985. doi:

10.1016/0165-6074(85)90032-8.

	 6.	W. Cunningham, “The WyCash

portfolio management system,” in

OOPSLA ’92 Addendum to the

Proc. Object-Oriented Program-

ming Systems, Languages, and

Applications, Vancouver, British Co-

lumbia, Canada, 1992, pp. 29–30.

ABOUT THE AUTHOR

GEORGE FAIRBANKS is a software engineer at Google.

Contact him at gf@georgefairbanks.com.

	 3.	N. Rios, R. Oliveira Spínola, M.

Mendonça, and C. Seaman, “The

most common causes and effects of

technical debt: First results from a

global family of industrial surveys,”

in Proc. 12th ACM/IEEE Int.

Symp. Empirical Software Engi-

neering and Measurement

(ESEM 18), 2018.

	 4.	A. Armaly, P. Rodeghero, and C.

McMillan, “AudioHighlight: Code

skimming for blind programmers,”

in Proc. 2018 IEEE Int. Conf. Soft-

ware Maintenance and Evolution

(ICSME), pp. 206–216.

	 5.	J. Pantiuchina, M. Lanza, and G.

Bavota, “Improving code: The (mis)

perception of quality metrics,” in

Proc. 2018 IEEE Int. Conf. Software

Maintenance and Evolution (IC-

SME), pp. 80–91.

	 6.	A. Arpteg, B. Brinne, L. Crnkovic-

Friis, and J. Bosch, “Software engi-

neering challenges of deep learning,”

in Proc. 2018 44th Euromicro Conf.

Software Engineering and Advanced

Applications (SEAA), pp. 50–59.

PRACTITIONERS’ DIGEST  (continued from page 129)

Access all your IEEE Computer
Society subscriptions at

computer.org
/mysubscriptions

